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Abstract: Evaluation of the effectiveness of protected areas is critical for forest conservation policies
and priorities. We used 30 m resolution forest cover change data from 1990 to 2010 for ~4000 protected
areas to evaluate their effectiveness. Our results show that protected areas in the tropics avoided
83,500 ± 21,200 km2 of deforestation during the 2000s. Brazil’s protected areas have the largest
amount of avoided deforestation at 50,000 km2. We also show the amount of international aid received
by tropical countries compared to the effectiveness of protected areas. Thirty-four tropical countries
received USD 42 billion during the 1990s and USD 62 billion during the 2000s in international aid
for biodiversity conservation. The effectiveness of international aid was highest in Latin America,
with 4.3 m2/USD, led by Brazil, while tropical Asian countries showed the lowest average effect of
international aid, reaching only 0.17 m2/USD.
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1. Introduction

In 2010, the Convention on Biological Diversity (CBD) adopted a revised strategic
plan for biodiversity for 2011–2020, including the Aichi Biodiversity Targets. One of the
targets is to reduce the rate of loss of all natural habitats, including forests, by 2020 [1].
However, recent studies [2,3] have shown acceleration and high sustained rates of tropical
deforestation since 2000. To meet the proposed goals of conservation plans, such as the
Aichi Biodiversity Targets, evaluating the effectiveness of previous and current efforts to
reduce tropical deforestation is essential. Within this context, assessing the effectiveness of
protected areas (PAs) throughout the tropics is relevant, especially given that PAs are central
to climate and biodiversity policies [4–6]. Previous efforts have been made to evaluate
the effectiveness of PAs over various spatial and temporal scales [4,5,7–9]. Some studies
have been conducted to evaluate the cost-effectiveness of these PAs [10,11]; these have
explored the links between the value of PAs and surrounding socioeconomic drivers of
tropical deforestation [12]. Others have examined the management effectiveness of PAs for
limited times and spatial scales to create a framework and guidelines for the management
of protected areas [13,14].

Satellite-based remotely sensed data have been used to evaluate the effectiveness of
PAs in reducing deforestation because of their spatio-temporal consistency and their ability
to complement ground-based observations, including filling data gaps and solving com-
patibility issues [4,15,16]. However, in selected locations, spatially explicit information on
pan-tropical forest cover change at Landsat resolutions was not previously available beyond
satellite analysis [4,17]. The lack of comprehensive long-term spatial data has precluded
pan-tropical scale analysis on the effectiveness of PAs in terms of their regulating socioeco-
nomic factors. Long-term, large-area forest cover change at 30 m resolution has recently
been made available [18–20]. Based on this information, this study aims to (1) estimate
avoided deforestation by PAs in each tropical country during the 2000s, and (2) compare
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the avoided deforestation against international aid for biodiversity conservation received
by each tropical country.

2. Experimental Section
2.1. Study Area

The study covered thirty-four countries spanning the humid tropics (Figure 1), each of
which was comprised of at least 50% forest biomes. Overall, forest areas in these countries
comprise over 80% of forest area in the tropics and dominate the forest area of the humid
tropics [2,3].
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Figure 1. 34 Tropical countries and protected areas analyzed in this study.

2.2. Forest Change Data

Landsat-based forest cover change data between 1990, 2000, and 2010 [3,18,19] were
used to derive net forest cover change in 34 tropical countries that comprise over 80% of
forest area in the tropics [3] and dominate the forest area of the humid tropics (Figure 1).
These data were derived from 5444 surface reflectance images collected for 1990, 2000,
and 2010 epochs from the Global Land Survey (GLS) collection of Landsat images [21–24],
supplemented by many additional images [21]. Forest cover was defined as parcels >
1 ha in area and comprising pixels with >30% tree cover [25–27]. We also combined the
International Geosphere–Biosphere Programme’s (IGBP) classes of forest (>60% tree cover)
and woody savannas (>30% tree cover) for our definition.

