Insights into Sea Spray Ice Adhesion from Laboratory Testing
Abstract
1. Introduction
2. Theoretical Framework
2.1. Ice Adhesion
2.2. Brine Salinity and Volume Fraction
2.3. Densities of Ice and Brine
2.4. Expulsion of Brine
3. Experimental Methods
3.1. Ice Tank Setup
3.2. Temperature Measurement
3.3. Ice Measurements
3.4. Ice Adhesion Test
3.5. X-Ray Micro-Tomographic Scanning
4. Results
4.1. Ice Growth
4.2. Adhesion Strength of Spray Ice
4.2.1. Influence of Growth Conditions
4.2.2. Influence of the Sample Dimensions
4.2.3. Thickness and Weight per Area
4.2.4. Brine Layer Thickness
4.3. Correlation Coefficients with the Adhesion Strength
4.4. X-Ray Micro-Tomographic Imaging
5. Discussion
5.1. General Results
5.2. Properties Affecting Adhesion Strength
5.3. Size Effects
5.3.1. Sample Length and Crack Propagation
5.3.2. Sample Thickness
5.3.3. Edge Overgrowth
5.3.4. Brine Layer Thickness—Mixed Size Effects
5.4. Brine Layer, Brine Drainage, and Microstructure
5.5. Practical Implications of the Size Effect
5.6. Limitations of the Results
6. Conclusions
- The adhesion strength of the spray ice that is formed from the sea spray of seawater is one to two orders of magnitude lower than that of freshwater adhesion.
- Depending on sample dimension and temperature, the adhesion strength of sea spray ice varied from a few to 100 kPa.
- For growth and standard thermodynamic variables, we found an impact of test temperature on ice adhesion, but little effect of bulk salinity and bulk brine volume.
- The geometry of samples had, for our size range, the strongest influence on the ice adhesion strength. A combination of size effects, including the sample edge length, overgrowth on these edges, and the sample thickness, all play a role.
- Brine can be found on the interface of the samples after the adhesion tests, and this brine layer is expected to decrease ice adhesion. However, the brine layer thickness estimated after Makkonen [22] shows a slight positive correlation with adhesion strength. Our analysis shows that this behaviour may be related to other size effects.
- Ice microstructure and the internal redistribution of brine, as revealed by micro-CT imaging of sea spray ice samples, play an important role in the ice adhesion strength. These processes and their impact on microstructure and brine evolution at the ice-adhesion interface, are key to obtaining a fundamental understanding of the adhesion of saline ice.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Supporting Information
Appendix A.1. Force–Displacement Curves
Appendix A.2. Correlation of Parameters and Adhesion
Appendix A.3. Statistical Analysis and Correlation of Categorial Variables
Appendix A.3.1. Correlation of Parameters with Adhesion Strength
Parameter | Dataset | Linear | Double Logarithmic | ||||
---|---|---|---|---|---|---|---|
Slope (SE) | R2 | p-Value | Exponent (SE) | R2 | p-Value | ||
FULL | 1.13 (0.53) | 0.081 | 0.037 | −0.05 (0.35) | 0.000 | 0.885 | |
LARGE | 1.31 (0.47) | 0.142 | 0.008 | 0.01 (0.35) | 0.000 | 0.983 | |
