Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data
2.2. The Algorithmic Approach
Algorithm 1: MainProcedure. |
|
Algorithm 2: GenerateReplicateCombinations. |
|
Algorithm 3: FindBestReplicateCombination. |
|
3. Results and Discussion
4. Limitations and Future Extensions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chow, C.Y.; Kelsey, K.J.P.; Wolfner, M.F.; Clark, A.G. Candidate Genetic Modifiers of Retinitis Pigmentosa Identified by Exploiting Natural Variation in Drosophila. Hum. Mol. Genet. 2016, 25, 651–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queitsch, C.; Carlson, K.D.; Girirajan, S. Lessons from Model Organisms: Phenotypic Robustness and Missing Heritability in Complex Disease. PLoS Genet. 2012, 8, e1003041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis Pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef]
- Sung, C.H.; Davenport, C.M.; Nathans, J. Rhodopsin Mutations Responsible for Autosomal Dominant Retinitis Pigmentosa. Clustering of Functional Classes along the Polypeptide Chain. J. Biol. Chem. 1993, 268, 26645–26649. [Google Scholar] [CrossRef]
- Chang, S.; Vaccarella, L.; Olatunji, S.; Cebulla, C.; Christoforidis, J. Diagnostic Challenges in Retinitis Pigmentosa: Genotypic Multiplicity and Phenotypic Variability. Curr. Genom. 2011, 12, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay, T.F.C.; Richards, S.; Stone, E.A.; Barbadilla, A.; Ayroles, J.F.; Zhu, D.; Casillas, S.; Han, Y.; Magwire, M.M.; Cridland, J.M.; et al. The Drosophila melanogaster Genetic Reference Panel. Nature 2012, 482, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Massouras, A.; Inoue, Y.; Peiffer, J.; Ramia, M.; Tarone, A.M.; Turlapati, L.; Zichner, T.; Zhu, D.; Lyman, R.F.; et al. Natural Variation in Genome Architecture among 205 Drosophila melanogaster Genetic Reference Panel Lines. Genome Res. 2014, 24, 1193–1208. [Google Scholar] [CrossRef] [Green Version]
- Palu, R.A.S.; Chow, C.Y. Baldspot/ELOVL6 is a Conserved Modifier of Disease and the ER Stress Response. PLoS Genet. 2018, 14, e1007557. [Google Scholar] [CrossRef]
- Palu, R.A.S.; Dalton, H.M.; Chow, C.Y. Decoupling of Apoptosis from Activation of the ER Stress Response by the Drosophila Metallopeptidase superdeath. Genetics 2020, 214, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Visel, A.; Rubin, E.M.; Pennacchio, L.A. Genomic Views of Distant-Acting Enhancers. Nature 2009, 461, 199–205. [Google Scholar] [CrossRef]
- Huang, W.; Carbone, M.A.; Magwire, M.M.; Peiffer, J.A.; Lyman, R.F.; Stone, E.A.; Anholt, R.R.H.; Mackay, T.F.C. Genetic Basis of Transcriptome Diversity in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2015, 112, E6010–E6019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, P.; Pardee, A.B. Analysing Differential Gene Expression in Cancer. Nat. Rev. Cancer 2003, 3, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Esteban, R.; Jiang, X. Differential Gene Expression in Disease: A Comparison between High-Throughput Studies and the Literature. BMC Med. Genom. 2017, 10, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Members of the Complex Trait Consortium. The Nature and Identification of Quantitative Trait Loci: A Community’s View. Nat. Rev. Genet. 2003, 4, 911–916. [Google Scholar] [CrossRef] [Green Version]
- Everett, L.J.; Huang, W.; Zhou, S.; Carbone, M.A.; Lyman, R.F.; Arya, G.H.; Geisz, M.S.; Ma, J.; Morgante, F.; St. Armour, G.; et al. Gene Expression Networks in the Drosophila Genetic Reference Panel. Genome Res. 2020, 30, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Amstutz, J.; Khalifa, A.; Palu, R.; Jahan, K. Cluster-Based Analysis of Retinitis Pigmentosa Modifiers Using Drosophila Eye Size and Gene Expression Data. Genes 2022, 13, 386. [Google Scholar] [CrossRef]
