Applications of Deep Learning for Drug Discovery Systems with BigData
Abstract
:1. Introduction
2. Types of Deep-Learning Network Models
2.1. Networks in Deep Learning
2.2. Technological Application in BigData and Deep Learning
3. Deep Learning and Technical Problems
3.1. Black Box Problem
3.2. Gap between Machine Learning and Decisions
3.3. Amounts of Data and Computational Power
3.4. Theoretical Explanation
4. Approaches to Technical Problems in Deep Learning
4.1. Interpretability of Learning Results
4.2. Interpretability of Learning Results
4.3. Acceleration and Efficiency of Deep Learning
4.4. Establishment of Machine-Learning System Development Methodology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiménez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020, 2, 573–584. [Google Scholar] [CrossRef]
- Tripathi, A.; Misra, K.; Dhanuka, R.; Singh, J.P. Artificial Intelligence in Accelerating Drug Discovery and Development. Recent Pat. Biotechnol. 2022; in press. [Google Scholar] [CrossRef]
- Vijayan, R.S.K.; Kihlberg, J.; Cross, J.B.; Poongavanam, V. Enhancing preclinical drug discovery with artificial intelligence. Drug Discov. Today 2022, 27, 967–984. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.R. Application of Artificial Intelligence and Machine Learning in Drug Discovery. Methods Mol. Biol. 2022, 2390, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Yang, Z.; Rodrigues, A.D. Cynomolgus Monkey as an Emerging Animal Model to Study Drug Transporters: In Vitro, In Vivo, In Vitro-to-In Vivo Translation. Drug Metab. Dispos. 2022, 50, 299–319. [Google Scholar] [CrossRef]
- Spreafico, A.; Hansen, A.R.; Abdul Razak, A.R.; Bedard, P.L.; Siu, L.L. The Future of Clinical Trial Design in Oncology. Cancer Discov. 2021, 11, 822–837. [Google Scholar] [CrossRef]
- Van Norman, G.A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach? JACC Basic Transl. Sci. 2019, 4, 845–854. [Google Scholar] [CrossRef]
- Bracken, M.B. Why animal studies are often poor predictors of human reactions to exposure. J. R. Soc. Med. 2009, 102, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Paliwal, H.; Thareja, S.; Pathak, P.; Grishina, M.; Jaremko, M.; Emwas, A.H.; et al. Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids. Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids. Pharmaceuticals 2022, 15, 1071. [Google Scholar] [CrossRef]
- Feldmann, C.; Bajorath, J. Advances in Computational Polypharmacology. Mol. Inform. 2022, 24, e2200190. [Google Scholar] [CrossRef]
- Ding, P.; Pan, Y.; Wang, Q.; Xu, R. Prediction and evaluation of combination pharmacotherapy using natural language processing, machine learning and patient electronic health records. J. Biomed. Inform. 2022, 133, 104164. [Google Scholar] [CrossRef]
- Van Norman, G.A. Phase II Trials in Drug Development and Adaptive Trial Design. JACC Basic Transl. Sci. 2019, 4, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Takebe, T.; Imai, R.; Ono, S. The Current Status of Drug Discovery and Development as Originated in United States Academia: The Influence of Industrial and Academic Collaboration on Drug Discovery and Development. Clin. Transl. Sci. 2018, 11, 597–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, Y.; Shintani, M.; Imanari, F.; Osada, N.; Endo, T. A New Approach to Drug Repurposing with Two-Stage Prediction, Machine Learning, and Unsupervised Clustering of Gene Expression. OMICS 2022, 26, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Manuel, A.M.; Dai, Y.; Fernandes, B.S.; Enduru, N.; Jia, P.; Zhao, Z. Identifying candidate genes and drug targets for Alzheimer’s disease by an integrative network approach using genetic and brain region-specific proteomic data. Hum. Mol. Genet. 2022, 28, ddac124. [Google Scholar] [CrossRef]
- Tolios, A.; De Las Rivas, J.; Hovig, E.; Trouillas, P.; Scorilas, A.; Mohr, T. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist. Updates 2020, 48, 100662. [Google Scholar] [CrossRef]
- Zhao, K.; Shi, Y.; So, H.C. Prediction of Drug Targets for Specific Diseases Leveraging Gene Perturbation Data: A Machine Learning Approach. Pharmaceutics 2022, 14, 234. [Google Scholar] [CrossRef]
- Pestana, R.C.; Roszik, J.; Groisberg, R.; Sen, S.; Van Tine, B.A.; Conley, A.P.; Subbiah, V. Discovery of targeted expression data for novel antibody-based and chimeric antigen receptor-based therapeutics in soft tissue sarcomas using RNA-sequencing: Clinical implications. Curr. Probl. Cancer 2021, 45, 100794. [Google Scholar] [CrossRef]
- Puranik, A.; Dandekar, P.; Jain, R. Exploring the potential of machine learning for more efficient development and production of biopharmaceuticals. Biotechnol. Prog. 2022, 2, e3291. [Google Scholar] [CrossRef]
- Yu, L.; Qiu, W.; Lin, W.; Cheng, X.; Xiao, X.; Dai, J. HGDTI: Predicting drug-target interaction by using information aggregation based on heterogeneous graph neural network. BMC Bioinform. 2022, 23, 126. [Google Scholar] [CrossRef]
- Bemani, A.; Björsell, N. Aggregation Strategy on Federated Machine Learning Algorithm for Collaborative Predictive Maintenance. Sensors 2022, 22, 6252. [Google Scholar] [CrossRef]
- Garcia, B.J.; Urrutia, J.; Zheng, G.; Becker, D.; Corbet, C.; Maschhoff, P.; Cristofaro, A.; Gaffney, N.; Vaughn, M.; Saxena, U.; et al. A toolkit for enhanced reproducibility of RNASeq analysis for synthetic biologists. Synth. Biol. 2022, 7, ysac012. [Google Scholar] [CrossRef]
- Nambiar, A.M.K.; Breen, C.P.; Hart, T.; Kulesza, T.; Jamison, T.F.; Jensen, K.F. Bayesian Optimization of Computer-Proposed Multistep Synthetic Routes on an Automated Robotic Flow Platform. ACS Cent. Sci. 2022, 8, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Qadeer, N.; Shah, J.H.; Sharif, M.; Khan, M.A.; Muhammad, G.; Zhang, Y.D. Intelligent Tracking of Mechanically Thrown Objects by Industrial Catching Robot for Automated In-Plant Logistics 4.0. Sensors 2022, 22, 2113. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Prieto, P.L.; Zepel, T.; Grunert, S.; Hein, J.E. Automated Experimentation Powers Data Science in Chemistry. Acc. Chem. Res. 2021, 54, 546–555. [Google Scholar] [CrossRef]
- Liu, G.H.; Zhang, B.W.; Qian, G.; Wang, B.; Mao, B.; Bichindaritz, I. Bioimage-Based Prediction of Protein Subcellular Location in Human Tissue with Ensemble Features and Deep Networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 1966–1980. [Google Scholar] [CrossRef]
- Haase, R.; Fazeli, E.; Legland, D.; Doube, M.; Culley, S.; Belevich, I.; Jokitalo, E.; Schorb, M.; Klemm, A.; Tischer, C. A Hitchhiker’s guide through the bio-image analysis software universe. FEBS Lett. 2022; in press. [Google Scholar] [CrossRef]
- Chessel, A. An Overview of data science uses in bioimage informatics. Methods 2017, 115, 110–118. [Google Scholar] [CrossRef]
- Mendes, J.; Domingues, J.; Aidos, H.; Garcia, N.; Matela, N. AI in Breast Cancer Imaging: A Survey of Different Applications. J. Imaging 2022, 8, 228. [Google Scholar] [CrossRef]
- Harris, R.J.; Baginski, S.G.; Bronstein, Y.; Schultze, D.; Segel, K.; Kim, S.; Lohr, J.; Towey, S.; Shahi, N.; Driscoll, I.; et al. Detection Of Critical Spinal Epidural Lesions on CT Using Machine Learning. Spine, 2022; in press. [Google Scholar] [CrossRef]
- Survarachakan, S.; Prasad, P.J.R.; Naseem, R.; Pérez de Frutos, J.; Kumar, R.P.; Langø, T.; Alaya Cheikh, F.; Elle, O.J.; Lindseth, F. Deep learning for image-based liver analysis—A comprehensive review focusing on malignant lesions. Artif. Intell. Med. 2022, 130, 102331. [Google Scholar] [CrossRef]
- Karakaya, M.; Aygun, R.S.; Sallam, A.B. Collaborative Deep Learning for Privacy Preserving Diabetic Retinopathy Detection. In Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 2181–2184. [Google Scholar] [CrossRef]
- Zeng, L.; Huang, M.; Li, Y.; Chen, Q.; Dai, H.N. Progressive Feature Fusion Attention Dense Network for Speckle Noise Removal in OCT Images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022; in press. [Google Scholar] [CrossRef]
- Fritz, B.; Yi, P.H.; Kijowski, R.; Fritz, J. Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology: An Overview of Novel MRI- and CT-Based Approaches. Investig. Radiol. 2022; in press. [Google Scholar] [CrossRef]