FULL | 1.80 (0.66) | 0.078 | 0.008 | 0.67 (0.40) | 0.032 | 0.095 | |
LARGE | 0.97 (0.46) | 0.055 | 0.039 | 0.38 (0.39) | 0.012 | 0.336 | |
Salinity | FULL | 0.69 (0.44) | 0.054 | 0.125 | 1.02 (0.88) | 0.030 | 0.253 |
LARGE | −0.13 (0.23) | 0.009 | 0.579 | −0.41 (0.86) | 0.006 | 0.638 | |
Brine Volume | FULL | −42.66 (57.98) | 0.012 | 0.466 | −0.37 (0.69) | 0.007 | 0.592 |
LARGE | −42.23 (27.63) | 0.063 | 0.135 | −0.82 (0.64) | 0.045 | 0.206 | |
Thickness | FULL | 0.49 (4.53) | 0.000 | 0.915 | 0.59 (0.34) | 0.056 | 0.095 |
LARGE | 3.40 (3.32) | 0.024 | 0.311 | 0.83 (0.32) | 0.137 | 0.012 | |
Weight/Area | FULL | 5.52 (3.35) | 0.053 | 0.106 | 0.75 (0.27) | 0.138 | 0.007 |
LARGE | 3.54 (2.50) | 0.045 | 0.164 | 0.72 (0.25) | 0.156 | 0.007 | |
Length | FULL | −2.91 (0.63) | 0.196 | 0.000 | −1.13 (0.29) | 0.145 | 0.000 |
LARGE | −1.02 (0.59) | 0.038 | 0.087 | −0.35 (0.48) | 0.007 | 0.474 | |
Edge Overgrowth | Full | 46.03 (7.55) | 0.299 | 0.000 | 3.66 (0.87) | 0.170 | 0.000 |
Large | 25.20 (13.68) | 0.043 | 0.069 | 1.53 (1.81) | 0.009 | 0.399 | |
Brine Layer | FULL | 0.22 (0.13) | 0.055 | 0.096 | — | — | — |
= 0.26 | LARGE | 0.18 (0.25) | 0.084 | 0.053 | — | — | — |
Brine Layer | FULL | −0.04 (0.11) | 0.003 | 0.719 | 0.48 (0.41) | 0.027 | 0.247 |
= 0.5 | LARGE | 0.09 (0.12) | 0.029 | 0.267 | 1.05 (0.38) | 0.149 | 0.009 |
Brine Layer | FULL | 0.06 (0.10) | 0.008 | 0.527 | 0.74 (0.34) | 0.085 | 0.037 |
app. thickness | LARGE | 0.11 (0.12) | 0.051 | 0.137 | 0.92 (0.31) | 0.168 | 0.005 |
= 0.5 |
References
- Ono, N. Studies of ice accumulation on ships. Part II. Conditions of icing and accreted weights. Low Temp. Sci. Ser. A 1964, A22, 171–181. [Google Scholar]
- Borisenkov, Y.; Panov, V. Osnovnyye rezultaty i perspektivy issledovaniy gidrometeorologicheskikh usloviy obledeneniya sudov (Primary Results and Prospects for the Investigation of the Hydrometeorological Conditions of Ship Icing). Technical Report Trudy No. 298; Arkticheskii i Antarkticheskii Nauchnolssledovatiel’Skii lnstitut, Gidrometeoizdat: Leningrad, Soviet Union, 1972. [Google Scholar]
- Borisenkov, Y.; Pchelko, I. Indicators for Forecasting Ship Icing; Technical Report; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1975. [Google Scholar]
- Ono, N. Studies of ice accumulation on ships. Part IV. Statistical analysis of ship icing conditions. Low Temp. Sci. Ser. A 1974, A32, 235–242. [Google Scholar]
- Minsk, L. Icing on Structures; CRREL Report; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1980. [Google Scholar]
- Overland, J.; Pease, C.; Preisendorfer, R.; Comiskey, A. Prediction of Vessel Icing. J. Appl. Meteor. Climatol. 1986, 25, 1793–1806. [Google Scholar] [CrossRef]
- Samuelsen, E. Ship-icing prediction methods applied in operational weather forecasting. Q. J. R. Meteorol. Soc. 2018, 144, 13–33. [Google Scholar] [CrossRef]
- Kulyakhtin, A. Numerical Modelling and Experiments on Sea Spray Icing. Ph.D. Thesis, NTNU, Trondheim, Norway, 2014. [Google Scholar]
