Big Data in Chronic Kidney Disease: Evolution or Revolution?
Abstract
:Research Study (Author(s), Journal, Country of Publication, Year of Publication if Specific Details Available) | Summary of Findings and Conclusions |
---|---|
Tangri et al. [15], JAMA, Canada, 2011 |
|
Ravizza et al. [16], Nature Medicine, Switzerland, 2019 |
|
Inaguma et al. [18], PLoS One, Japan, 2020 |
|
Pedraza et al. [28], Medical Image Understanding and Analysis, 2017 |
|
Shang et al. [27], NPJ Digital Medicine, United States, 2021 |
|
NEPTUNE (Nephrotic Syndrome STudy Network) United States, study due for completion in 2024 |
|
ERCB (European Renal cDNA Bank) database study Germany, ongoing |
|
EURenOmics database Germany, 2012–2017 Multiple Publications Refer to https://eurenomics.eu/publications/index.html, accessed on 1 February 2023. |
|
C-PROBE (Clinical Phenotyping and Resource Biobank) United States, study due for completion in 2025 |
|
TRIDENT (Transformative Research in diabetic nephropathy) United States, study due for completion in 2023 |
|
CureGN database study United States and Europe, ongoing |
|
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCallum, J.; Blok, H. Historical Cost of Computer Memory and Storage. Our World in Data; Oxford Martin School, The University of Oxford: Oxford, UK, 2022; Available online: https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?country=~OWID_WRL (accessed on 1 February 2023).
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Abubakar, I.I.; Tillmann, T.; Banerjee, A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saran, R.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.; Bhave, N.; Bragg-Gresham, J.; Balkrishnan, R.; Dietrich, X.; Eckard, A.; Eggers, P.W.; et al. US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2018, 71, A7. [Google Scholar] [CrossRef]
- Cockwell, P.; Fisher, L.-A. The global burden of chronic kidney disease. Lancet 2020, 395, 662–664. [Google Scholar] [CrossRef] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photo-graphs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Loghmanpour, N.A.; Kormos, R.L.; Kanwar, M.K.; Teuteberg, J.J.; Murali, S.; Antaki, J.F. A Bayesian Model to Predict Right Ventricular Failure Following Left Ventricular Assist Device Therapy. JACC: Hear. Fail. 2016, 4, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Choi, T.; Kim, J.; Park, J.; Seo, J.; Kim, S.; Kwon, Y.; Lee, S.; Lee, S. An integrated clinical and genomic information system for cancer precision medicine. BMC Med. Genom. 2018, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Saez-Rodriguez, J.; Rinschen, M.M.; Floege, J.; Kramann, R. Big science and big data in nephrology. Kidney Int. 2019, 95, 1326–1337. [Google Scholar] [CrossRef] [Green Version]
- Joshi, G.; Jain, A.; Adhikari, S.; Garg, H.; Bhandari, M. FDA approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An updated 2022 landscape. medRxiv 2022. [Google Scholar] [CrossRef]
- Food and Drug Administration, US. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. 2022. Available online: https://www.fda.gov/media/145022 (accessed on 1 February 2023).
- Tangri, N.; Stevens, L.A.; Griffith, J.; Tighiouart, H.; Djurdjev, O.; Naimark, D.; Levin, A.; Levey, A.S. A Predictive Model for Progression of Chronic Kidney Disease to Kidney Failure. JAMA 2011, 305, 1553–1559. [Google Scholar] [CrossRef] [Green Version]
- Ravizza, S.; Huschto, T.; Adamov, A.; Böhm, L.; Büsser, A.; Flöther, F.F.; Hinzmann, R.; König, H.; McAhren, S.M.; Robertson, D.H.; et al. Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data. Nat. Med. 2019, 25, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Sandokji, I.; Yamamoto, Y.; Biswas, A.; Arora, T.; Ugwuowo, U.; Simonov, M.; Saran, I.; Martin, M.; Testani, J.M.; Mansour, S.; et al. A Time-Updated, Parsimonious Model to Predict AKI in Hospitalized Children. J. Am. Soc. Nephrol. 2020, 31, 1348–1357. [Google Scholar] [CrossRef]
- Inaguma, D.; Kitagawa, A.; Yanagiya, R.; Koseki, A.; Iwamori, T.; Kudo, M.; Yuzawa, Y. Increasing tendency of urine protein is a risk factor for rapid eGFR decline in patients with CKD: A machine learning-based prediction model by using a big database. PLoS ONE 2020, 15, e0239262. [Google Scholar] [CrossRef]