- Gao, W.; Li, X.; Wang, Y.; Cai, Y. Medical Image Segmentation Algorithm for Three-Dimensional Multimodal Using Deep Reinforcement Learning and Big Data Analytics. Front. Public Health 2022, 10, 879639. [Google Scholar] [CrossRef]
- Zhou, Y. Antistroke Network Pharmacological Prediction of Xiaoshuan Tongluo Recipe Based on Drug-Target Interaction Based on Deep Learning. Comput. Math. Methods Med. 2022, 2022, 6095964. [Google Scholar] [CrossRef]
- Zheng, Z. The Classification of Music and Art Genres under the Visual Threshold of Deep Learning. Comput. Intell. Neurosci. 2022, 2022, 4439738. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chen, D.; Wang, H.; Pan, Y.; Peng, X.; Liu, X.; Liu, Y. Automatic BASED scoring on scalp EEG in children with infantile spasms using convolutional neural network. Front. Mol. Biosci. 2022, 9, 931688. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Fang, Y.; Pei, Z.; Li, Z.; Chen, H.; Hou, P.; Wei, L.; Wang, R.; Wang, S. A Convolutional Neural Network Model for Detecting Sellar Floor Destruction of Pituitary. Front. Neurosci. 2022, 16, 900519. [Google Scholar] [CrossRef]
- Stofa, M.M.; Zulkifley, M.A.; Zainuri, M.A.A.M. Micro-Expression-Based Emotion Recognition Using Waterfall Atrous Spatial Pyramid Pooling Networks. Sensors 2022, 22, 4634. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, H.; Feng, M.; Chen, H.; Zhang, W.; Wei, L.; Pei, Z.; Wang, R.; Wang, S. Application of Convolutional Neural Network in the Diagnosis of Cavernous Sinus Invasion in Pituitary Adenoma. Front. Oncol. 2022, 12, 835047. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.; Zhuang, Q.; Gong, B. Human-computer interaction based interface design of intelligent health detection using PCANet and multi-sensor information fusion. Comput. Methods Programs Biomed. 2022, 216, 106637. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Sun, Z.; Xie, J.; Yu, J.; Li, J.; Wang, J. Identification of autism spectrum disorder based on short-term spontaneous hemodynamic fluctuations using deep learning in a multi-layer neural network. Clin. Neurophysiol. 2021, 132, 457–468. [Google Scholar] [CrossRef]
- Cho, Y.; Cho, H.; Shim, J.; Choi, J.I.; Kim, Y.H.; Kim, N.; Oh, Y.W.; Hwang, S.H. Efficient Segmentation for Left Atrium With Convolution Neural Network Based on Active Learning in Late Gadolinium Enhancement Magnetic Resonance Imaging. J. Korean Med. Sci. 2022, 37, e271. [Google Scholar] [CrossRef]
- Islam, M.M.; Nooruddin, S.; Karray, F.; Muhammad, G. Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects. Comput. Biol. Med. 2022, 149, 106060. [Google Scholar] [CrossRef]
- Khan, S.W.; Hafeez, Q.; Khalid, M.I.; Alroobaea, R.; Hussain, S.; Iqbal, J.; Almotiri, J.; Ullah, S.S. Anomaly Detection in Traffic Surveillance Videos Using Deep Learning. Sensors 2022, 22, 6563. [Google Scholar] [CrossRef]
- Farahani, H.; Boschman, J.; Farnell, D.; Darbandsari, A.; Zhang, A.; Ahmadvand, P.; Jones, S.J.M.; Huntsman, D.; Köbel, M.; Gilks, C.B.; et al. Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images. Mod. Pathol. 2022; in press. [Google Scholar] [CrossRef]
- Agrawal, P.; Nikhade, P. Artificial Intelligence in Dentistry: Past, Present, and Future. Cureus 2022, 14, e27405. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zaccagna, F.; Rundo, L.; Testa, C.; Agati, R.; Lodi, R.; Manners, D.N.; Tonon, C. Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives. Diagnostics 2022, 12, 1850. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, L.; Luo, R.; Wang, S.; Wang, H.; Gao, F.; Wang, D. A deep learning model based on dynamic contrast-enhanced magnetic resonance imaging enables accurate prediction of benign and malignant breast lessons. Front. Oncol. 2022, 12, 943415. [Google Scholar] [CrossRef] [PubMed]
- Dotolo, S.; Esposito Abate, R.; Roma, C.; Guido, D.; Preziosi, A.; Tropea, B.; Palluzzi, F.; Giacò, L.; Normanno, N. Bioinformatics: From NGS Data to Biological Complexity in Variant Detection and Oncological Clinical Practice. Biomedicines 2022, 10, 2074. [Google Scholar] [CrossRef]
- Srivastava, R. Applications of artificial intelligence multiomics in precision oncology. J. Cancer Res. Clin. Oncol. 2022, in press. [Google Scholar] [CrossRef]
- Gim, J.A. A Genomic Information Management System for Maintaining Healthy Genomic States and Application of Genomic Big Data in Clinical Research. Int. J. Mol. Sci. 2022, 23, 5963. [Google Scholar] [CrossRef]
- Qiao, S.; Li, X.; Olatosi, B.; Young, S.D. Utilizing Big Data analytics and electronic health record data in HIV prevention, treatment, and care research: A literature review. AIDS Care 2021, 14, 1–21. [Google Scholar] [CrossRef]
- Orthuber, W. Information Is Selection-A Review of Basics Shows Substantial Potential for Improvement of Digital Information Representation. Int. J. Environ. Res. Public Health 2020, 17, 2975. [Google Scholar] [CrossRef]
- Aslan, M.F.; Sabanci, K.; Durdu, A.; Unlersen, M.F. COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization. Comput. Biol. Med. 2022, 142, 105244. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Zhou, Y.; Liang, H.; Lu, Y.; Luan, K. A novel classification method of lymph node metastasis in colorectal cancer. Bioengineered 2021, 12, 2007–2021. [Google Scholar] [CrossRef]
- Khosravi, P.; Lysandrou, M.; Eljalby, M.; Li, Q.; Kazemi, E.; Zisimopoulos, P.; Sigaras, A.; Brendel, M.; Barnes, J.; Ricketts, C.; et al. A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology-Radiology Fusion. J. Magn. Reson. Imaging 2021, 54, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Emmert-Streib, F.; Yang, Z.; Feng, H.; Tripathi, S.; Dehmer, M. An Introductory Review of Deep Learning for Prediction Models With Big Data. Front. Artif. Intell. 2020, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adami, C. A Brief History of Artificial Intelligence Research. Artif. Life 2021, 27, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Sun, H.; Hao, J.; Qi, Q.; Wang, J.; Liao, J. A Dual-Branch Self-Boosting Framework for Self-Supervised 3D Hand Pose Estimation. IEEE Trans. Image Process. 2022, 31, 5052–5066. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yang, X.; Huang, Y.; Li, H.; He, S.; Hu, X.; Chen, Z.; Xue, W.; Cheng, J.; Ni, D. Sketch guided and progressive growing GAN for realistic and editable ultrasound image synthesis. Med. Image Anal. 2022, 79, 102461. [Google Scholar] [CrossRef]
- Wang, H.; Li, Q.; Yuan, Y.; Zhang, Z.; Wang, K.; Zhang, H. Inter-subject registration-based one-shot segmentation with alternating union network for cardiac MRI images. Med. Image Anal. 2022, 79, 102455. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Sun, G.; Chen, J.; Zhu, X.; Yang, J. Weakly supervised training for eye fundus lesion segmentation in patients with diabetic retinopathy. Math. Biosci. Eng. 2022, 19, 5293–5311. [Google Scholar] [CrossRef]
- Shi, Z.; Ma, Y.; Fu, M. Fuzzy Support Tensor Product Adaptive Image Classification for the Internet of Things. Comput. Intell. Neurosci. 2022, 2022, 3532605. [Google Scholar] [CrossRef]
- Rashmi, R.; Prasad, K.; Udupa, C.B.K. Breast histopathological image analysis using image processing techniques for diagnostic puposes: A methodological review. J. Med. Syst. 2021, 46, 7. [Google Scholar] [CrossRef]
- Li, W.; Shi, P.; Yu, H. Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future. Front. Neurosci. 2021, 15, 621885. [Google Scholar] [CrossRef]
- Gültekin, İ.B.; Karabük, E.; Köse, M.F. “Hey Siri! Perform a type 3 hysterectomy. Please watch out for the ureter!” What is autonomous surgery and what are the latest developments? J. Turk. Ger. Gynecol. Assoc. 2021, 22, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.; Fernandez, M.; Gentile, F.; Isayev, O.; Tropsha, A.; Stern, A.C.; Cherkasov, A. The transformational role of GPU computing and deep learning in drug discovery. Nat. Mach. Intell. 2022, 4, 211–221. [Google Scholar] [CrossRef]
- Shi, S.; Wang, Q.; Chu, X. Performance Modeling and Evaluation of Distributed Deep Learning Frameworks on GPUs. arXiv. 2017. arXiv:1711.05979. Available online: https://arxiv.org/abs/1711.05979 (accessed on 20 August 2018).