- Pearson, K. Notes on the history of correlation. Biometrika 1920, 13, 25–45. [Google Scholar] [CrossRef]
- Syrzycka, M.; McEachern, L.A.; Kinneard, J.; Prabhu, K.; Fitzpatrick, K.; Schulze, S.; Rawls, J.M.; Lloyd, V.K.; Sinclair, D.A.R.; Honda, B.M. The Pink Gene Encodes the Drosophila Orthologue of the Human Hermansky-Pudlak Syndrome 5 (HPS5) Gene. Genome 2007, 50, 548–556. [Google Scholar] [CrossRef]
- Huang, C.; Yang, F.; Zhang, Z.; Zhang, J.; Cai, G.; Li, L.; Zheng, Y.; Chen, S.; Xi, R.; Zhu, B. Mrg15 Stimulates Ash1 H3K36 Methyltransferase Activity and Facilitates Ash1 Trithorax Group Protein Function in Drosophila. Nat. Commun. 2017, 8, 1649. [Google Scholar] [CrossRef] [Green Version]
- Janody, F.; Lee, J.D.; Jahren, N.; Hazelett, D.J.; Benlali, A.; Miura, G.I.; Draskovic, I.; Treisman, J.E. A Mosaic Genetic Screen Reveals Distinct Roles for Trithorax and Polycomb Group Genes in Drosophila Eye Development. Genetics 2004, 166, 187–200. [Google Scholar] [CrossRef]
- Rozovskaia, T.; Tillib, S.; Smith, S.; Sedkov, Y.; Rozenblatt-Rosen, O.; Petruk, S.; Yano, T.; Nakamura, T.; Ben-Simchon, L.; Gildea, J.; et al. Trithorax and ASH1 Interact Directly and Associate with the Trithorax Group-Responsive Bxd Region of the Ultrabithorax Promoter. Mol. Cell. Biol. 1999, 19, 6441–6447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bänziger, C.; Soldini, D.; Schütt, C.; Zipperlen, P.; Hausmann, G.; Basler, K. Wntless, a Conserved Membrane Protein Dedicated to the Secretion of Wnt Proteins from Signaling Cells. Cell 2006, 125, 509–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belenkaya, T.Y.; Han, C.; Standley, H.J.; Lin, X.; Houston, D.W.; Heasman, J.; Lin, X. Pygopus Encodes a Nuclear Protein Essential for Wingless/Wnt Signaling. Development 2002, 129, 4089–4101. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Xu, T.; Nicolson, S.; Denton, D.; Kumar, S. Distinct Requirements of Autophagy-Related Genes in Programmed Cell Death. Cell Death Differ. 2015, 22, 1792–1802. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Xiong, B.; Bellen, H.J. Rhodopsin Homeostasis and Retinal Degeneration: Lessons from the Fly. Trends Neurosci. 2013, 36, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Meng, Q.; Gao, X.; Zhang, L.; An, L. Down-Regulation of Mediator Complex Subunit 19 (Med19) Induces Apoptosis in Human Laryngocarcinoma HEp2 Cells in an Apaf-1-Dependent Pathway. Am. J. Transl. Res. 2017, 9, 755–761. [Google Scholar]
- Cinege, G.; Zsámboki, J.; Vidal-Quadras, M.; Uv, A.; Csordás, G.; Honti, V.; Gábor, E.; Hegedűs, Z.; Varga, G.I.B.; Kovács, A.L.; et al. Genes Encoding Cuticular Proteins Are Components of the Nimrod Gene Cluster in Drosophila. Insect Biochem. Mol. Biol. 2017, 87, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Seeds, A.M.; Sandquist, J.C.; Spana, E.P.; York, J.D. A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster. J. Biol. Chem. 2004, 279, 47222–47232. [Google Scholar] [CrossRef] [Green Version]
- Eichers, E.R.; Green, J.S.; Stockton, D.W.; Jackman, C.S.; Whelan, J.; McNamara, J.A.; Johnson, G.J.; Lupski, J.R.; Katsanis, N. Newfoundland rod-cone dystrophy, an early-onset retinal dystrophy, is caused by splice-junction mutations in RLBP1. Am. J. Hum. Genet. 2002, 70, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Burstedt, M.S.; Sandgren, O.; Holmgren, G.; Forsman-Semb, K. Bothnia dystrophy caused by mutations in the cellular retinaldehyde-binding protein gene (RLBP1) on chromosome 15q26. Investig. Ophthal. Vis. Sci. 1999, 40, 995–1000. [Google Scholar]
- Storey, J.D.; Xiao, W.; Leek, J.T.; Tompkins, R.G.; Davis, R.W. Significance Analysis of Time Course Microarray Experiments. Proc. Natl. Acad. Sci. USA 2005, 102, 12837–12842. [Google Scholar] [CrossRef] [Green Version]