We extracted the forest cover change maps for each of the 3888 designated PAs
and their surrounding areas in 34 tropical countries [28] from the Landsat-based forest
cover change data. We used global forest cover and change data developed by Kim
et al. [3,18,19,29]. Kim et al. used the Global Land Survey collection [23] of Landsat data
and decision tree-based methods to map the extent of forests in 1990, 2000, and 2010.
The original GLS data were augmented with additional images to improve radiometric
calibration, reduce cloud cover, and maximize spectral discrimination of forests [30]. Each
image of this augmented GLS data set was atmospherically corrected to estimate surface
reflectance using the LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing Sys-
tem) [24]. Validation of the forest cover and change maps was performed globally and by
eco-regions using high-resolution satellite imagery-based validation samples. The accuracy
of the forest map for 1990 was 93% in relation to the reference forest cover map, and it was
84% for the forest cover change map between 1990 and 2000.

We analyzed all designated PAs in the selected tropical countries instead of using any
sampling, and we did so to take full advantage of the spatially explicit, fine resolution
data. Despite their conceptual importance, the effects of protected areas downgrading,
downsizing, and degazetting (PADDD) [31,32] were not considered in this study, since
there were only a small number of relevant PADDDs identified from the available PADDD
data [33]. We derived the annual gross forest loss, gross forest gain, and net forest change
rates within each PA and its surrounding area from the forest change maps. We then
calculated the forest loss rate by dividing the area of forest loss by area of forest within
PAs or surrounding areas. Each GLS epoch spans a range of years focused on the nominal
year [23], so the forest/nonforest layer for each year was accompanied by the year of image
acquisition to estimate changes over time as rates.
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2.3. International Aid Data for Biodiversity Conservation

Global aid data for the period 1990–2010 were obtained from the AidData Version
3 database [34]. The database contains records of development projects from more than
90 bilateral and multilateral donors and constitutes a detailed source of project-level
information on international aid [34]. We used the nominal value of currency (in USD)
to account for changes in currency value over time. The project data extracted from
AidData include data from all the sectors [35]. We excluded the sectors less relevant
for biodiversity and natural resource management, such as reproductive health care and
secondary education. Averages for the 1990s and the 2000s were calculated from each data
set and the differences are used as independent variables for regression analysis.

2.4. Estimation of Avoided Deforestation by PAs

Measuring the amount of avoided deforestation by PAs is complex because it cannot
be measured directly [7]. Broadly, two different approaches have been in use to estimate
avoided deforestation. The first set of approaches compares differences in forest change
rate between inside and outside PAs [4,5,15]. However, approaches these have been
criticized for their inability to account for the spillover effect from PAs to the adjacent
areas outside of Pas, as well as for selection bias due to un-randomized selection of
PAs and inherently different deforestation probability between the inside and outside of
PAs [36]. Second, there are statistical matching approaches that can be used to match
the difference in deforestation probability between samples inside and outside PAs [7,37].
The statistical matching of samples is robust but challenging to implement due to high
computational costs and difficulties in finding statistically significant matches, especially
when a PA network covers large continuous tracts of land [11]. Moreover, some important
factors, such as policies (e.g., concession) which contribute to deforestation probability,
can be overlooked in this approach. To avoid selection bias and computational difficulties
associated with previously mentioned methods, we used the Difference-In-Differences
(DID) estimator to measure avoided deforestation in the 2000s compared to the 1990s for
PAs in each tropical country [38,39] (Figure 2).

Geomatics 2021, 1, FOR PEER REVIEW 3 
 

 

nominal year [23], so the forest/nonforest layer for each year was accompanied by the year 
of image acquisition to estimate changes over time as rates. 