- Baur, D.; Kroboth, K.; Heyde, C.E.; Voelker, A. Convolutional Neural Networks in Spinal Magnetic Resonance Imaging: A Systematic Review. World Neurosurg. 2022, 166, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.Y.; Mao, X.L.; Chen, Y.H.; You, N.N.; Song, Y.Q.; Zhang, L.H.; Cai, Y.; Ye, X.N.; Ye, L.P.; Li, S.W. The Feasibility of Applying Artificial Intelligence to Gastrointestinal Endoscopy to Improve the Detection Rate of Early Gastric Cancer Screening. Front. Med. 2022, 9, 886853. [Google Scholar] [CrossRef]
- Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Kavita Ijaz, M.F.; Woźniak, M. A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases. Sensors 2021, 21, 4749. [Google Scholar] [CrossRef]
- Zhao, J.; Hou, X.; Pan, M.; Zhang, H. Attention-based generative adversarial network in medical imaging: A narrative review. Comput. Biol. Med. 2022, 149, 105948. [Google Scholar] [CrossRef]
- Rani, G.; Misra, A.; Dhaka, V.S.; Zumpano, E.; Vocaturo, E. Spatial feature and resolution maximization GAN for bone suppression in chest radiographs. Comput. Methods Programs Biomed. 2022, 224, 107024. [Google Scholar] [CrossRef]
- Shokraei Fard, A.; Reutens, D.C.; Vegh, V. From CNNs to GANs for cross-modality medical image estimation. Comput. Biol. Med. 2022, 146, 105556. [Google Scholar] [CrossRef]
- You, A.; Kim, J.K.; Ryu, I.H.; Yoo, T.K. Application of generative adversarial networks (GAN) for ophthalmology image domains: A survey. Eye Vis. 2022, 9, 6. [Google Scholar] [CrossRef]
- Lan, L.; You, L.; Zhang, Z.; Fan, Z.; Zhao, W.; Zeng, N.; Chen, Y.; Zhou, X. Generative Adversarial Networks and Its Applications in Biomedical Informatics. Front. Public Health 2020, 8, 164. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. arXiv. 2018. arXiv:1812.04948. Available online: https://arxiv.org/abs/1812.04948 (accessed on 29 March 2019).
- Nickabadi, A.; Fard, M.S.; Farid, N.M.; Mohammadbagheri, N. A comprehensive survey on semantic facial attribute editing using generative adversarial networks. arXiv. 2022. arXiv:2205.10587. Available online: https://arxiv.org/abs/2205.10587v1 (accessed on 21 May 2022).
- Feghali, J.; Jimenez, A.E.; Schilling, A.T.; Azad, T.D. Overview of Algorithms for Natural Language Processing and Time Series Analyses. Acta Neurochir. Suppl. 2022, 134, 221–242. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; An, S.Y.; Guan, P.; Huang, D.S.; Zhou, B.S. Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks. BMC Infect. Dis. 2019, 19, 414. [Google Scholar] [CrossRef] [PubMed]
- Boesch, G. Deep Neural Network: The 3 Popular Types (MLP, CNN, and RNN). Available online: https://viso.ai/deep-learning/deep-neural-network-three-popular-types/ (accessed on 29 September 2022).
- Moor, J. The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years. AI Mag. 2006, 27, 2006. [Google Scholar]
- Chauhan, V.; Negi, S.; Jain, D.; Singh, P.; Sagar, A.K.; Sharma, A.H. Quantum Computers: A Review on How Quantum Computing Can Boom AI. In Proceedings of the 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 28–29 April 2022. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Carson, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Aborode, A.T.; Awuah, W.A.; Mikhailova, T.; Abdul-Rahman, T.; Pavlock, S.; Nansubuga, E.P.; Kundu, M.; Yarlagadda, R.; Pustake, M.; Correia, I.F.S.; et al. OMICs Technologies for Natural Compounds-based Drug Development. Curr. Top Med. Chem. 2022; in press. [Google Scholar] [CrossRef]
- Park, Y.; Heider, D.; Hauschild, A.C. Integrative Analysis of Next-Generation Sequencing for Next-Generation Cancer Research toward Artificial Intelligence. Cancers 2021, 13, 3148. [Google Scholar] [CrossRef]
- Ristori, M.V.; Mortera, S.L.; Marzano, V.; Guerrera, S.; Vernocchi, P.; Ianiro, G.; Gardini, S.; Torre, G.; Valeri, G.; Vicari, S.; et al. Proteomics and Metabolomics Approaches towards a Functional Insight onto AUTISM Spectrum Disorders: Phenotype Stratification and Biomarker Discovery. Int. J. Mol. Sci. 2020, 21, 6274. [Google Scholar] [CrossRef]
- Liu, X.N.; Cui, D.N.; Li, Y.F.; Liu, Y.H.; Liu, G.; Liu, L. Multiple “Omics” data-based biomarker screening for hepatocellular carcinoma diagnosis. World J. Gastroenterol. 2019, 25, 4199–4212. [Google Scholar] [CrossRef]
- Harakalova, M.; Asselbergs, F.W. Systems analysis of dilated cardiomyopathy in the next generation sequencing era. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, 10, e1419. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Choe, Y. Robust PCA Based on Incoherence with Geometrical Interpretation. IEEE Trans. Image Process. 2018, 27, 1939–1950. [Google Scholar] [CrossRef]
- Spencer, A.P.C.; Goodfellow, M. Using deep clustering to improve fMRI dynamic functional connectivity analysis. Neuroimage 2022, 257, 119288. [Google Scholar] [CrossRef]
- Li, Z.; Peleato, N.M. Comparison of dimensionality reduction techniques for cross-source transfer of fluorescence contaminant detection models. Chemosphere 2021, 276, 130064. [Google Scholar] [CrossRef] [PubMed]
- Fromentèze, T.; Yurduseven, O.; Del Hougne, P.; Smith, D.R. Lowering latency and processing burden in computational imaging through dimensionality reduction of the sensing matrix. Sci. Rep. 2021, 11, 3545. [Google Scholar] [CrossRef] [PubMed]
- Donnarumma, F.; Prevete, R.; Maisto, D.; Fuscone, S.; Irvine, E.M.; van der Meer, M.A.A.; Kemere, C.; Pezzulo, G. A framework to identify structured behavioral patterns within rodent spatial trajectories. Sci. Rep. 2021, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Niu, G.; Sugiyama, M. Information-Theoretic Representation Learning for Positive-Unlabeled Classification. Neural Comput. 2021, 33, 244–268. [Google Scholar] [CrossRef]
- Singh, A.; Ogunfunmi, T. An Overview of Variational Autoencoders for Source Separation, Finance, and Bio-Signal Applications. Entropy 2021, 24, 55. [Google Scholar] [CrossRef]
- Ran, X.; Chen, W.; Yvert, B.; Zhang, S. A hybrid autoencoder framework of dimensionality reduction for brain-computer interface decoding. Comput. Biol. Med. 2022, 148, 105871. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Lin, Y.; Zhao, L.; Wang, J.; Peng, X. Dimensionality Reduction of Single-Cell RNA Sequencing Data by Combining Entropy and Denoising AutoEncoder. J. Comput. Biol. 2022; in press. [Google Scholar] [CrossRef]
- Gomari, D.P.; Schweickart, A.; Cerchietti, L.; Paietta, E.; Fernandez, H.; Al-Amin, H.; Suhre, K.; Krumsiek, J. Variational autoencoders learn transferrable representations of metabolomics data. Commun. Biol. 2022, 5, 645. [Google Scholar] [CrossRef]
- Kamikokuryo, K.; Haga, T.; Venture, G.; Hernandez, V. Adversarial Autoencoder and Multi-Armed Bandit for Dynamic Difficulty Adjustment in Immersive Virtual Reality for Rehabilitation: Application to Hand Movement. Sensors 2022, 22, 4499. [Google Scholar] [CrossRef]
