Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Input Data
2.2. The Algorithmic Approach
Algorithm 1: MainProcedure. |
|
Algorithm 2: GenerateReplicateCombinations. |
|
Algorithm 3: FindBestReplicateCombination. |
|
3. Results and Discussion
4. Limitations and Future Extensions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chow, C.Y.; Kelsey, K.J.P.; Wolfner, M.F.; Clark, A.G. Candidate Genetic Modifiers of Retinitis Pigmentosa Identified by Exploiting Natural Variation in Drosophila. Hum. Mol. Genet. 2016, 25, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Queitsch, C.; Carlson, K.D.; Girirajan, S. Lessons from Model Organisms: Phenotypic Robustness and Missing Heritability in Complex Disease. PLoS Genet. 2012, 8, e1003041. [Google Scholar] [CrossRef] [PubMed]
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis Pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef]
- Sung, C.H.; Davenport, C.M.; Nathans, J. Rhodopsin Mutations Responsible for Autosomal Dominant Retinitis Pigmentosa. Clustering of Functional Classes along the Polypeptide Chain. J. Biol. Chem. 1993, 268, 26645–26649. [Google Scholar] [CrossRef]
- Chang, S.; Vaccarella, L.; Olatunji, S.; Cebulla, C.; Christoforidis, J. Diagnostic Challenges in Retinitis Pigmentosa: Genotypic Multiplicity and Phenotypic Variability. Curr. Genom. 2011, 12, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Mackay, T.F.C.; Richards, S.; Stone, E.A.; Barbadilla, A.; Ayroles, J.F.; Zhu, D.; Casillas, S.; Han, Y.; Magwire, M.M.; Cridland, J.M.; et al. The Drosophila melanogaster Genetic Reference Panel. Nature 2012, 482, 173–178. [Google Scholar] [CrossRef]
- Huang, W.; Massouras, A.; Inoue, Y.; Peiffer, J.; Ramia, M.; Tarone, A.M.; Turlapati, L.; Zichner, T.; Zhu, D.; Lyman, R.F.; et al. Natural Variation in Genome Architecture among 205 Drosophila melanogaster Genetic Reference Panel Lines. Genome Res. 2014, 24, 1193–1208. [Google Scholar] [CrossRef]
- Palu, R.A.S.; Chow, C.Y. Baldspot/ELOVL6 is a Conserved Modifier of Disease and the ER Stress Response. PLoS Genet. 2018, 14, e1007557. [Google Scholar] [CrossRef]
- Palu, R.A.S.; Dalton, H.M.; Chow, C.Y. Decoupling of Apoptosis from Activation of the ER Stress Response by the Drosophila Metallopeptidase superdeath. Genetics 2020, 214, 913–925. [Google Scholar] [CrossRef]
- Visel, A.; Rubin, E.M.; Pennacchio, L.A. Genomic Views of Distant-Acting Enhancers. Nature 2009, 461, 199–205. [Google Scholar] [CrossRef]
- Huang, W.; Carbone, M.A.; Magwire, M.M.; Peiffer, J.A.; Lyman, R.F.; Stone, E.A.; Anholt, R.R.H.; Mackay, T.F.C. Genetic Basis of Transcriptome Diversity in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2015, 112, E6010–E6019. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Pardee, A.B. Analysing Differential Gene Expression in Cancer. Nat. Rev. Cancer 2003, 3, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Esteban, R.; Jiang, X. Differential Gene Expression in Disease: A Comparison between High-Throughput Studies and the Literature. BMC Med. Genom. 2017, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Members of the Complex Trait Consortium. The Nature and Identification of Quantitative Trait Loci: A Community’s View. Nat. Rev. Genet. 2003, 4, 911–916. [Google Scholar] [CrossRef]
- Everett, L.J.; Huang, W.; Zhou, S.; Carbone, M.A.; Lyman, R.F.; Arya, G.H.; Geisz, M.S.; Ma, J.; Morgante, F.; St. Armour, G.; et al. Gene Expression Networks in the Drosophila Genetic Reference Panel. Genome Res. 2020, 30, 485–496. [Google Scholar] [CrossRef]
- Amstutz, J.; Khalifa, A.; Palu, R.; Jahan, K. Cluster-Based Analysis of Retinitis Pigmentosa Modifiers Using Drosophila Eye Size and Gene Expression Data. Genes 2022, 13, 386. [Google Scholar] [CrossRef]