2.3. International Aid Data for Biodiversity Conservation 
Global aid data for the period 1990–2010 were obtained from the AidData Version 3 

database [34]. The database contains records of development projects from more than 90 
bilateral and multilateral donors and constitutes a detailed source of project-level infor-
mation on international aid [34]. We used the nominal value of currency (in USD) to ac-
count for changes in currency value over time. The project data extracted from AidData 
include data from all the sectors [35]. We excluded the sectors less relevant for biodiversity 
and natural resource management, such as reproductive health care and secondary edu-
cation. Averages for the 1990s and the 2000s were calculated from each data set and the 
differences are used as independent variables for regression analysis. 

2.4. Estimation of Avoided Deforestation by PAs 
Measuring the amount of avoided deforestation by PAs is complex because it cannot 

be measured directly [7]. Broadly, two different approaches have been in use to estimate 
avoided deforestation. The first set of approaches compares differences in forest change 
rate between inside and outside PAs [4,5,15]. However, approaches these have been criti-
cized for their inability to account for the spillover effect from PAs to the adjacent areas 
outside of Pas, as well as for selection bias due to un-randomized selection of PAs and 
inherently different deforestation probability between the inside and outside of PAs [36]. 
Second, there are statistical matching approaches that can be used to match the difference 
in deforestation probability between samples inside and outside PAs [7,37]. The statistical 
matching of samples is robust but challenging to implement due to high computational 
costs and difficulties in finding statistically significant matches, especially when a PA net-
work covers large continuous tracts of land [11]. Moreover, some important factors, such 
as policies (e.g., concession) which contribute to deforestation probability, can be over-
looked in this approach. To avoid selection bias and computational difficulties associated 
with previously mentioned methods, we used the Difference-In-Differences (DID) estima-
tor to measure avoided deforestation in the 2000s compared to the 1990s for PAs in each 
tropical country [38,39] (Figure 2). 

 
Figure 2. Avoided deforestation estimates for a designated protected area in Cambodia: top images 
show forest change over time in the Roniem Daun Sam wildlife sanctuary, which was designated in 
1993. The bottom figures show forest cover change maps between periods and an illustration of the 

Figure 2. Avoided deforestation estimates for a designated protected area in Cambodia: top images
show forest change over time in the Roniem Daun Sam wildlife sanctuary, which was designated in
1993. The bottom figures show forest cover change maps between periods and an illustration of the
DID method. Avoided deforestation (DID) is estimated by calculating differences between difference
in forest loss rate in the PAs before and after designation and the difference in forest loss rate in the
surrounding areas over time.
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This method has a relatively strong inferential ability as it eliminates selection biases
by attempting to mimic an experimental research design using observational data [38,40].
The impact of a treatment on outcome Yi, which is the annual forest change rate in this
study, was modeled by the following equation:

Yi = α + βTi + γti + δ(Ti · ti) + εi (1)

where T is the treatment status; t is the time period before and after the treatment; the
coefficients given by the Greek letters α, β, γ, δ are all unknown parameters; and εi is a
random, unobserved “error” term. In the DID estimator, the effect of treatment (avoided
deforestation), δ, is defined as the difference in average outcome in the treatment group T
before and after treatment minus the difference in average outcome in the control group C
before and after treatment, and it is expressed as:

δ = YT
1 − YT

0 − (YC
1 − YC

0 ) (2)

where the treatment group is PAs and the control group is the surrounding areas before and
after the year 2000 (Figure 2). We applied this method to (a) the 3888 PAs and surrounding
areas designated before 2010 to determine the accumulated effect during the 2000s, and
(b) to the subset of 1253 PAs established between 2000–2010 to estimate the effect of newly
established PAs.

2.5. Estimation of Spillover Effect

The spillover effect refers to the displacement of forest loss from one place to a
neighboring area due to the establishment of a PA. If PAs displaced deforestation to
their immediate surroundings through the spillover effect, deforestation rate increases
within those areas would be higher than in other regions with similar characteristics (e.g.,
accessibility) [16,41]. Based on these assumptions, we measured the potential spillover
or leakage effect by comparing forest loss between the 1990s and the 2000s, and avoided
deforestation estimates using surrounding areas at different buffer distances (500 m, 1 km,
5 km, 10 km, 15 km, 20 km, and 25 km).

