Effectiveness of Protected Areas in the Pan-Tropics and International Aid for Conservation
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Area
2.2. Forest Change Data
2.3. International Aid Data for Biodiversity Conservation
2.4. Estimation of Avoided Deforestation by PAs
2.5. Estimation of Spillover Effect
2.6. Statistical Analysis
3. Results and Discussion
3.1. Avoided Deforestation by Protected Areas
3.2. International Aid for Conservation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Country | Acceleration of Deforestation (%) | Avoided Deforestation (%) | Avoided Deforestation (km2) | Area of PAs (km2) | Forest area in PAs (%) | No. of PAs |
---|---|---|---|---|---|---|
Cameroon | 20.6 | 1.39 | 341.1 | 46,414 | 53 | 35 |
Congo | 0.0 | −0.23 | −24.2 | 22,624 | 46 | 13 |
Democratic Republic Congo | 31.2 | −0.09 | −77.4 | 219,677 | 41 | 31 |
Equatorial Guinea | −2.0 | −0.32 | −10.7 | 3602 | 93 | 6 |
Gabon | −11.5 | 0.01 | 1.5 | 16,677 | 97 | 8 |
Liberia | −8.2 | −0.17 | −1.5 | 1687 | 53 | 2 |
Madagascar | 15.6 | 0.69 | 57.5 | 15,322 | 55 | 42 |
Sierra Leone | 8.9 | 0.03 | 0.3 | 2955 | 38 | 31 |
Africa Total | 6.8 | 0.18 | 286.5 | 328,957 | 47 | 168 |
Bangladesh | 16.3 | 0.17 | 0.5 | 490 | 56 | 19 |
Brunei Darussalam | 0.0 | −0.90 | −3.8 | 448 | 94 | 18 |
Cambodia | 27.8 | 0.49 | 61.7 | 24,779 | 51 | 24 |
Indonesia | 2.9 | 0.22 | 100.8 | 95,981 | 49 | 152 |
Laos | 5.1 | 0.49 | 67.6 | 17,095 | 80 | 12 |
Malaysia | 2.5 | 0.21 | 38.4 | 19,330 | 96 | 122 |
Myanmar | 11.5 | 0.88 | 64.5 | 15,201 | 48 | 29 |
Papua New Guinea | 1.1 | −0.19 | −5.1 | 3849 | 69 | 27 |
Philippines | 12.0 | −0.05 | −9.0 | 26,890 | 64 | 165 |
Sri Lanka | 19.5 | −0.05 | −3.0 | 11,860 | 46 | 210 |
Thailand | 15.9 | 0.76 | 357.1 | 61,541 | 76 | 117 |
Vietnam | 18.5 | 0.06 | 4.7 | 18,295 | 43 | 65 |
Asia Total | 11.1 | 0.38 | 674.4 | 295,758 | 61 | 960 |
Belize | −1.1 | −0.06 | −2.2 | 4353 | 86 | 63 |
Bolivia | 5.6 | 0.92 | 661.1 | 98,585 | 73 | 42 |
Brazil | 3.3 | 0.34 | 5087.0 | 1,852,181 | 82 | 1321 |
Colombia | 18.0 | 0.89 | 582.9 | 169,960 | 38 | 593 |
Costa Rica | 12.0 | 0.23 | 10.8 | 5424 | 86 | 79 |
Ecuador | 2.2 | 0.76 | 119.8 | 22,467 | 70 | 20 |
Guatemala | 2.6 | 0.27 | 42.7 | 18,053 | 86 | 225 |
Guyana | −6.2 | 0.01 | 0.6 | 10,426 | 41 | 3 |
Honduras | 8.3 | 0.02 | 1.6 | 11,733 | 56 | 62 |
Nicaragua | 26.5 | 0.68 | 9.4 | 4597 | 30 | 61 |
Panama | 18.8 | 0.76 | 27.3 | 4610 | 78 | 13 |
Peru | 4.5 | 0.51 | 997.0 | 308,599 | 64 | 185 |
Suriname | 4.4 | 0.05 | 14.2 | 29,041 | 99 | 7 |
Venezuela | 26.7 | −0.39 | −162.2 | 80,919 | 51 | 85 |
Latin America Total | 9.0 | 0.38 | 7389.8 | 2,620,949 | 75 | 2759 |
Grand Total | 6.2 | 0.35 | 8350.6 | 3,245,663 | 71 | 3887 |
Appendix B
By country | ||||
---|---|---|---|---|
Independent variables | Estimate | Std. Error | t Value | Pr (>|t|) |
(Intercept) | −0.39885 | 0.06 | −6.020 | 1.62 × 10−8 *** |
Period | −0.39489 | 0.09370 | −4.215 | 4.61 × 10−5 *** |
Treatment | 0.23511 | 0.09370 | 2.50 | 0.0133 * |
Treatment∙Period | 0.2719 | 0.13250 | 2.052 | 0.0421 * |
* p < 0.01, *** p < 0.0001, independent variables are log transformed | ||||
Residual standard error: 0.3863 on 132 degrees of freedom, Multiple R-squared: 0.2781, Adjusted R-squared: 0.2617 F-statistic: 16.95 on 3 and 132 DF, p-value: 2.257 × 10−9 | ||||
By individual PA | ||||
Independent variables | Estimate | Std. Error | t Value | Pr (>|t|) |
(Intercept) | −0.9100 | 0.04603 | −19.772 | <2 × 10−16 *** |
Period | −1.41258 | 0.04603 | −21.702 | <2 × 10−16 *** |
Treatment | 0.32492 | 0.06509 | 4.992 | 6.06 × 10−7 *** |
Treatment∙Period | 0.34607 | 0.09205 | 3.759 | 0.000171 *** |