- Schena, F.P.; Anelli, V.W.; Trotta, J.; Di Noia, T.; Manno, C.; Tripepi, G.; D’Arrigo, G.; Chesnaye, N.C.; Russo, M.L.; Stangou, M.; et al. Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with im-munoglobulin A nephropathy. Kidney Int. 2021, 99, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Tomašev, N.; Harris, N.; Baur, S.; Mottram, A.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Magliulo, V.; et al. Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records. Nat. Protoc. 2021, 16, 2765–2787. [Google Scholar] [CrossRef]
- Port, F.K.; Held, P.J. The US Renal Data System at 30 Years: A Historical Perspective. Am. J. Kidney Dis. 2019, 73, 459–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stack, A.G.; Casserly, L.F.; Cronin, C.J.; Chernenko, T.; Cullen, W.; Hannigan, A.; Saran, R.; Johnson, H.; Browne, G.; Ferguson, J.P. Prevalence and variation of Chronic Kidney Disease in the Irish health system: Initial findings from the National Kidney Disease Surveillance Programme. BMC Nephrol. 2014, 15, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello, A.K.; E Ronksley, P.; Tangri, N.; Singer, A.; Grill, A.; Nitsch, D.; A Queenan, J.; Lindeman, C.; Soos, B.; Freiheit, E.; et al. A national surveillance project on chronic kidney disease management in Canadian primary care: A study protocol. BMJ Open 2017, 7, e016267. [Google Scholar] [CrossRef]
- Saran, R.; Steffick, D.; Bragg-Gresham, J. The China kidney disease network (CK-NET): “big data-big dreams”. Am. J. Kidney Dis. 2017, 69, 713–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cisek, K.; Krochmal, M.; Klein, J.; Mischak, H. The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol. Dial. Transplant. 2015, 31, 2003–2011. [Google Scholar] [CrossRef] [Green Version]
- Wuttke, M.; Köttgen, A. Insights into kidney diseases from genome-wide association studies. Nat. Rev. Nephrol. 2016, 12, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Shang, N.; Khan, A.; Polubriaginof, F.; Zanoni, F.; Mehl, K.; Fasel, D.; Drawz, P.E.; Carrol, R.J.; Denny, J.C.; Hathcock, M.A.; et al. Medical records-based chronic kidney disease phenotype for clinical care and “big data” observational and genetic studies. NPJ Digit. Med. 2021, 4, 1–13. [Google Scholar] [CrossRef]
- Pedraza, A.; Gallego, J.; Lopez, S.; Gonzalez, L.; Laurinavicius, A.; Bueno, G. Glomerulus classification with convolutional neural networks. In Proceedings of the Medical Image Understanding and Analysis: 21st Annual Conference, MIUA 2017, Edinburgh, UK, 11–13 July 2017; Springer International Publishing: Berlin/Heidelberg, Germany; pp. 839–849. [Google Scholar]
- Zheng, Y.; Cassol, C.A.; Jung, S.; Veerapaneni, D.; Chitalia, V.C.; Ren, K.Y.; Bellur, S.S.; Boor, P.; Barisoni, L.M.; Waikar, S.S.; et al. Deep-Learning–Driven Quantification of Interstitial Fibrosis in Digitized Kidney Biopsies. Am. J. Pathol. 2021, 191, 1442–1453. [Google Scholar] [CrossRef]
- Erickson, K.F.; Hostetter, T.H.; Winkelmayer, W.C.; Olan, G.; Meyer, R.N.; Hakim, R.; Sedor, J.R. Federal Funding for Kidney Disease Research: A Missed Opportunity. Am. J. Public Heal. 2016, 106, 406–407. [Google Scholar] [CrossRef]
- Strippoli, G.F.M.; Craig, J.; Schena, F.P. The Number, Quality, and Coverage of Randomized Controlled Trials in Nephrology. J. Am. Soc. Nephrol. 2004, 15, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, D.; Lowe-Jones, R.; Damster, S.; Thomas, N.; Scholes-Robertson, N.; Tong, A.; Levin, A. International perspectives on patient involvement in clinical trials in nephrology. Kidney Int. 2020, 98, 566–571. [Google Scholar] [CrossRef]
- Glicksberg, B.; Johnson, K.; Dudley, J.T. The next generation of precision medicine: Observational studies, electronic health records, biobanks and continuous monitoring. Hum. Mol. Genet. 2018, 27, R56–R62. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitcher, A.; Ding, U.; Wu, H.H.L.; Chinnadurai, R. Big Data in Chronic Kidney Disease: Evolution or Revolution? BioMedInformatics 2023, 3, 260-266. https://doi.org/10.3390/biomedinformatics3010017
Kitcher A, Ding U, Wu HHL, Chinnadurai R. Big Data in Chronic Kidney Disease: Evolution or Revolution? BioMedInformatics. 2023; 3(1):260-266. https://doi.org/10.3390/biomedinformatics3010017
Chicago/Turabian StyleKitcher, Abbie, UZhe Ding, Henry H. L. Wu, and Rajkumar Chinnadurai. 2023. "Big Data in Chronic Kidney Disease: Evolution or Revolution?" BioMedInformatics 3, no. 1: 260-266. https://doi.org/10.3390/biomedinformatics3010017
APA StyleKitcher, A., Ding, U., Wu, H. H. L., & Chinnadurai, R. (2023). Big Data in Chronic Kidney Disease: Evolution or Revolution? BioMedInformatics, 3(1), 260-266. https://doi.org/10.3390/biomedinformatics3010017