2.6. Statistical Analysis

To ensure the robustness of the DID method, we tested (1) ordinary least squares (OLS)
regression analysis between treatment, time period, and estimated avoided deforestation,
as expressed in Equation (1); and (2) a paired t-test between the difference in forest loss
rates in PAs and the difference in forest loss rates in the surrounding areas to determine
the significance of the effect of PAs before and after 2000. Effects of PAs are graphically
presented with changes in frequency distributions.

3. Results and Discussion
3.1. Avoided Deforestation by Protected Areas

Our results demonstrate an overall 83,500 ± 21,200 km2 of avoided deforestation by
the PAs during the 2000s throughout the tropics, which equals 3.5% of all forest area within
PAs in the study area (Figure 1, Table A1). Figure 3 shows avoided deforestation by each
country along with international aid received by them.
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Latin America showed the largest estimates of avoided deforestation during the
2000s (73,900 km2). In Latin America, Brazil showed the largest avoided deforestation
(50,870 km2), followed by Peru (9970 km2) and Bolivia (6611 km2) for the same time-
period. Venezuela was found to have the largest negative effect (−1622 km2) among Latin
American countries. The negative effect means forest loss rates within PAs exceeded the
forest loss rates in surrounding areas. Relatively high rates of avoided deforestation from
PAs in Brazil emphasize Brazil’s important role in tropical forest conservation. Positive
avoided deforestation effects of PAs in Brazil were also reported by previous studies [11,12].
Tropical Asia showed the second largest estimates of avoided deforestation of 6744 km2,
with the largest amount in Thailand, followed by Indonesia. Tropical Africa has the lowest
estimates, except Cameroon, which showed the largest estimate of 3411 km2. In terms of the
percentage of avoided deforestation against the entire forest area in PAs, Africa showed the
lowest estimates of 1.8%, while Latin America and Asia showed similar estimates of 3.8%.
The comparison between estimates for the entire set of PAs and the PAs established after
2000 showed that PAs established post-2000 had a higher rate of avoided deforestation at
0.5% annually compared to 0.4% for the entire set of PAs. The area of avoided deforestation
in PAs established during the 2000s was about 60% of estimated avoided deforestation in all
PAs in the study area. In comparison, the area of avoided deforestation in PAs established
during the 1990s was about 27%. Prior to 1990, estimated avoided deforestation was about
13% in all PAs in the study area.

On average, PAs in the tropics established after 2000 showed a greater avoided
deforestation than PAs established before 2000. Nevertheless, old established PAs were still
effective, although not as effective as recently established ones [39]. Estimates of avoided
deforestation based on the median value of forest loss exhibited similar results. Changes
in mean and median forest loss within PAs and the surrounding areas before and after
2000 demonstrate the positive effects of PAs on reducing deforestation (Table 1).

Table 1. Estimates of avoided deforestation by all PAs (established prior to 2010) by year of establishment to show the
difference in effectiveness. Newer PAs established during the 2000s show more effectiveness compared to PAs established
prior to 2000, as well as all PAs. Numbers in parenthesis represent estimates using median forest loss rate.