*** p < 0.0001, independent variables are log transformed | ||||
Residual standard error: 2.659 on 13,348 degrees of freedom, Multiple R-squared: 0.0603, Adjusted R-squared: 0.06009 F-statistic: 285.5 on 3 and 13348 DF, p-value: < 2.2 × 10−16 |
References
- CBD COP10. Strategic Plan for Biodiversity, 2011–2020. In Proceedings of the Conference of the Parties to the Convention on Biological Diversity, Nagoya, Japan, 22 December 2010. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Sexton, J.O.; Townshend, J.R. Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys. Res. Lett. 2015, 42, 3495–3501. [Google Scholar] [CrossRef] [PubMed]
- DeFries, R.; Hansen, A.; Newton, A.C.; Hansen, M.C. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol. Appl. 2005, 15, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Joppa, L.N.; Loarie, S.R.; Pimm, S.L. On the protection of “protected areas”. Proc. Natl. Acad. Sci. USA 2008, 105, 6673–6678. [Google Scholar] [CrossRef] [Green Version]
- Pimm, S.L.; Ayres, M.; Balmford, A.; Branch, G.; Brandon, K.; Brooks, T.; Bustamante, R.; Costanza, R.; Cowling, R.; Curran, L.M.; et al. Can We Defy Nature’s End? Science 2001, 293, 2207–2208. [Google Scholar] [CrossRef] [PubMed]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J. a Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Kim, S.; Song, K.; Townshend, J.R.G.; Davis, P.; Altstatt, A.; Rodas, O.; Yanosky, A.; Clay, R.; Tucker, C.J.; et al. Assessment of Paraguay’s forest cover change using Landsat observations. Glob. Planet. Change 2009, 67, 1–12. [Google Scholar] [CrossRef]
- Schmitt, C.B.; Burgess, N.D.; Coad, L.; Belokurov, A.; Besançon, C.; Boisrobert, L.; Campbell, A.; Fish, L.; Gliddon, D.; Humphries, K.; et al. Global analysis of the protection status of the world’s forests. Biol. Conserv. 2009, 142, 2122–2130. [Google Scholar] [CrossRef]
- Kindermann, G.; Obersteiner, M.; Sohngen, B.; Sathaye, J.; Andrasko, K.; Rametsteiner, E.; Schlamadinger, B.; Wunder, S.; Beach, R. Global cost estimates of reducing carbon emissions through avoided deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 10302–10307. [Google Scholar] [CrossRef] [Green Version]
- Soares-Filho, B.; Moutinho, P.; Nepstad, D.; Anderson, A.; Rodrigues, H.; Garcia, R.; Dietzsch, L.; Merry, F.; Bowman, M.; Hissa, L.; et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl. Acad. Sci. USA 2010, 107, 10821–10826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolte, C.; Agrawal, A.; Silvius, K.M.; Soares-Filho, B.S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2013, 110, 4956–4961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hockings, M.; Stolton, S.; Dudley, N. Management Effectiveness: Assessing Management of Protected Areas? J. Environ. Policy Plan. 2004, 6, 157–174. [Google Scholar] [CrossRef]
- Kolahi, M.; Sakai, T.; Moriya, K.; Makhdoum, M.F.; Koyama, L. Assessment of the effectiveness of protected areas management in iran: Case study in khojir national park. Environ. Manag. 2013, 52, 514–530. [Google Scholar] [CrossRef] [PubMed]
- Curran, L.M.; Trigg, S.N.; McDonald, A.K.; Astiani, D.; Hardiono, Y.M.; Siregar, P.; Caniago, I.; Kasischke, E. Lowland forest loss in protected areas of Indonesian Borneo. Science 2004, 303, 1000–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaveau, D.L.A.; Epting, J.; Lyne, O.; Linkie, M.; Kumara, I.; Kanninen, M.; Leader-Williams, N. Evaluating whether protected areas reduce tropical deforestation in Sumatra. J. Biogeogr. 2009, 36, 2165–2175. [Google Scholar] [CrossRef]