- Dehghani-sanij, A.; Muzychka, Y.S.; Naterer, G.F. Analysis of Ice Accretion on Vertical Surfaces of Marine Vessels and Structures in Arctic Conditions. In Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, St. John’s, Newfoundland, Canada, 31 May–5 June 2015; p. V007T06A056. [Google Scholar] [CrossRef]
- Dehghani, S.; Naterer, G.; Muzychka, Y. Droplet size and velocity distributions of wave-impact sea spray over a marine vessel. Cold Reg. Sci. Technol. 2016, 132, 60–67. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.; Dehghani, S.; Naterer, G.; Muzychka, Y. Sea spray icing phenomena on marine vessels and offshore structures: Review and formulation. Ocean Eng. 2017, 132, 25–39. [Google Scholar] [CrossRef]
- Ryerson, C.C.; Gow, A.J. Crystalline Structure and Physical Properties of Ship Superstructure Spray Ice. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2847–2871. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.; Muzychka, Y.; Naterer, G. Droplet Trajectory and Thermal Analysis of Impinging Saline Spray Flow on Marine Platforms in Cold Seas and Ocean Regions. Ocean Eng. 2018, 148, 538–547. [Google Scholar] [CrossRef]
- Jones, K.F.; Andreas, E.L. Sea Spray Concentrations and the Icing of Fixed Offshore Structures. Q. J. R. Meteorol. Soc. 2012, 138, 131–144. [Google Scholar] [CrossRef]
- Makkonen, L. Salinity and Growth Rate of Ice Formed by Sea Spray. Cold Reg. Sci. Technol. 1987, 14, 163–171. [Google Scholar] [CrossRef]
- He, Z.; Xiao, S.; Gao, H.; He, J.; Zhang, Z. Multiscale crack initiator promoted super-low ice adhesion surfaces. Soft Matter 2017, 13, 6562–6568. [Google Scholar] [CrossRef]
- Azimi Dijvejin, Z.; Jain, M.C.; Kozak, R.; Zarifi, M.H.; Golovin, K. Smart low interfacial toughness coatings for on-demand de-icing without melting. Nat. Commun. 2022, 13, 161. [Google Scholar] [CrossRef]
- Zhuo, Y.; Xiao, S.; Håkonsen, V.; He, J.; Zhang, Z. Anti-icing Ionogel Surfaces: Inhibiting Ice Nucleation, Growth, and Adhesion. ACS Mater. Lett. 2020, 2, 616–623. [Google Scholar] [CrossRef]
- Dhyani, A.; Choi, W.; Golovin, K.; Tuteja, A. Surface design strategies for mitigating ice and snow accretion. Matter 2022, 5, 1423–1454. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Luo, G.; Cui, B. Effects of Freezing Temperature and Salinity on the Adhesion Shear Strength of Amphibious Aircraft Tires under Static Icing. Aerospace 2022, 9, 170. [Google Scholar] [CrossRef]
- Mu, Z.; Guo, W.; Li, Y.; Tagawa, K. Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition. Renew. Energy 2023, 209, 42–52. [Google Scholar] [CrossRef]
- Makkonen, L. Ice Adhesion Theory, Measurements and countermeasures. J. Adhes. Sci. Technol. 2012, 26, 413–445. [Google Scholar] [CrossRef]
- Laroche, A.; Grasso, M.J.; Dolatabadi, A.; Bonaccurso, E. Tensile and Shear Test Methods for Quantifying the Ice Adhesion Strength to a Surface. In Ice Adhesion; Mittal, K.L., Choi, C.H., Eds.; John Wiley & Sons, Ltd.: London, UK, 2020; Chapter 9; pp. 237–284. [Google Scholar] [CrossRef]
- Maus, S.; Rübsamen-von Döhren, P. Sea Spray Ice Microstructure and Brine Entrapment. In Proceedings of the 27th International Conference on Port and Ocean Engineering Under Arctic Conditions, Glasgow, UK, 12–16 June 2023. [Google Scholar]