Avoided
Deforestation

Mean Forest Loss Rate within
Protected Areas

Mean Forest Loss Rate within
Buffer Zones

Year of establishment (%) (km2) Before 2000 After 2000 Before 2000 After 2000
Prior to 2010 3.46 (4.1) 83,500 0.59 (0.09) 1.65 (0.17) 0.91 (0.46) 2.32 (0.94)

1990–2000 3.42 (4.6) 22,800 0.5 (0.01) 1.66 (0.02) 0.86 (0.46) 2.32 (1)
2000–2010 4.47 (5) 47,650 0.5 (0.02) 1.52 (0.04) 0.897 (0.35) 2.37 (0.87)

The lower deforestation rates in recent PAs and the higher rates in the recent sur-
rounding areas after 2000 show that the greater avoided deforestation of recent PAs is not
because of their remoteness (Table 1). Congo, Belize, the Philippines, and Sri Lanka showed
positive avoided deforestation from PAs established since 2000, while estimates including
all PAs established before 2000 showed negative effects in these countries, suggesting
the old established PAs in those countries are experiencing higher rates of deforestation.
The following analysis supports our estimates of avoided deforestation. First, the ordinary
least squares (OLS) regression analysis of the PA effect evaluation model (Equation (1))
shows a strong association (p < 0.001) between forest loss rate change and protected area
designation (Table A2). Second, a paired t-test between the forest loss rate changes in PAs
and the surrounding areas confirms the hypothesis that the two groups show a significant
difference before and after the designation of PAs (t = 6.6). Third, Figure 4 suggests that, at
t1 (pre-2000), the forest loss rate was high inside PA areas and, at t2 (post-2000), the loss
was lower, confirming the positive effects of PAs in reducing deforestation in the tropics.
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Finally, our results show that PAs in Brazil established since 2000 avoided deforestation
of 2794 km2 annually, which is corroborated by an annual 2500 km2 of avoided deforestation
between 2004 and 2006 reported by Soares-Filho et al. [11]. Figure 5 shows the mean forest
loss rates of surrounding areas with various distances from 500 m to 25 km from PAs in the
1990s (a) and in the 2000s (b).
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the 2000s.

Figure 5 demonstrates that the increase in forest loss between two decades was the
largest within a 10 km distance. This suggests that the spill-over effects were largest in
the areas immediately adjacent to PAs, and the areas further than 10 km from PAs had
marginal spill-over effects. Spill-over effect refers to the displacement of forest loss from
PAs to surrounding areas due to the establishment of PAs. Relatively lower forest loss
rates within surrounding areas with less than a 10 km buffer distance are because of a
given PA’s relative inaccessibility, isolation [4], or even better protection due to buffer zone
conservation initiatives [42]. We used estimates of avoided deforestation with a 10 km
buffer distance for the regression analysis, where spill-over effects start to be marginal.

3.2. International Aid for Conservation

Thirty-four tropical countries received total international aid for biodiversity con-
servation of USD 42 billion during the 1990s and USD 62 billion during the 2000s, with
a net increase of 46% (USD 20 billion) between the two periods (Figure 3). Among con-
tinents, tropical Asian countries were the largest recipients, receiving 62% of all funds
during the 2000s, followed by Latin American countries (28%). Among the countries,
Indonesia received the largest amount of aid—18% of all funds received by 34 tropical
countries—followed by Vietnam (1%) and the Philippines (9%) for the same period [43].
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To compare the avoided deforestation against international aid for biodiversity con-
servation received by each tropical country, we determined the relative contribution of the
international aid—“effectiveness of international aid”—by dividing the estimated avoided
deforestation area with the amount of international aid for biodiversity conservation re-
ceived by each country. The rationale for this assumption is that (1) the primary goal of
international aid for biodiversity conservation is to enhance biodiversity conservation,
regardless of the political and economic circumstances, and (2) conservation of biodiversity
in the tropics has a negative association with tropical deforestation [6,34,44]. However,
did not analyze causal relationships between avoided deforestation and the amount of
international aid received.