- Achard, F.; Eva, H.D.; Stibig, H.-J.; Mayaux, P.; Gallego, J.; Richards, T.; Malingreau, J.-P. Determination of deforestation rates of the world’s humid tropical forests. Science 2002, 297, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Sexton, J.O.; Noojipady, P.; Huang, C.; Anand, A.; Channan, S.; Feng, M.; Townshend, J.R. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sens. Environ. 2014, 155, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef] [Green Version]
- Townshend, J.R.; Masek, J.G.; Huang, C.; Vermote, E.F.; Gao, F.; Channan, S.; Sexton, J.O.; Feng, M.; Narasimhan, R.; Kim, D.; et al. Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. Int. J. Digit. Earth 2012, 5, 373–397. [Google Scholar] [CrossRef] [Green Version]
- Channan, S.; Feng, M.; Kim, D.-H.; Sexton, J.O.; Song, X.-P.; Song, D.-X.; Noojipady, P.; Collins, K.; Anand, A.; Townshend, J.R. The GLS+: An Enhancement of the Global Land Survey Datasets. Photogramm. Eng. Remote Sens. 2015, 81, 521–525. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Huang, C.; Masek, J.G.; Vermote, E.F.; Gao, F.; Narasimhan, R.; Channan, S.; Wolfe, R.E.; Townshend, J.R. Global surface reflectance products from Landsat: Assessment using coincident MODIS observations. Remote Sens. Environ. 2013, 134, 276–293. [Google Scholar] [CrossRef]
- Gutman, G.; Byrnes, R.; MASEK, I.; Covington, S.; Justice, C.; Franks, S.; Headley, R. Towards monitoring changes at a Globa the Global Land S. Photogramm. Eng. Remote Sens. 2008, 74, 6–10. [Google Scholar]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Belward, A. The IGBP-DIS Global 1 km Land Cover Data Set (DISCover): Proposal and Implementation Plans; IGBP-DIS Working Paper 13; International Geosphere–Biosphere Programme Data and Information System Office (IGBP-DIS): Toulouse, France, 1996. [Google Scholar]
- FAO. Proceedings, Expert Meeting on Harmonizing Forest-Related Definitions for Use by Various Stakeholders; FAO: Rome, Italy, 2002. [Google Scholar]
- UNFCCC Report of the Conference of the Parties on Its Seventh Session, held at Marrakesh from 29 October to 10 November 2001 [The Marrakesh Accords & the Marrakesh Declaration]. Addendum Part Two: Action Taken by the Conference of Parties; UNFCCC: Marrakesh, Morocco, 2002.
- UNEPWCMC. The World Database on Protected Areas (WDPA); UNEPWCMC: Cambridge, UK, 2010. [Google Scholar]
- Sexton, J.O.; Noojipady, P.; Song, X.-P.; Feng, M.; Song, D.-X.; Kim, D.-H.; Anand, A.; Huang, C.; Channan, S.; Pimm, S.L.; et al. Conservation policy and the measurement of forests. Nat. Clim. Chang. 2016, 6, 192–196. [Google Scholar] [CrossRef]
- Kim, D.-H.; Narashiman, R.; Sexton, J.O.; Huang, C.; Townshend, J.R. Methodology to select phenologically suitable Landsat scenes for forest change detection. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2613–2616. [Google Scholar]
- Mascia, M.B.; Pailler, S.; Krithivasan, R.; Roshchanka, V.; Burns, D.; Mlotha, M.J.; Murray, D.R.; Peng, N. Protected area downgrading, downsizing, and degazettement (PADDD) in Africa, Asia, and Latin America and the Caribbean, 1900–2010. Biol. Conserv. 2014, 169, 355–361. [Google Scholar] [CrossRef]
- Forrest, J.L.; Mascia, M.B.; Pailler, S.; Abidin, S.Z.; Araujo, M.D.; Krithivasan, R.; Riveros, J.C. Tropical Deforestation and Carbon Emissions from Protected Area Downgrading, Downsizing, and Degazettement (PADDD). Conserv. Lett. 2015, 8, 153–161. [Google Scholar] [CrossRef]
- World Wildlife Fund. PADDDtracker.org Data Release Version 1.0 (January 2014); World Wildlife Fund: Washington, DC, USA, 2014. [Google Scholar]