- Seyboldt, R.; Lavoie, J.; Henry, A.; Vanaret, J.; Petkova, M.D.; Gregor, T.; François, P. Latent space of a small genetic network: Geometry of dynamics and information. Proc. Natl. Acad. Sci. USA 2022, 119, e2113651119. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, L.; Liu, X. DAE-TPGM: A deep autoencoder network based on a two-part-gamma model for analyzing single-cell RNA-seq data. Comput. Biol. Med. 2022, 146, 105578. [Google Scholar] [CrossRef]
- Lin, Y.K.; Lee, C.Y.; Chen, C.Y. Robustness of autoencoders for establishing psychometric properties based on small sample sizes: Results from a Monte Carlo simulation study and a sports fan curiosity study. PeerJ. Comput. Sci. 2022, 8, e782. [Google Scholar] [CrossRef] [PubMed]
- Ausmees, K.; Nettelblad, C. A deep learning framework for characterization of genotype data. G3 2022, 12, jkac020. [Google Scholar] [CrossRef] [PubMed]
- Walbech, J.S.; Kinalis, S.; Winther, O.; Nielsen, F.C.; Bagger, F.O. Interpretable Autoencoders Trained on Single Cell Sequencing Data Can Transfer Directly to Data from Unseen Tissues. Cells 2021, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, J.L.; Abraham, B.; Sujarani, M.S.; Nair, M.S. A computer-aided diagnosis system for the classification of COVID-19 and non-COVID-19 pneumonia on chest X-ray images by integrating CNN with sparse autoencoder and feed forward neural network. Comput. Biol. Med. 2022, 141, 105134. [Google Scholar] [CrossRef]
- Belkacemi, Z.; Gkeka, P.; Lelièvre, T.; Stoltz, G. Chasing Collective Variables Using Autoencoders and Biased Trajectories. J. Chem. Theory Comput. 2022, 18, 59–78. [Google Scholar] [CrossRef]
- Fong, Y.; Xu, J. Forward Stepwise Deep Autoencoder-based Monotone Nonlinear Dimensionality Reduction Methods. J. Comput. Graph Stat. 2021, 30, 519–529. [Google Scholar] [CrossRef]
- Geenjaar, E.; Lewis, N.; Fu, Z.; Venkatdas, R.; Plis, S.; Calhoun, V. Fusing multimodal neuroimaging data with a variational autoencoder. In Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 3630–3633. [Google Scholar] [CrossRef]
- Pintelas, E.; Livieris, I.E.; Pintelas, P.E. A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets. Sensors 2021, 21, 7731. [Google Scholar] [CrossRef]
- Ghorbani, M.; Prasad, S.; Klauda, J.B.; Brooks, B.R. Variational embedding of protein folding simulations using Gaussian mixture variational autoencoders. J. Chem. Phys. 2021, 155, 194108. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, C.; Zhang, Z.; Jin, W. A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder. Sci. Rep. 2021, 11, 20028. [Google Scholar] [CrossRef]
- Harefa, E.; Zhou, W. Performing sequential forward selection and variational autoencoder techniques in soil classification based on laser-induced breakdown spectroscopy. Anal. Methods 2021, 13, 4926–4933. [Google Scholar] [CrossRef]
- Whiteway, M.R.; Biderman, D.; Friedman, Y.; Dipoppa, M.; Buchanan, E.K.; Wu, A.; Zhou, J.; Bonacchi, N.; Miska, N.J.; Noel, J.P.; et al. Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders. PLoS Comput. Biol. 2021, 17, e1009439. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, N.; Wang, H.; Zheng, C.; Su, Y. SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder. Front. Genet. 2021, 12, 733906. [Google Scholar] [CrossRef]
- Hu, H.; Li, Z.; Li, X.; Yu, M.; Pan, X. cCAEs: Deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means. Brief Bioinform. 2022, 23, bbab321. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.A.A.; Tennankore, K.; Vinson, A.; Roy, P.C.; Abidi, S.S.R. Predicting Kidney Graft Survival Using Machine Learning Methods: Prediction Model Development and Feature Significance Analysis Study. J. Med. Internet. Res. 2021, 23, e26843. [Google Scholar] [CrossRef] [PubMed]
- Frassek, M.; Arjun, A.; Bolhuis, P.G. An extended autoencoder model for reaction coordinate discovery in rare event molecular dynamics datasets. J. Chem. Phys. 2021, 155, 064103. [Google Scholar] [CrossRef]
- Nauwelaers, N.; Matthews, H.; Fan, Y.; Croquet, B.; Hoskens, H.; Mahdi, S.; El Sergani, A.; Gong, S.; Xu, T.; Bronstein, M.; et al. Exploring palatal and dental shape variation with 3D shape analysis and geometric deep learning. Orthod. Craniofac. Res. 2021, 24, 134–143. [Google Scholar] [CrossRef]
- Rosafalco, L.; Manzoni, A.; Mariani, S.; Corigliano, A. An Autoencoder-Based Deep Learning Approach for Load Identification in Structural Dynamics. Sensors 2021, 21, 4207. [Google Scholar] [CrossRef]
- Shen, J.; Li, W.; Deng, S.; Zhang, T. Supervised and unsupervised learning of directed percolation. Phys. Rev. 2021, 103, 052140. [Google Scholar] [CrossRef]
- Hira, M.T.; Razzaque, M.A.; Angione, C.; Scrivens, J.; Sawan, S.; Sarker, M. Integrated multi-omics analysis of ovarian cancer using variational autoencoders. Sci. Rep. 2021, 11, 6265. [Google Scholar] [CrossRef]
- Ahmed, I.; Galoppo, T.; Hu, X.; Ding, Y. Graph Regularized Autoencoder and its Application in Unsupervised Anomaly Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 4110–4124. [Google Scholar] [CrossRef]
- Patel, N.; Patel, S.; Mankad, S.H. Impact of autoencoder based compact representation on emotion detection from audio. J. Ambient Intell. Humaniz. Comput. 2022, 13, 867–885. [Google Scholar] [CrossRef] [PubMed]
- Battey, C.J.; Coffing, G.C.; Kern, A.D. Visualizing population structure with variational autoencoders. G3 2021, 11, jkaa036. [Google Scholar] [CrossRef] [PubMed]
- López-Cortés, X.A.; Matamala, F.; Maldonado, C.; Mora-Poblete, F.; Scapim, C.A. A Deep Learning Approach to Population Structure Inference in Inbred Lines of Maize. Front. Genet. 2020, 11, 543459. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cui, Y.; Peng, S.; Liao, X.; Yu, Y. MinimapR: A parallel alignment tool for the analysis of large-scale third-generation sequencing data. Comput. Biol. Chem. 2022, 99, 107735. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jeon, J.; Son, J.; Cho, K.; Kim, S. NAND and NOR logic-in-memory comprising silicon nanowire feedback field-effect transistors. Sci. Rep. 2022, 12, 3643. [Google Scholar] [CrossRef] [PubMed]
- Hanussek, M.; Bartusch, F.; Krüger, J. Performance and scaling behavior of bioinformatic applications in virtualization environments to create awareness for the efficient use of compute resources. PLoS Comput. Biol. 2021, 17, e1009244. [Google Scholar] [CrossRef]
- Dong, Z.; Gray, H.; Leggett, C.; Lin, M.; Pascuzzi, V.R.; Yu, K. Porting HEP Parameterized Calorimeter Simulation Code to GPUs. Front. Big Data 2021, 4, 665783. [Google Scholar] [CrossRef]
- Linse, C.; Alshazly, H.; Martinetz, T. A walk in the black-box: 3D visualization of large neural networks in virtual reality. Neural Comput. Appl. 2022, 34, 21237–21252. [Google Scholar] [CrossRef]
- Yu, J.; Liu, G. Knowledge Transfer-Based Sparse Deep Belief Network. IEEE Trans. Cybern. 2022; in press. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Chen, J.; Yuan, Y.; Yu, J.; Gou, Q.; Guo, Y.; Pu, X. An Interpretable Convolutional Neural Network Framework for Analyzing Molecular Dynamics Trajectories: A Case Study on Functional States for G-Protein-Coupled Receptors. J. Chem. Inf. Model 2022, 62, 1399–1410. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T.; An, B.; Wang, S.; Ding, B.; Yan, R.; Chen, X. Model-driven deep unrolling: Towards interpretable deep learning against noise attacks for intelligent fault diagnosis. ISA Trans. 2022, 129, 644–662. [Google Scholar] [CrossRef]