- Maus, S. On Brine Entrapment in Sea Ice: Morphological Stability, Microstructure and Convection; Logos: Berlin, Germany, 2007; 538 p. [Google Scholar]
- Pustogvar, A.; Kulyakhtin, A. Sea ice density measurements. Methods and uncertainties. Cold Regi. Sci. Technol. 2016, 131, 46–52. [Google Scholar] [CrossRef]
- Cox, G.F.N.; Weeks, W.F. Changes in the salinity and porosity of sea ice samples during shipping and storage. J. Glaciol. 1986, 32, 371–375. [Google Scholar] [CrossRef]
- Samuelsen, E.; Graversen, R. Weather situation during observed ship-icing events off the coast of Northern Norway and the Svalbard archipelago. Weather Clim. Extrem. 2019, 24, 100200. [Google Scholar] [CrossRef]
- Maus, S.; Schneebeli, M.; Wiegmann, A. An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice. Cryosphere 2021, 15, 4047–4072. [Google Scholar] [CrossRef]
- Maus, S.; Bahafid, S.; Hendriks, M.; Jacobsen, S.; Geiker, M. X-ray micro-tomographic imaging and modelling of saline ice properties in concrete frost salt scaling experiments. Cold Reg. Sci. Technol. 2023, 208, 103780. [Google Scholar] [CrossRef]
- GeoDict. Geometric Material Models and Computational PreDictions of Material Properties. 2012–2025. Available online: https://www.geodict.com (accessed on 15 January 2025).
- Rübsamen-von Döhren, P.; Maus, S. Adhesion of laboratory grown sea spray ice. In Proceedings of the 27th International Conference on Port and Ocean Engineering under Arctic Conditions, Glasgow, UK, 12–16 June 2023. [Google Scholar]
- Ryerson, C.; Gow, A. Ship Superstructure Icing: Crystalline and Physical Properties; CRREL Report; CRREL: Hanover, NH, USA, 2000. [Google Scholar]
- Kulyakhtin, A.; Kulyakhtin, S.; Løset, S. Measurements of thermodynamic properties of ice created by frozen sea spray. In Proceedings of the Twenty-Third International Offshore and Polar Engineering Conference, Anchorage, Alaska, 30 June 2013; pp. 1104–1111. [Google Scholar]
- Lieb-Lappen, R.; Golden, E.; Obbard, R. Metrics for interpreting the microstructure of sea ice using X-ray micro-computed tomography. Cold Reg. Sci. Technol. 2017, 138, 24–35. [Google Scholar] [CrossRef]
- Golovin, K.; Dhyani, A.; Thouless, M.; Tuteja, A. Low–interfacial toughness materials for effective large-scale deicing. Science 2019, 364, 371–375. [Google Scholar] [CrossRef]
- Bleszynski, M.; Clark, E. Current Ice Adhesion Testing Methods and the Need for a Standard: A Concise Review. Standards 2021, 1, 117–133. [Google Scholar] [CrossRef]
- Luo, W.; Alasvand Zarasvand, K.; Azimi Dijvejin, Z.; Nadaraja, A.V.; Golovin, K. Influence of Salinity on Surface Ice Adhesion Strength. Adv. Mater. Interfaces 2024, 11, 2300606. [Google Scholar] [CrossRef]
- Schwarz, J.; Weeks, W.F. Engineering properties of sea ice. J. Glaciol. 1977, 19, 499–530. [Google Scholar] [CrossRef]
- Petrich, C.; Eicken, H. Growth, Structure and Properties of Sea Ice. In Sea Ice, 2nd ed.; Thomas, D.N., Dieckmann, G.S., Eds.; John Wiley and Sons: New York, NY, USA, 2010; Chapter 2. [Google Scholar]