The effectiveness of international aid was highest in Latin America, with 4.3 m2/USD,
led by Brazil, while tropical Asian countries showed the lowest average effect of interna-
tional aid, reaching only 0.17 m2/USD. Among the countries examined, Brazil showed the
absolute highest cost-effect of 21 m2/USD. The blue line in Figure 1 indicates that only 9
out of 34 countries were found to have higher effects of international aid than the average.
Country-based estimates of avoided deforestation by PAs and effects of international aid
showed a varied pattern throughout the tropics. Notably, the two largest sources of tropi-
cal deforestation during the 2000s, Brazil (2.2 Mha·yr −1) and Indonesia (0.8 Mha·yr −1),
showed a sharp contrast [3]. Brazil showed higher estimates of avoided deforestation
compared to Indonesia by a factor of 50, although Indonesia has received about 500% more
international aid (USD 11 billion) compared to Brazil (USD 2.4 billion), resulting in lower
estimates of the effects of international aid (0.5 m2/USD) compared to Brazil (22 m2/USD)
by a factor of 44.

Our approach using a DID estimator with fine resolution and spatially explicit forest
change data offered an alternative way to handle commonly criticized selection bias and
spillover problems [7,36]. Despite the methodological advances made in this study, it has
some limitations. First, our forest cover change estimates do not distinguish between pri-
mary and managed forests, leaving a potential for confusion between loss of natural forest
and managed harvest. Second, the coarse spatial scale of socioeconomic data limited the
regression analysis to the country scale, which prevented the regression analysis between
individual PAs and their geophysical factors. Third, Brazil’s success in reducing defor-
estation is an exceptional case made possible under a special political landscape [12,45],
which is difficult to generalize to other tropical countries. Finally, for the estimates of the
effect of international aid on avoided deforestation by PAs, we only considered the contri-
bution of international monetary aid, while the amount of international aid may not be the
only factor determining a given PA’s effectiveness. Other domestic sources of funds (e.g.,
Amazon Region Protected Areas Program of Brazil) and different aspects of conservation
(e.g., biodiversity) or political environment, which vary by country and over time, were not
accounted for in this study. Additionally, the processes of international aid delivery were
not considered in this study. For example, Norwegian funds are committed to Indonesia
under the condition that they meet specific conservation goals. Further analysis is needed
to estimate the effect of differences in the distribution of funds.

4. Conclusions

Our results showed an overall positive effect of pan-tropical PAs on reducing defor-
estation during the 2000s. The overall positive effect of PAs in reducing deforestation
throughout the tropics corroborates with the findings of previous studies [7,37,39,46,47].
However, unlike many previous studies, our results provide a consistent, long-term esti-
mate throughout the pan-tropics. The estimated avoided deforestation and effects of inter-
national aid by countries pinpoint where conservation activity and resources distribution
are effectively practiced. These findings underscore the challenges that policy instruments
face, and also provide a launchpad for alternative strategies for future conservation policies
and initiatives. However, the study does not link its findings to political–economic contexts.
Not covering these aspects remains a limitation of this study. Nevertheless, with a robust
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empirical approach and future data availability on socioeconomic drivers, the protection of
critical ecosystem services in a coupled human–natural system can be better understood.
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Appendix A

Table A1. Summary of the avoided deforestation estimates by countries and continents. Acceleration of deforestation is
indicated by percent increase in net deforestation rate from the 1990s to the 2000s (3). Avoided deforestation is presented in
percent of conserved forest relative to remaining forest in PAs and total area of conserved forest. All estimates are on an
annual basis. Negative effect means forest loss rates within PAs exceeded the forest loss rates in surrounding areas.

Country
Acceleration of
Deforestation

(%)

Avoided
Deforestation

(%)

Avoided
Deforestation

(km2)

Area of PAs
(km2)

Forest Area
in PAs (%)

No. of
PAs

Cameroon 20.6 1.39 341.1 46,414 53 35
Congo 0.0 −0.23 −24.2 22,624 46 13

Democratic Republic Congo 31.2 −0.09 −77.4 219,677 41 31
Equatorial Guinea −2.0 −0.32 −10.7 3602 93 6