- Zhao, M.; Xin, J.; Wang, Z.; Wang, X.; Wang, Z. Interpretable Model Based on Pyramid Scene Parsing Features for Brain Tumor MRI Image Segmentation. Comput. Math. Methods Med. 2022, 2022, 8000781. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Sergeeva, E.; Weng, W.H.; Chauhan, G.; Szolovits, P. Explainable deep learning in healthcare: A methodological survey from an attribution view. WIREs Mech. Dis. 2022, 14, e1548. [Google Scholar] [CrossRef] [PubMed]
- Marcinowski, M. Top interpretable neural network for handwriting identification. J. Forensic Sci. 2022, 67, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, A.; Bai, X.; Liu, X. Universal Adversarial Patch Attack for Automatic Checkout Using Perceptual and Attentional Bias. IEEE Trans. Image Process. 2022, 31, 598–611. [Google Scholar] [CrossRef]
- Withnell, E.; Zhang, X.; Sun, K.; Guo, Y. XOmiVAE: An interpretable deep learning model for cancer classification using high-dimensional omics data. Brief Bioinform. 2021, 22, bbab315. [Google Scholar] [CrossRef]
- Auzina, I.A.; Tomczak, J.M. Approximate Bayesian Computation for Discrete Spaces. Entropy 2021, 23, 312. [Google Scholar] [CrossRef]
- Yu, J.; Liu, G. Extracting and inserting knowledge into stacked denoising auto-encoders. Neural Netw. 2021, 137, 31–42. [Google Scholar] [CrossRef]
- Lee, C.K.; Samad, M.; Hofer, I.; Cannesson, M.; Baldi, P. Development and validation of an interpretable neural network for prediction of postoperative in-hospital mortality. NPJ Digit Med. 2021, 4, 8. [Google Scholar] [CrossRef]
- Chu, W.M.; Kristiani, E.; Wang, Y.C.; Lin, Y.R.; Lin, S.Y.; Chan, W.C.; Yang, C.T.; Tsan, Y.T. A model for predicting fall risks of hospitalized elderly in Taiwan-A machine learning approach based on both electronic health records and comprehensive geriatric assessment. Front. Med. 2022, 9, 937216. [Google Scholar] [CrossRef]
- Aslam, A.R.; Hafeez, N.; Heidari, H.; Altaf, M.A.B. Channels and Features Identification: A Review and a Machine-Learning Based Model With Large Scale Feature Extraction for Emotions and ASD Classification. Front. Neurosci. 2022, 16, 844851. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, S.; Guo, L.; Yang, X.; Song, Y.; Li, Z.; Zhu, Y.; Liu, X.; Li, Q.; Zhang, H.; et al. Identification of misdiagnosis by deep neural networks on a histopathologic review of breast cancer lymph node metastases. Sci. Rep. 2022, 12, 13482. [Google Scholar] [CrossRef] [PubMed]
- Catal, C.; Giray, G.; Tekinerdogan, B.; Kumar, S.; Shukla, S. Applications of deep learning for phishing detection: A systematic literature review. Knowl. Inf. Syst. 2022, 64, 1457–1500. [Google Scholar] [CrossRef]
- Zhao, B.; Kurgan, L. Deep learning in prediction of intrinsic disorder in proteins. Comput. Struct. Biotechnol. J. 2022, 20, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Scalco, E.; Rizzo, G.; Mastropietro, A. The stability of oncologic MRI radiomic features and the potential role of deep learning: A review. Phys. Med. Biol. 2022; in press. [Google Scholar] [CrossRef]
- Ma, J.K.; Wrench, A.A. Automated assessment of hyoid movement during normal swallow using ultrasound. Int. J. Lang. Commun. Disord. 2022, 57, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Fkirin, A.; Attiya, G.; El-Sayed, A.; Shouman, M.A. Copyright protection of deep neural network models using digital watermarking: A comparative study. Multimed. Tools Appl. 2022, 81, 15961–15975. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Khan, M.A.; Jan, S.U.; Ahmad, J.; Jamal, S.S.; Shah, A.A.; Pitropakis, N.; Buchanan, W.J. A Deep Learning-Based Intrusion Detection System for MQTT Enabled IoT. Sensors 2021, 21, 7016. [Google Scholar] [CrossRef]
- Ghods, A.; Cook, D.J. A Survey of Deep Network Techniques All Classifiers Can Adopt. Data Min. Knowl. Discov. 2021, 35, 46–87. [Google Scholar] [CrossRef]
- Meng, Z.; Ravi, S.N.; Singh, V. Physarum Powered Differentiable Linear Programming Layers and Applications. Proc. Conf. AAAI Artif. Intell. 2021, 35, 8939–8949. [Google Scholar]
- Grant, L.L.; Sit, C.S. De novo molecular drug design benchmarking. RSC Med. Chem. 2021, 12, 1273–1280. [Google Scholar] [CrossRef]
- Gao, Y.; Ascoli, G.A.; Zhao, L. BEAN: Interpretable and Efficient Learning With Biologically-Enhanced Artificial Neuronal Assembly Regularization. Front. Neurorobot. 2021, 15, 567482. [Google Scholar] [CrossRef]
- Talukder, A.; Barham, C.; Li, X.; Hu, H. Interpretation of deep learning in genomics and epigenomics. Brief Bioinform. 2021, 22, bbaa177. [Google Scholar] [CrossRef] [PubMed]
- Ashat, M.; Klair, J.S.; Singh, D.; Murali, A.R.; Krishnamoorthi, R. Impact of real-time use of artificial intelligence in improving adenoma detection during colonoscopy: A systematic review and meta-analysis. Endosc. Int. Open 2021, 9, E513–E521. [Google Scholar] [CrossRef]
- Kumar, A.; Kini, S.G.; Rathi, E. A Recent Appraisal of Artificial Intelligence and In Silico ADMET Prediction in the Early Stages of Drug Discovery. Mini Rev. Med. Chem. 2021, 21, 2788–2800. [Google Scholar] [CrossRef] [PubMed]
- Koktzoglou, I.; Huang, R.; Ankenbrandt, W.J.; Walker, M.T.; Edelman, R.R. Super-resolution head and neck MRA using deep machine learning. Magn. Reson. Med. 2021, 86, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zheng, X.; Liu, D.; Ai, L.; Tang, P.; Wang, B.; Wang, Y. WBC Image Segmentation Based on Residual Networks and Attentional Mechanisms. Comput. Intell. Neurosci. 2022, 2022, 1610658. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhang, J.; Pham, H.A.; Li, Z.; Lyu, J. Virtual Conjugate Coil for Improving KerNL Reconstruction. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2022, 2022, 599–602. [Google Scholar] [CrossRef]
- Sukegawa, S.; Tanaka, F.; Nakano, K.; Hara, T.; Yoshii, K.; Yamashita, K.; Ono, S.; Takabatake, K.; Kawai, H.; Nagatsuka, H.; et al. Effective deep learning for oral exfoliative cytology classification. Sci. Rep. 2022, 12, 13281. [Google Scholar] [CrossRef]
- Xi, B.; Li, J.; Li, Y.; Song, R.; Hong, D.; Chanussot, J. Few-Shot Learning With Class-Covariance Metric for Hyperspectral Image Classification. IEEE Trans. Image Process. 2022, 31, 5079–5092. [Google Scholar] [CrossRef]
- Yan, H.; Liu, Z.; Chen, J.; Feng, Y.; Wang, J. Memory-augmented skip-connected autoencoder for unsupervised anomaly detection of rocket engines with multi-source fusion. ISA Trans. 2022; in press. [Google Scholar] [CrossRef]
- Ni, P.; Sun, L.; Yang, J.; Li, Y. Multi-End Physics-Informed Deep Learning for Seismic Response Estimation. Sensors 2022, 22, 3697. [Google Scholar] [CrossRef]