- Pearson, K. Notes on the history of correlation. Biometrika 1920, 13, 25–45. [Google Scholar] [CrossRef]
- Syrzycka, M.; McEachern, L.A.; Kinneard, J.; Prabhu, K.; Fitzpatrick, K.; Schulze, S.; Rawls, J.M.; Lloyd, V.K.; Sinclair, D.A.R.; Honda, B.M. The Pink Gene Encodes the Drosophila Orthologue of the Human Hermansky-Pudlak Syndrome 5 (HPS5) Gene. Genome 2007, 50, 548–556. [Google Scholar] [CrossRef]
- Huang, C.; Yang, F.; Zhang, Z.; Zhang, J.; Cai, G.; Li, L.; Zheng, Y.; Chen, S.; Xi, R.; Zhu, B. Mrg15 Stimulates Ash1 H3K36 Methyltransferase Activity and Facilitates Ash1 Trithorax Group Protein Function in Drosophila. Nat. Commun. 2017, 8, 1649. [Google Scholar] [CrossRef]
- Janody, F.; Lee, J.D.; Jahren, N.; Hazelett, D.J.; Benlali, A.; Miura, G.I.; Draskovic, I.; Treisman, J.E. A Mosaic Genetic Screen Reveals Distinct Roles for Trithorax and Polycomb Group Genes in Drosophila Eye Development. Genetics 2004, 166, 187–200. [Google Scholar] [CrossRef]
- Rozovskaia, T.; Tillib, S.; Smith, S.; Sedkov, Y.; Rozenblatt-Rosen, O.; Petruk, S.; Yano, T.; Nakamura, T.; Ben-Simchon, L.; Gildea, J.; et al. Trithorax and ASH1 Interact Directly and Associate with the Trithorax Group-Responsive Bxd Region of the Ultrabithorax Promoter. Mol. Cell. Biol. 1999, 19, 6441–6447. [Google Scholar] [CrossRef] [PubMed]
- Bänziger, C.; Soldini, D.; Schütt, C.; Zipperlen, P.; Hausmann, G.; Basler, K. Wntless, a Conserved Membrane Protein Dedicated to the Secretion of Wnt Proteins from Signaling Cells. Cell 2006, 125, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Belenkaya, T.Y.; Han, C.; Standley, H.J.; Lin, X.; Houston, D.W.; Heasman, J.; Lin, X. Pygopus Encodes a Nuclear Protein Essential for Wingless/Wnt Signaling. Development 2002, 129, 4089–4101. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Xu, T.; Nicolson, S.; Denton, D.; Kumar, S. Distinct Requirements of Autophagy-Related Genes in Programmed Cell Death. Cell Death Differ. 2015, 22, 1792–1802. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Xiong, B.; Bellen, H.J. Rhodopsin Homeostasis and Retinal Degeneration: Lessons from the Fly. Trends Neurosci. 2013, 36, 652–660. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, Q.; Gao, X.; Zhang, L.; An, L. Down-Regulation of Mediator Complex Subunit 19 (Med19) Induces Apoptosis in Human Laryngocarcinoma HEp2 Cells in an Apaf-1-Dependent Pathway. Am. J. Transl. Res. 2017, 9, 755–761. [Google Scholar]
- Cinege, G.; Zsámboki, J.; Vidal-Quadras, M.; Uv, A.; Csordás, G.; Honti, V.; Gábor, E.; Hegedűs, Z.; Varga, G.I.B.; Kovács, A.L.; et al. Genes Encoding Cuticular Proteins Are Components of the Nimrod Gene Cluster in Drosophila. Insect Biochem. Mol. Biol. 2017, 87, 45–54. [Google Scholar] [CrossRef]
- Seeds, A.M.; Sandquist, J.C.; Spana, E.P.; York, J.D. A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster. J. Biol. Chem. 2004, 279, 47222–47232. [Google Scholar] [CrossRef]
- Eichers, E.R.; Green, J.S.; Stockton, D.W.; Jackman, C.S.; Whelan, J.; McNamara, J.A.; Johnson, G.J.; Lupski, J.R.; Katsanis, N. Newfoundland rod-cone dystrophy, an early-onset retinal dystrophy, is caused by splice-junction mutations in RLBP1. Am. J. Hum. Genet. 2002, 70, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Burstedt, M.S.; Sandgren, O.; Holmgren, G.; Forsman-Semb, K. Bothnia dystrophy caused by mutations in the cellular retinaldehyde-binding protein gene (RLBP1) on chromosome 15q26. Investig. Ophthal. Vis. Sci. 1999, 40, 995–1000. [Google Scholar]
- Storey, J.D.; Xiao, W.; Leek, J.T.; Tompkins, R.G.; Davis, R.W. Significance Analysis of Time Course Microarray Experiments. Proc. Natl. Acad. Sci. USA 2005, 102, 12837–12842. [Google Scholar] [CrossRef]