Gabon −11.5 0.01 1.5 16,677 97 8
Liberia −8.2 −0.17 −1.5 1687 53 2

Madagascar 15.6 0.69 57.5 15,322 55 42
Sierra Leone 8.9 0.03 0.3 2955 38 31
Africa Total 6.8 0.18 286.5 328,957 47 168

Bangladesh 16.3 0.17 0.5 490 56 19
Brunei Darussalam 0.0 −0.90 −3.8 448 94 18

Cambodia 27.8 0.49 61.7 24,779 51 24
Indonesia 2.9 0.22 100.8 95,981 49 152

Laos 5.1 0.49 67.6 17,095 80 12
Malaysia 2.5 0.21 38.4 19,330 96 122
Myanmar 11.5 0.88 64.5 15,201 48 29

Papua New Guinea 1.1 −0.19 −5.1 3849 69 27
Philippines 12.0 −0.05 −9.0 26,890 64 165
Sri Lanka 19.5 −0.05 −3.0 11,860 46 210
Thailand 15.9 0.76 357.1 61,541 76 117
Vietnam 18.5 0.06 4.7 18,295 43 65

Asia Total 11.1 0.38 674.4 295,758 61 960
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Table A1. Cont.

Country
Acceleration of
Deforestation

(%)

Avoided
Deforestation

(%)

Avoided
Deforestation

(km2)

Area of PAs
(km2)

Forest Area
in PAs (%)

No. of
PAs

Belize −1.1 −0.06 −2.2 4353 86 63
Bolivia 5.6 0.92 661.1 98,585 73 42
Brazil 3.3 0.34 5087.0 1,852,181 82 1321

Colombia 18.0 0.89 582.9 169,960 38 593
Costa Rica 12.0 0.23 10.8 5424 86 79
Ecuador 2.2 0.76 119.8 22,467 70 20

Guatemala 2.6 0.27 42.7 18,053 86 225
Guyana −6.2 0.01 0.6 10,426 41 3

Honduras 8.3 0.02 1.6 11,733 56 62
Nicaragua 26.5 0.68 9.4 4597 30 61

Panama 18.8 0.76 27.3 4610 78 13
Peru 4.5 0.51 997.0 308,599 64 185

Suriname 4.4 0.05 14.2 29,041 99 7
Venezuela 26.7 −0.39 −162.2 80,919 51 85

Latin America Total 9.0 0.38 7389.8 2,620,949 75 2759

Grand Total 6.2 0.35 8350.6 3,245,663 71 3887

Appendix B

Table A2. Statistics of Difference-in-Differences analysis to calculate avoided deforestation by country and individuals. PA.

By country

Independent variables Estimate Std. Error t Value Pr (>|t|)

(Intercept) −0.39885 0.06 −6.020 1.62 × 10−8 ***
Period −0.39489 0.09370 −4.215 4.61 × 10−5 ***

Treatment 0.23511 0.09370 2.50 0.0133 *
Treatment·Period 0.2719 0.13250 2.052 0.0421 *

* p < 0.01, *** p < 0.0001, independent variables are log transformed

Residual standard error: 0.3863 on 132 degrees of freedom,
Multiple R-squared: 0.2781, Adjusted R-squared: 0.2617
F-statistic: 16.95 on 3 and 132 DF, p-value: 2.257 × 10−9

By individual PA

Independent variables Estimate Std. Error t Value Pr (>|t|)

(Intercept) −0.9100 0.04603 −19.772 <2 × 10−16 ***
Period −1.41258 0.04603 −21.702 <2 × 10−16 ***

Treatment 0.32492 0.06509 4.992 6.06 × 10−7 ***
Treatment·Period 0.34607 0.09205 3.759 0.000171 ***

*** p < 0.0001, independent variables are log transformed

Residual standard error: 2.659 on 13,348 degrees of freedom,
Multiple R-squared: 0.0603, Adjusted R-squared: 0.06009
F-statistic: 285.5 on 3 and 13348 DF, p-value: < 2.2 × 10−16
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