- Nishiura, H.; Miyamoto, A.; Ito, A.; Harada, M.; Suzuki, S.; Fujii, K.; Morifuji, H.; Takatsuka, H. Machine-learning-based quality-level-estimation system for inspecting steel microstructures. Microscopy 2022, 71, 214–221. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Tsuboshita, Y.; Sakurai, T.; Goto, T.; Yamaguchi, H.; Yamashita, Y.; Sekiguchi, A.; Tachimori, H. Alzheimer’s Disease Neuroimaging Initiative. A high-generalizability machine learning framework for predicting the progression of Alzheimer’s disease using limited data. NPJ Digit Med. 2022, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wu, H.; Zhou, K. Design of Fault Prediction System for Electromechanical Sensor Equipment Based on Deep Learning. Comput. Intell. Neurosci. 2022, 2022, 3057167. [Google Scholar] [CrossRef] [PubMed]
- Elazab, A.; Elfattah, M.A.; Zhang, Y. Novel multi-site graph convolutional network with supervision mechanism for COVID-19 diagnosis from X-ray radiographs. Appl. Soft Comput. 2022, 114, 108041. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Peng, Y.; Grimm, L.J.; Ren, Y.; Mazurowski, M.A.; Marks, J.R.; King, L.M.; Maley, C.C.; Hwang, E.S.; Lo, J.Y. Anomaly Detection of Calcifications in Mammography Based on 11,000 Negative Cases. IEEE Trans. Biomed. Eng. 2022, 69, 1639–1650. [Google Scholar] [CrossRef]
- Zhao, F.; Zeng, Y.; Bai, J. Toward a Brain-Inspired Developmental Neural Network Based on Dendritic Spine Dynamics. Neural Comput. 2021, 34, 172–189. [Google Scholar] [CrossRef]
- Mori, T.; Terashi, G.; Matsuoka, D.; Kihara, D.; Sugita, Y. Efficient Flexible Fitting Refinement with Automatic Error Fixing for De Novo Structure Modeling from Cryo-EM Density Maps. J. Chem. Inf. Model 2021, 61, 3516–3528. [Google Scholar] [CrossRef]
- Li, H.; Weng, J.; Mao, Y.; Wang, Y.; Zhan, Y.; Cai, Q.; Gu, W. Adaptive Dropout Method Based on Biological Principles. IEEE Trans. Neural Netw. Learn Syst. 2021, 32, 4267–4276. [Google Scholar] [CrossRef]
- Umezawa, E.; Ishihara, D.; Kato, R. A Bayesian approach to diffusional kurtosis imaging. Magn. Reson. Med. 2021, 86, 1110–1124. [Google Scholar] [CrossRef]
- da Costa-Luis, C.O.; Reader, A.J. Micro-Networks for Robust MR-Guided Low Count PET Imaging. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 5, 202–212. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, L.; Dai, W.; Zhang, X.; Chen, X.; Qi, G.J.; Xiong, H.; Tian, Q. Partially-Connected Neural Architecture Search for Reduced Computational Redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2953–2970. [Google Scholar] [CrossRef]
- Rasheed, K.; Qayyum, A.; Ghaly, M.; Al-Fuqaha, A.; Razi, A.; Qadir, J. Explainable, trustworthy, and ethical machine learning for healthcare: A survey. Comput. Biol. Med. 2022, 149, 106043. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, A.; Eskreis-Winkler, S. Deep learning in breast imaging. BJR Open 2022, 4, 20210060. [Google Scholar] [CrossRef] [PubMed]
- Andreini, C.; Rosato, A. Structural Bioinformatics and Deep Learning of Metalloproteins: Recent Advances and Applications. Int. J. Mol. Sci. 2022, 23, 7684. [Google Scholar] [CrossRef]
- Teng, Q.; Liu, Z.; Song, Y.; Han, K.; Lu, Y. A survey on the interpretability of deep learning in medical diagnosis. Multimed. Syst. 2022, 25, 1–21. [Google Scholar] [CrossRef]
- Livesey, B.J.; Marsh, J.A. Interpreting protein variant effects with computational predictors and deep mutational scanning. Dis. Model Mech. 2022, 15, dmm049510. [Google Scholar] [CrossRef] [PubMed]
- Stafford, I.S.; Gosink, M.M.; Mossotto, E.; Ennis, S.; Hauben, M. A Systematic Review of Artificial Intelligence and Machine Learning Applications to Inflammatory Bowel Disease, with Practical Guidelines for Interpretation. Inflamm. Bowel Dis. 2022, 14, izac115. [Google Scholar] [CrossRef]
- Foroughi Pour, A.; White, B.S.; Park, J.; Sheridan, T.B.; Chuang, J.H. Deep learning features encode interpretable morphologies within histological images. Sci. Rep. 2022, 12, 9428. [Google Scholar] [CrossRef]
- Bowler, A.L.; Pound, M.P.; Watson, N.J. A review of ultrasonic sensing and machine learning methods to monitor industrial processes. Ultrasonics 2022, 124, 106776. [Google Scholar] [CrossRef]
- Gamble, P.; Jaroensri, R.; Wang, H.; Tan, F.; Moran, M.; Brown, T.; Flament-Auvigne, I.; Rakha, E.A.; Toss, M.; Dabbs, D.J.; et al. Determining breast cancer biomarker status and associated morphological features using deep learning. Commun. Med. 2021, 1, 14. [Google Scholar] [CrossRef]
- van der Velden, B.H.M.; Kuijf, H.J.; Gilhuijs, K.G.A.; Viergever, M.A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef]
- Fan, F.L.; Xiong, J.; Li, M.; Wang, G. On Interpretability of Artificial Neural Networks: A Survey. IEEE Trans. Radiat. Plasma Med. Sci. 2021, 5, 741–760. [Google Scholar] [CrossRef] [PubMed]
- Padash, S.; Mohebbian, M.R.; Adams, S.J.; Henderson, R.D.E.; Babyn, P. Pediatric chest radiograph interpretation: How far has artificial intelligence come? A systematic literature review. Pediatr. Radiol. 2022, 52, 1568–1580. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Montero, A.; Bibal, A.; Dastarac, M.H.; Draguet, C.; Valdés, G.; Nguyen, D.; Willems, S.; Vandewinckele, L.; Holmström, M.; Löfman, F.; et al. Towards a safe and efficient clinical implementation of machine learning in radiation oncology by exploring model interpretability, explainability and data-model dependency. Phys. Med. Biol. 2022; in press. [Google Scholar] [CrossRef]
- Aljabri, M.; AlAmir, M.; AlGhamdi, M.; Abdel-Mottaleb, M.; Collado-Mesa, F. Towards a better understanding of annotation tools for medical imaging: A survey. Multimed. Tools Appl. 2022, 81, 25877–25911. [Google Scholar] [CrossRef]
- Kagiyama, N.; Tokodi, M.; Sengupta, P.P. Machine Learning in Cardiovascular Imaging. Heart Fail. Clin. 2022, 18, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Adnan, N.; Umer, F. Understanding deep learning—Challenges and prospects. J. Pak. Med. Assoc. 2022, 72, S59–S63. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.; Morse, R.; Taylor, A.; Phillips, D.; Higham, H.; Burckett-St Laurent, D.; Bowness, J. Artificial Intelligence: Innovation to Assist in the Identification of Sono-anatomy for Ultrasound-Guided Regional Anaesthesia. Adv. Exp. Med. Biol. 2022, 1356, 117–140. [Google Scholar] [CrossRef] [PubMed]
- Alouani, D.J.; Ransom, E.M.; Jani, M.; Burnham, C.A.; Rhoads, D.D.; Sadri, N. Deep Convolutional Neural Networks Implementation for the Analysis of Urine Culture. Clin. Chem. 2022, 68, 574–583. [Google Scholar] [CrossRef]
- Lim, W.X.; Chen, Z.; Ahmed, A. The adoption of deep learning interpretability techniques on diabetic retinopathy analysis: A review. Med. Biol. Eng. Comput. 2022, 60, 633–642. [Google Scholar] [CrossRef]
- Treppner, M.; Binder, H.; Hess, M. Interpretable generative deep learning: An illustration with single cell gene expression data. Hum. Genet. 2022, 141, 1481–1498. [Google Scholar] [CrossRef]
- Huang, J.; Shlobin, N.A.; DeCuypere, M.; Lam, S.K. Deep Learning for Outcome Prediction in Neurosurgery: A Systematic Review of Design, Reporting, and Reproducibility. Neurosurgery 2022, 90, 16–38. [Google Scholar] [CrossRef]
- Hayashi, N. The exact asymptotic form of Bayesian generalization error in latent Dirichlet allocation. Neural Netw. 2021, 137, 127–137. [Google Scholar] [CrossRef] [PubMed]