- Grainger, A. Estimating areas of degraded tropical lands requiring replenishment of forest cover. Int. Tree Crop. J. 1988, 5, 31–61. [Google Scholar] [CrossRef]
- Miller, D.C.; Agrawal, A.; Roberts, J.T. Biodiversity, Governance, and the Allocation of International Aid for Conservation. Conserv. Lett. 2013, 6, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Stern, M.; Bhagwat, S.; Brown, N.; Evans, T.; Jennings, S.; Savill, P.; Bruner, A.G.; Gullison, R.E.; Rice, R.E.; Da Fonseca, G.A.B. Parks and factors in their success. Science 2001, 293, 1045–1047. [Google Scholar] [CrossRef]
- Joppa, L.N.; Pfaff, A. Global protected area impacts. Proc. R. Soc. B Biol. Sci. 2010, rspb20101713. [Google Scholar] [CrossRef] [Green Version]
- Abadie, A. Semiparametric difference-in-differences estimators. Rev. Econ. Stud. 2005, 72, 1–19. [Google Scholar] [CrossRef]
- Nelson, A.; Chomitz, K.M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 2011, 6, e22722. [Google Scholar] [CrossRef] [PubMed]
- Card, D.; Krueger, A.B. Time-series minimum-wage studies: A meta-analysis. Am. Econ. Rev. 1995, 238–243. [Google Scholar]
- Ewers, R.M.; Rodrigues, A.S.L. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 2008, 23, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Alers, M. Reducing Threats to Protected Areas: Lessons from the Field; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Tierney, M.J.; Nielson, D.L.; Hawkins, D.G.; Roberts, J.T.; Findley, M.G.; Powers, R.M.; Parks, B.; Wilson, S.E.; Hicks, R.L. More dollars than sense: Refining our knowledge of development finance using AidData. World Dev. 2011, 39, 1891–1906. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Rausch, L.; Munger, J.; Schelly, I.; Morton, D.C.; Noojipady, P.; Soares-Filho, B.; Barreto, P.; Micol, L.; Walker, N.F. Brazil’s Soy Moratorium. Science 2015, 347, 377–378. [Google Scholar] [CrossRef]
- Nagendra, H. Do parks work? Impact of protected areas on land cover clearing. AMBIO A J. Hum. Environ. 2008, 37, 330–337. [Google Scholar] [CrossRef]
- Oliveira, P.J.C.; Asner, G.P.; Knapp, D.E.; Almeyda, A.; Galván-Gildemeister, R.; Keene, S.; Raybin, R.F.; Smith, R.C. Land-use allocation protects the Peruvian Amazon. Science 2007, 317, 1233–1236. [Google Scholar] [CrossRef] [Green Version]
Avoided Deforestation | Mean Forest Loss Rate within Protected Areas | Mean Forest Loss Rate within Buffer Zones | ||||
---|---|---|---|---|---|---|
Year of establishment | (%) | (km2) | Before 2000 | After 2000 | Before 2000 | After 2000 |
Prior to 2010 | 3.46 (4.1) | 83,500 | 0.59 (0.09) | 1.65 (0.17) | 0.91 (0.46) | 2.32 (0.94) |
1990–2000 | 3.42 (4.6) | 22,800 | 0.5 (0.01) | 1.66 (0.02) | 0.86 (0.46) | 2.32 (1) |
2000–2010 | 4.47 (5) | 47,650 | 0.5 (0.02) | 1.52 (0.04) | 0.897 (0.35) | 2.37 (0.87) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H.; Anand, A. Effectiveness of Protected Areas in the Pan-Tropics and International Aid for Conservation. Geomatics 2021, 1, 335-346. https://doi.org/10.3390/geomatics1030019
Kim D-H, Anand A. Effectiveness of Protected Areas in the Pan-Tropics and International Aid for Conservation. Geomatics. 2021; 1(3):335-346. https://doi.org/10.3390/geomatics1030019
Chicago/Turabian StyleKim, Do-Hyung, and Anupam Anand. 2021. "Effectiveness of Protected Areas in the Pan-Tropics and International Aid for Conservation" Geomatics 1, no. 3: 335-346. https://doi.org/10.3390/geomatics1030019
APA StyleKim, D. -H., & Anand, A. (2021). Effectiveness of Protected Areas in the Pan-Tropics and International Aid for Conservation. Geomatics, 1(3), 335-346. https://doi.org/10.3390/geomatics1030019