- Talsness, D.M.; Owings, K.G.; Coelho, E.; Mercenne, G.; Pleinis, J.M.; Partha, R.; Hope, K.A.; Zuberi, A.R.; Clark, N.L.; Lutz, C.M.; et al. A Drosophila Screen Identifies NKCC1 as a Modifier of NGLY1 Deficiency. eLife 2020, 9, e57831. [Google Scholar] [CrossRef] [PubMed]
- Palu, R.A.S.; Ong, E.; Stevens, K.; Chung, S.; Owings, K.G.; Goodman, A.G.; Chow, C.Y. Natural Genetic Variation Screen in Drosophila Identifies Wnt Signaling, Mitochondrial Metabolism, and Redox Homeostasis Genes as Modifiers of Apoptosis. G3 Genes Genomes Genet. 2019, 9, 3995–4005. [Google Scholar] [CrossRef] [Green Version]
- Lavoy, S.; Chittoor-Vinod, V.G.; Chow, C.Y.; Martin, I. Genetic Modifiers of Neurodegeneration in a Drosophila Model of Parkinson’s Disease. Genetics 2018, 209, 1345–1356. [Google Scholar] [CrossRef] [Green Version]
- He, B.Z.; Ludwig, M.Z.; Dickerson, D.A.; Barse, L.; Arun, B.; Vilhjálmsson, B.J.; Jiang, P.; Park, S.-Y.; Tamarina, N.A.; Selleck, S.B.; et al. Effect of Genetic Variation in a Drosophila Model of Diabetes-Associated Misfolded Human Proinsulin. Genetics 2014, 196, 557–567. [Google Scholar] [CrossRef]
Strain | Average Eye Size (Pixels) |
---|---|
RAL049 | 16,939.0 |
RAL057 | 17,144.4 |
RAL059 | 20,975.36364 |
RAL069 | 21,309.9 |
RAL073 | 21,332.4 |
… | … |
RAL223 | 16,790.2 |
Gene | Expression Level | |||
---|---|---|---|---|
RAL049:1 | RAL049:2 | RAL223:1 | RAL223:2 | |
FBgn0000014 | 4.093000 | 3.741190 | 3.959672 | 3.998653 |
FBgn0000015 | 3.396600 | 3.073591 | 2.972604 | 3.173324 |
FBgn0000017 | 7.805475 | 7.708741 | 8.092864 | 7.919513 |
FBgn0000018 | 5.022303 | 4.984516 | 5.532965 | 4.702643 |
FBgn0000022 | 3.586588 | 3.76593 | 3.080493 | 3.504877 |
FBgn0000024 | 5.882073 | 6.25082 | 5.441645 | 5.694643 |
… | … | … | … | … |
XLOC_006439 | 2.846007 | 4.64233 | 2.504695 | 2.375449 |
Strain | Average Eye Size (Pixels) | Selected Replicate |
---|---|---|
RAL049 | 16,939 | 1 |
RAL223 | 16,790.2 | 1 |
RAL256 | 14,254.6 | 1 |
RAL386 | 16,826.8 | 1 |
RAL721 | 16,112.9 | 2 |
RAL761 | 16,569.8 | 1 |
RAL819 | 14,442.9 | 1 |
RAL879 | 15,970.3 | 1 |
RAL129 | 25,694.5 | 2 |
RAL229 | 26,955.1 | 2 |
RAL239 | 27,349.1 | 2 |
RAL340 | 26,083.1 | 1 |
RAL374 | 26,036.1 | 1 |
RAL385 | 26,327.9 | 1 |
RAL589 | 26,491.2 | 1 |
RAL808 | 26,457.8 | 1 |
Candidate Gene | Eye Size after Knockdown (Chow et al., 2016) | Correlation Coefficient | Agreement between Results |
---|---|---|---|
CG2004 | Smaller | −0.679601 | No |
Cdk5 | Qualitatively improved | −0.407520 | Yes |
CG15666 | Larger | 0.142389 | No |
CG31468 | Larger | 0.171970 | No |
CG1785 | No change | −0.243544 | No |
Adgf-D | Larger | 0.503081 | No |
fred | Smaller | 0.122126 | Yes |
prosap | Smaller | −0.270981 | No |
CG16885 | Smaller | 0.292262 | Yes |
Hexo2 | NA | 0.000444 | NA |
hppy | Qualitatively worse | −0.092014 | Arguably yes |
lola | Smaller | No data in input | NA |
Pde1c | No change | −0.186151 | No |
CG43795 | No change | 0.376693 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.; Khalifa, A.; Palu, R. Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data. BioMedInformatics 2022, 2, 625-636. https://doi.org/10.3390/biomedinformatics2040040
Nguyen T, Khalifa A, Palu R. Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data. BioMedInformatics. 2022; 2(4):625-636. https://doi.org/10.3390/biomedinformatics2040040
Chicago/Turabian StyleNguyen, Trong, Amal Khalifa, and Rebecca Palu. 2022. "Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data" BioMedInformatics 2, no. 4: 625-636. https://doi.org/10.3390/biomedinformatics2040040
APA StyleNguyen, T., Khalifa, A., & Palu, R. (2022). Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data. BioMedInformatics, 2(4), 625-636. https://doi.org/10.3390/biomedinformatics2040040