- van Zanten, H. Nonparametric Bayesian methods for one-dimensional diffusion models. Math. Biosci. 2013, 243, 215–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Xu, X.; Zhou, W. Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing. Comput. Intell. Neurosci. 2022, 2022, 1427219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yue, L.; Wang, C.; Sun, J.; Zhang, S.; Wei, A.; Xie, G. Leveraging Imitation Learning on Pose Regulation Problem of a Robotic Fish. IEEE Trans. Neural Netw. Learn Syst. 2022; in press. [Google Scholar] [CrossRef]
- Yao, S.; Liu, X.; Zhang, Y.; Cui, Z. An approach to solving optimal control problems of nonlinear systems by introducing detail-reward mechanism in deep reinforcement learning. Math. Biosci. Eng. 2022, 19, 9258–9290. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, X.; Liu, Q.; Li, Z.; Yang, F.; Luan, T. Multi-Agent Decision-Making Modes in Uncertain Interactive Traffic Scenarios via Graph Convolution-Based Deep Reinforcement Learning. Sensors 2022, 22, 4586. [Google Scholar] [CrossRef]
- Rupprecht, T.; Wang, Y. A survey for deep reinforcement learning in markovian cyber-physical systems: Common problems and solutions. Neural Netw. 2022, 153, 13–36. [Google Scholar] [CrossRef]
- Suhaimi, A.; Lim, A.W.H.; Chia, X.W.; Li, C.; Makino, H. Representation learning in the artificial and biological neural networks underlying sensorimotor integration. Sci. Adv. 2022, 8, eabn0984. [Google Scholar] [CrossRef]
- Ecoffet, P.; Fontbonne, N.; André, J.B.; Bredeche, N. Policy search with rare significant events: Choosing the right partner to cooperate with. PLoS ONE 2022, 17, e0266841. [Google Scholar] [CrossRef]
- Rajendran, S.K.; Zhang, F. Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers. Front. Robot AI 2022, 8, 809427. [Google Scholar] [CrossRef]
- Fintz, M.; Osadchy, M.; Hertz, U. Using deep learning to predict human decisions and using cognitive models to explain deep learning models. Sci. Rep. 2022, 12, 4736. [Google Scholar] [CrossRef]
- Shen, Y.; Jia, Q.; Huang, Z.; Wang, R.; Fei, J.; Chen, G. Reinforcement Learning-Based Reactive Obstacle Avoidance Method for Redundant Manipulators. Entropy 2022, 24, 279. [Google Scholar] [CrossRef] [PubMed]
- Ivoghlian, A.; Salcic, Z.; Wang, K.I. Adaptive Wireless Network Management with Multi-Agent Reinforcement Learning. Sensors 2022, 22, 1019. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.G.; Tan, C.; Libedinsky, C.; Yen, S.C.; Tan, A.Y.Y. A nonlinear hidden layer enables actor-critic agents to learn multiple paired association navigation. Cereb. Cortex 2022, 32, 3917–3936. [Google Scholar] [CrossRef] [PubMed]
- Perešíni, P.; Boža, V.; Brejová, B.; Vinař, T. Nanopore Base Calling on the Edge. Bioinformatics 2021, 37, 4661–4667. [Google Scholar] [CrossRef] [PubMed]
- Gholamiankhah, F.; Mostafapour, S.; Abdi Goushbolagh, N.; Shojaerazavi, S.; Layegh, P.; Tabatabaei, S.M.; Arabi, H. Automated Lung Segmentation from Computed Tomography Images of Normal and COVID-19 Pneumonia Patients. Iran. J. Med. Sci. 2022, 47, 440–449. [Google Scholar] [CrossRef]
- Qian, X.; Qiu, Y.; He, Q.; Lu, Y.; Lin, H.; Xu, F.; Zhu, F.; Liu, Z.; Li, X.; Cao, Y.; et al. A Review of Methods for Sleep Arousal Detection Using Polysomnographic Signals. Brain Sci. 2021, 11, 1274. [Google Scholar] [CrossRef]
- Atance, S.R.; Diez, J.V.; Engkvist, O.; Olsson, S.; Mercado, R. De Novo Drug Design Using Reinforcement Learning with Graph-Based Deep Generative Models. J. Chem. Inf. Model 2022, 62, 4863–4872. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Z.; Wang, S.; Guo, Z.; Sun, Q.; Lai, L. Discovery of novel SARS-CoV-2 3CL protease covalent inhibitors using deep learning-based screen. Eur. J. Med. Chem. 2022, 244, 114803. [Google Scholar] [CrossRef]
- Qian, Y.; Wu, J.; Zhang, Q. CAT-CPI: Combining CNN and transformer to learn compound image features for predicting compound-protein interactions. Front. Mol. Biosci. 2022, 9, 963912. [Google Scholar] [CrossRef]
- Gu, Y.; Zheng, S.; Yin, Q.; Jiang, R.; Li, J. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction. Comput. Biol. Med. 2022, 150, 106127. [Google Scholar] [CrossRef]
- Pandiyan, S.; Wang, L. A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence. Comput. Biol. Med. 2022, 150, 106140. [Google Scholar] [CrossRef] [PubMed]
- Metzger, J.J.; Pereda, C.; Adhikari, A.; Haremaki, T.; Galgoczi, S.; Siggia, E.D.; Brivanlou, A.H.; Etoc, F. Deep-learning analysis of micropattern-based organoids enables high-throughput drug screening of Huntington’s disease models. Cell Rep. Methods 2022, 2, 100297. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Zhang, X.; Lin, X. Drug-target Interaction Prediction Via Graph Auto-encoder and Multi-subspace Deep Neural Networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022; in press. [Google Scholar] [CrossRef]
- Dutta, A. Predicting Drug Mechanics by Deep Learning on Gene and Cell Activities. In Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 2916–2919. [Google Scholar] [CrossRef]
- Li, Y.; Liang, W.; Peng, L.; Zhang, D.; Yang, C.; Li, K.C. Predicting Drug-Target Interactions via Dual-Stream Graph Neural Network. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022; in press. [Google Scholar] [CrossRef]
- Lin, S.; Shi, C.; Chen, J. GeneralizedDTA: Combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery. BMC Bioinform. 2022, 23, 367. [Google Scholar] [CrossRef]
- Liu, G.; Stokes, J.M. A brief guide to machine learning for antibiotic discovery. Curr. Opin. Microbiol. 2022, 69, 102190. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Q.; Qiu, Y.; Xie, L. Deep learning prediction of chemical-induced dose-dependent and context-specific multiplex phenotype responses and its application to personalized alzheimer’s disease drug repurposing. PLoS Comput. Biol. 2022, 18, e1010367. [Google Scholar] [CrossRef]
- Kwapien, K.; Nittinger, E.; He, J.; Margreitter, C.; Voronov, A.; Tyrchan, C. Implications of Additivity and Nonadditivity for Machine Learning and Deep Learning Models in Drug Design. ACS Omega 2022, 7, 26573–26581. [Google Scholar] [CrossRef] [PubMed]
- Mukaidaisi, M.; Vu, A.; Grantham, K.; Tchagang, A.; Li, Y. Multi-Objective Drug Design Based on Graph-Fragment Molecular Representation and Deep Evolutionary Learning. Front. Pharmacol. 2022, 13, 920747. [Google Scholar] [CrossRef] [PubMed]
- Wilman, W.; Wróbel, S.; Bielska, W.; Deszynski, P.; Dudzic, P.; Jaszczyszyn, I.; Kaniewski, J.; Młokosiewicz, J.; Rouyan, A.; Satława, T.; et al. Machine-designed biotherapeutics: Opportunities, feasibility and advantages of deep learning in computational antibody discovery. Brief Bioinform. 2022, 23, bbac267. [Google Scholar] [CrossRef]
- Aziz, M.; Ejaz, S.A.; Zargar, S.; Akhtar, N.; Aborode, A.T.; Wani, T.A.; Batiha, G.E.; Siddique, F.; Alqarni, M.; Akintola, A.A. Deep Learning and Structure-Based Virtual Screening for Drug Discovery against NEK7: A Novel Target for the Treatment of Cancer. Molecules 2022, 27, 4098. [Google Scholar] [CrossRef]