- Weeks, W.F. On Sea Ice; University of Alaska Press: Fairbanks, AK, USA, 2010; p. 600. [Google Scholar]
- Chatterjee, R.; Thanjukutty, R.U.; Carducci, C.; Neogi, A.; Chakraborty, S.; Bapu, V.P.B.R.; Banik, S.; Sankaranarayanan, S.K.R.S.; Anand, S. Adhesion of Impure Ice on Surfaces. Mater. Horizons 2024, 11, 419–427. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Siva, A.; Tiea, D.; Wynne, K.J. Laboratory Test for Ice Adhesion Strength Using Commercial Instrumentation. Langmuir 2014, 30, 540–547. [Google Scholar] [CrossRef]
- Rønneberg, S.; He, J.; Zhang, Z. The Need for Standards in Low Ice Adhesion Surface Research: A Critical Review. J. Adhes. Sci. Technol. 2020, 34, 319–347. [Google Scholar] [CrossRef]
- Rośkowicz, M.; Godzimirski, J.; Komorek, A.; Jasztal, M. The Effect of Adhesive Layer Thickness on Joint Static Strength. Materials 2021, 14, 1499. [Google Scholar] [CrossRef]
- Dempsey, J. Scale effects of the fracture of sea ice. In The Johannes Weertman Symposium. The Minerals, Metals and Materials Society; University of Michigan: Ann Arbor, MI, USA, 1996; pp. 351–361. [Google Scholar]
- Cole, D.M. The microstructure of ice and its influence on mechanical properties. Eng. Fract. Mech. 2001, 68, 1797–1822. [Google Scholar] [CrossRef]
- Maus, S. The tensile strength of sea ice: Revising its dependence on microstructure and growth velocity. In Proceedings of the 27th Conference on Port and Ocean Engineering Under Arctic Conditions, Glasgow, UK, 12–16 June 2023; p. 41. [Google Scholar]
- Makkonen, L. Solid fraction in dendritic solidification of a liquid. Appl. Phys. Lett. 2010, 96, 091910. [Google Scholar] [CrossRef]
- Horjen, I. Numerical modeling of two-dimensional sea spray icing on vessel-mounted cylinders. Cold Reg. Sci. Tech. 2013, 93, 20–35. [Google Scholar] [CrossRef]
- Blackmore, R.; Makkonen, L.; Lozowski, E. A new model of spongy icing from first principle. J. Geophys. Res. 2002, 107, D21. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Rees Jones, D.; Grae Worster, M. A physically based parametrization of gravity dtainage for sea ice modeling. J. Geophys. Res. 2014, 119, 5599–5621. [Google Scholar] [CrossRef]
- Worster, M.G.; Rees Jones, D. Sea-ice thermodynamics and brine drainage. Phil. Trans. R. Soc. A 2015, 373, 20140166. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, P. Ice Physics; Clarendon Press: Oxford, UK, 1974; p. 837. [Google Scholar]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation, 2nd ed.; Springer: Dordrecht, The Netherlands, 1997; Volume 18, 954p. [Google Scholar]
- Maus, S. Physics and Chemistry of Ice; Royal Society of Chemistry: Cambridge, UK, 2007; pp. 371–382. [Google Scholar]
- Maus, S. The plate spacing of sea ice. Ann. Glaciol. 2020, 61, 408–425. [Google Scholar] [CrossRef]
- Freitag, J. Untersuchungen zur Hydrologie des Arktischen Meereises—Konsequenzen für den Stofftransport. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 1999. [Google Scholar]