- Talsness, D.M.; Owings, K.G.; Coelho, E.; Mercenne, G.; Pleinis, J.M.; Partha, R.; Hope, K.A.; Zuberi, A.R.; Clark, N.L.; Lutz, C.M.; et al. A Drosophila Screen Identifies NKCC1 as a Modifier of NGLY1 Deficiency. eLife 2020, 9, e57831. [Google Scholar] [CrossRef] [PubMed]
- Palu, R.A.S.; Ong, E.; Stevens, K.; Chung, S.; Owings, K.G.; Goodman, A.G.; Chow, C.Y. Natural Genetic Variation Screen in Drosophila Identifies Wnt Signaling, Mitochondrial Metabolism, and Redox Homeostasis Genes as Modifiers of Apoptosis. G3 Genes Genomes Genet. 2019, 9, 3995–4005. [Google Scholar] [CrossRef]
- Lavoy, S.; Chittoor-Vinod, V.G.; Chow, C.Y.; Martin, I. Genetic Modifiers of Neurodegeneration in a Drosophila Model of Parkinson’s Disease. Genetics 2018, 209, 1345–1356. [Google Scholar] [CrossRef]
- He, B.Z.; Ludwig, M.Z.; Dickerson, D.A.; Barse, L.; Arun, B.; Vilhjálmsson, B.J.; Jiang, P.; Park, S.-Y.; Tamarina, N.A.; Selleck, S.B.; et al. Effect of Genetic Variation in a Drosophila Model of Diabetes-Associated Misfolded Human Proinsulin. Genetics 2014, 196, 557–567. [Google Scholar] [CrossRef]
Strain | Average Eye Size (Pixels) |
---|---|
RAL049 | 16,939.0 |
RAL057 | 17,144.4 |
RAL059 | 20,975.36364 |
RAL069 | 21,309.9 |
RAL073 | 21,332.4 |
… | … |
RAL223 | 16,790.2 |
Gene | Expression Level | |||
---|---|---|---|---|
RAL049:1 | RAL049:2 | RAL223:1 | RAL223:2 | |
FBgn0000014 | 4.093000 | 3.741190 | 3.959672 | 3.998653 |
FBgn0000015 | 3.396600 | 3.073591 | 2.972604 | 3.173324 |
FBgn0000017 | 7.805475 | 7.708741 | 8.092864 | 7.919513 |
FBgn0000018 | 5.022303 | 4.984516 | 5.532965 | 4.702643 |
FBgn0000022 | 3.586588 | 3.76593 | 3.080493 | 3.504877 |
FBgn0000024 | 5.882073 | 6.25082 | 5.441645 | 5.694643 |
… | … | … | … | … |
XLOC_006439 | 2.846007 | 4.64233 | 2.504695 | 2.375449 |
Strain | Average Eye Size (Pixels) | Selected Replicate |
---|---|---|
RAL049 | 16,939 | 1 |
RAL223 | 16,790.2 | 1 |
RAL256 | 14,254.6 | 1 |
RAL386 | 16,826.8 | 1 |
RAL721 | 16,112.9 | 2 |
RAL761 | 16,569.8 | 1 |
RAL819 | 14,442.9 | 1 |
RAL879 | 15,970.3 | 1 |
RAL129 | 25,694.5 | 2 |
RAL229 | 26,955.1 | 2 |
RAL239 | 27,349.1 | 2 |
RAL340 | 26,083.1 | 1 |
RAL374 | 26,036.1 | 1 |
RAL385 | 26,327.9 | 1 |
RAL589 | 26,491.2 | 1 |
RAL808 | 26,457.8 | 1 |
Candidate Gene | Eye Size after Knockdown (Chow et al., 2016) | Correlation Coefficient | Agreement between Results |
---|---|---|---|
CG2004 | Smaller | −0.679601 | No |
Cdk5 | Qualitatively improved | −0.407520 | Yes |
CG15666 | Larger | 0.142389 | No |
CG31468 | Larger | 0.171970 | No |
CG1785 | No change | −0.243544 | No |
Adgf-D | Larger | 0.503081 | No |
fred | Smaller | 0.122126 | Yes |
prosap | Smaller | −0.270981 | No |
CG16885 | Smaller | 0.292262 | Yes |
Hexo2 | NA | 0.000444 | NA |
hppy | Qualitatively worse | −0.092014 | Arguably yes |
lola | Smaller | No data in input | NA |
Pde1c | No change | −0.186151 | No |
CG43795 | No change | 0.376693 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.; Khalifa, A.; Palu, R. Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data. BioMedInformatics 2022, 2, 625-636. https://doi.org/10.3390/biomedinformatics2040040
Nguyen T, Khalifa A, Palu R. Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data. BioMedInformatics. 2022; 2(4):625-636. https://doi.org/10.3390/biomedinformatics2040040
Chicago/Turabian StyleNguyen, Trong, Amal Khalifa, and Rebecca Palu. 2022. "Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data" BioMedInformatics 2, no. 4: 625-636. https://doi.org/10.3390/biomedinformatics2040040
APA StyleNguyen, T., Khalifa, A., & Palu, R. (2022). Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data. BioMedInformatics, 2(4), 625-636. https://doi.org/10.3390/biomedinformatics2040040