- Zheng, J.; Xiao, X.; Qiu, W.R. DTI-BERT: Identifying Drug-Target Interactions in Cellular Networking Based on BERT and Deep Learning Method. Front. Genet. 2022, 13, 859188. [Google Scholar] [CrossRef]
- Yeh, S.J.; Yeh, T.Y.; Chen, B.S. Systems Drug Discovery for Diffuse Large B Cell Lymphoma Based on Pathogenic Molecular Mechanism via Big Data Mining and Deep Learning Method. Int. J. Mol. Sci. 2022, 23, 6732. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hsieh, C.Y.; Wang, J.; Wang, D.; Weng, G.; Shen, C.; Yao, X.; Bing, Z.; Li, H.; Cao, D.; et al. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design. J. Med. Chem. 2022, 65, 9478–9492. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, A.; Yousefi, N.; Yazdani-Jahromi, M.; Kolanthai, E.; Neal, C.J.; Seal, S.; Garibay, O.O. UnbiasedDTI: Mitigating Real-World Bias of Drug-Target Interaction Prediction by Using Deep Ensemble-Balanced Learning. Molecules 2022, 27, 2980. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, D.; Zhang, X.; Shi, Y.; Han, J.; Zhou, L.; Wu, L.; Ma, M.; Li, J.; Peng, S.; et al. D3AI-CoV: A deep learning platform for predicting drug targets and for virtual screening against COVID-19. Brief Bioinform. 2022, 23, bbac147. [Google Scholar] [CrossRef]
- Kurata, H.; Tsukiyama, S. ICAN: Interpretable cross-attention network for identifying drug and target protein interactions. PLoS ONE 2022, 17, e0276609. [Google Scholar] [CrossRef]
- Kawama, K.; Fukushima, Y.; Ikeguchi, M.; Ohta, M.; Yoshidome, T. gr Predictor: A Deep Learning Model for Predicting the Hydration Structures around Proteins. gr Predictor: A Deep Learning Model for Predicting the Hydration Structures around Proteins. J. Chem. Inf. Model. 2022, 62, 4460–4473. [Google Scholar] [CrossRef]
- Li, C.; Sutherland, D.; Hammond, S.A.; Yang, C.; Taho, F.; Bergman, L.; Houston, S.; Warren, R.L.; Wong, T.; Hoang, L.M.N.; et al. AMPlify: Attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC Genomics 2022, 23, 77. [Google Scholar] [CrossRef]
- Geoffrey, A.S.B.; Madaj, R.; Valluri, P.P. QPoweredCompound2DeNovoDrugPropMax—A novel programmatic tool incorporating deep learning and in silico methods for automated in silico bio-activity discovery for any compound of interest. J. Biomol. Struct. Dyn. 2022, 10, 1–8. [Google Scholar] [CrossRef]
- Li, T.; Tong, W.; Roberts, R.; Liu, Z.; Thakkar, S. DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation. Front. Artif. Intell. 2021, 4, 757780. [Google Scholar] [CrossRef]
- Zan, A.; Xie, Z.R.; Hsu, Y.C.; Chen, Y.H.; Lin, T.H.; Chang, Y.S.; Chang, K.Y. DeepFlu: A deep learning approach for forecasting symptomatic influenza A infection based on pre-exposure gene expression. Comput. Methods Programs Biomed. 2022, 213, 106495. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, S.; Su, S.; Zhao, C.; Xu, J.; Chen, H. SyntaLinker: Automatic fragment linking with deep conditional transformer neural networks. Chem. Sci. 2020, 11, 8312–8322. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xin, B.; Tan, W.; Xu, Z.; Li, K.; Li, F.; Zhong, W.; Peng, S. DeepR2cov: Deep representation learning on heterogeneous drug networks to discover anti-inflammatory agents for COVID-19. Brief Bioinform. 2021, 22, bbab226. [Google Scholar] [CrossRef] [PubMed]
- Yoshimori, A.; Hu, H.; Bajorath, J. Adapting the DeepSARM approach for dual-target ligand design. J. Comput. Aided Mol. Des. 2021, 35, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, L.; Feng, H.; Meng, J.; Xie, D.; Yi, L.; Arkin, I.T.; Liu, H. MutagenPred-GCNNs: A Graph Convolutional Neural Network-Based Classification Model for Mutagenicity Prediction with Data-Driven Molecular Fingerprints. Interdiscip. Sci. 2021, 13, 25–33. [Google Scholar] [CrossRef]
- Zeng, B.; Glicksberg, B.S.; Newbury, P.; Chekalin, E.; Xing, J.; Liu, K.; Wen, A.; Chow, C.; Chen, B. OCTAD: An open workspace for virtually screening therapeutics targeting precise cancer patient groups using gene expression features. Nat. Protoc. 2021, 16, 728–753. [Google Scholar] [CrossRef]
- Oh, M.; Park, S.; Lee, S.; Lee, D.; Lim, S.; Jeong, D.; Jo, K.; Jung, I.; Kim, S. DRIM: A Web-Based System for Investigating Drug Response at the Molecular Level by Condition-Specific Multi-Omics Data Integration. Front. Genet. 2020, 11, 564792. [Google Scholar] [CrossRef]
- Rifaioglu, A.S.; Cetin Atalay, R.; Cansen Kahraman, D.; Doğan, T.; Martin, M.; Atalay, V. MDeePred: Novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery. Bioinformatics 2021, 37, 693–704. [Google Scholar] [CrossRef]
- Gentile, F.; Agrawal, V.; Hsing, M.; Ton, A.T.; Ban, F.; Norinder, U.; Gleave, M.E.; Cherkasov, A. Deep Docking: A Deep Learning Platform for Augmentation of Structure Based Drug Discovery. ACS Cent. Sci. 2020, 6, 939–949. [Google Scholar] [CrossRef]
No. | Program Name | Target |
---|---|---|
1 | CAT-CPI | Compound image features for predicting compound-protein interactions |
2 | REDDA | Heterogeneous graph neural network for drug-disease association |
3 | GeneralizedDTA | Drug-target binding affinity |
4 | DTI-BERT | Interactions in Cellular Networking Based on BERT |
5 | D3AI-CoV | Developing highly effective drugs against COVID-19 |
6 | ICAN | Protein interactions |
7 | gr Predictor | Hydration Structures around Proteins |
8 | AMPlify | Antibiotic resistance |
9 | QPoweredCompound2DeNovoDrugPropMax | Interaction for Compound |
10 | DeepCarc | Carcinogenicity Prediction |
11 | DeepFlu | Symptomatic influenza A infection based on pre-exposure gene expression. |
12 | SyntaLinker | Fragment-based drug design |
13 | DeepR2cov | Agents for treating the excessive inflammatory response |
14 | DeepSARM | Structure-activity relationship (SAR) matrix (SARM) methodology |
15 | MutagenPred-GCNNs | Mutagenicity of compounds and structure alerts in compounds |
16 | OCTAD | Compounds targeting precise groups of patients with cancer using gene expression features |
17 | DRIM | Integrative multi-omics and time-series data analysis framework |
18 | MDeePred | Multiple types of protein features such as sequence, structural, evolutionary and physicochemical properties |
19 | Deep Docking | Docking billions of molecular structures |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuzaka, Y.; Yashiro, R. Applications of Deep Learning for Drug Discovery Systems with BigData. BioMedInformatics 2022, 2, 603-624. https://doi.org/10.3390/biomedinformatics2040039
Matsuzaka Y, Yashiro R. Applications of Deep Learning for Drug Discovery Systems with BigData. BioMedInformatics. 2022; 2(4):603-624. https://doi.org/10.3390/biomedinformatics2040039
Chicago/Turabian StyleMatsuzaka, Yasunari, and Ryu Yashiro. 2022. "Applications of Deep Learning for Drug Discovery Systems with BigData" BioMedInformatics 2, no. 4: 603-624. https://doi.org/10.3390/biomedinformatics2040039
APA StyleMatsuzaka, Y., & Yashiro, R. (2022). Applications of Deep Learning for Drug Discovery Systems with BigData. BioMedInformatics, 2(4), 603-624. https://doi.org/10.3390/biomedinformatics2040039