- Maus, S. Growth rate dependence of the permeability and percolation threshold of young sea ice. Faraday Discuss. 2025, 258, d4fd00172a. [Google Scholar] [CrossRef] [PubMed]
- Puolakka, O. Droplet supercooling in marine icing tests. Cold Reg. Sci. Technol. 2024, 219, 104121. [Google Scholar] [CrossRef]
- Petrich, C.; Langhorne, P.J.; Sun, Z.F. Modelling the interrelationships between permeability, effective porosity and total porosity in sea ice. Cold Reg. Sci. Techn. 2006, 44, 131–144. [Google Scholar] [CrossRef]
- Samuelsen, E.M.; Edvardsen, K.; Graversen, R.G. Modelled and observed sea-spray icing in Arctic-Norwegian waters. Cold Reg. Sci. Technol. 2017, 134, 54–81. [Google Scholar] [CrossRef]
- Deshpande, S.; Sæterdal, A.; Sundsbø, P.A. Experiments With Sea Spray Icing: Investigation of Icing Rates. J. Offshore Mech. Arct. Eng. 2024, 146, 011601. [Google Scholar] [CrossRef]
- Eicken, H.; Weissenberger, J.; Bussmann, I.; Freitag, J.; Schuster, W.; Dlegado, F.V.; Evers, K.U.; Jochmann, P.; Krembs, C.; Gradinger, R.; et al. Ice tank studies of physical and biological sea ice processes. In Proceedings of the 14th IAHR International Symposium on Ice (Potsdam 1998), Potsdam, NY, USA, 27–31 July 1998; Volume 1, pp. 363–370. [Google Scholar]
- Petrich, C.; Brekke, M.O.C.; Myrnes, M.; Maus, S.; Salomon, M.; Woelk, S.; Grydeland, T.; Jenssen, R.O.; Eicken, H.; Oggier, M.; et al. Mosideo/cirfa tank experiments on behavior and detection of oil in ice. In Proceedings of the 25th International Conference on Port and Ocean Engineering Under Arctic Conditions, Delft, The Netherlands, 9–13 June 2019. [Google Scholar]
Position | x | z | |
---|---|---|---|
Sample 1 | 10 | 100 | 1.21 ± 0.47 |
Sample 2 | 30 | 100 | 0.98 ± 0.21 |
Sample 3 | 50 | 100 | 0.66 ± 0.06 |
Sample 4 | 70 | 100 | 0.39 ± 0.15 |
Water min | – | 82 | |
Water max | – | 84 |
Temperature [°C] | |||
---|---|---|---|
Edge Length [cm] | −7 | −10 | −15 |
3 | 0 | 7 | 7 |
6 | 6 | 12 | 10 |
9 | 7 | 10 | 15 |
12 | 8 | 4 | 10 |
Temperature | Edge Length | Count | Adhesion Strength [kPa] | Count * | Adhesion Strength * [kPa] | ||
---|---|---|---|---|---|---|---|
[°C] | [cm] | std | std | ||||
all | all | 93 | 15.80 | 20.70 | 106 | 13.90 | 20.10 |
−15 | all | 33 | 25.00 | 26.50 | 38 | 21.70 | 26.10 |
−10 | all | 43 | 12.00 | 16.90 | 44 | 11.70 | 16.80 |
−7 | all | 17 | 7.60 | 5.00 | 24 | 5.40 | 5.40 |
−15 | 3 | 7 | 63.00 | 22.50 | 8 | 55.10 | 30.50 |
−15 | 6 | 12 | 14.20 | 21.30 | 12 | 14.20 | 21.30 |
−15 | 9 | 10 | 16.90 | 13.10 | 10 | 16.90 | 13.10 |
−15 | 12 | 4 | 11.30 | 3.90 | 8 | 5.60 | 6.50 |
−10 | 3 | 7 | 28.70 | 29.10 | 8 | 25.10 | 28.80 |
−10 | 6 | 10 | 17.00 | 17.70 | 10 | 17.00 | 17.70 |
−10 | 9 | 16 | 4.70 | 6.20 | 16 | 4.70 | 6.20 |
−10 | 12 | 10 | 7.00 | 4.30 | 10 | 7.00 | 4.30 |
−7 | 6 | 6 | 9.00 | 6.80 | 8 | 6.70 | 7.10 |
−7 | 9 | 3 | 4.20 | 2.70 | 8 | 1.60 | 2.60 |
−7 | 12 | 8 | 7.80 | 3.80 | 8 | 7.80 | 3.80 |
all | 3 | 14 | 45.90 | 30.70 | 16 | 40.10 | 32.60 |
all | 6 | 28 | 14.10 | 17.50 | 30 | 13.10 | 17.30 |
all | 9 | 29 | 8.90 | 10.50 | 34 | 7.60 | 10.20 |
all | 12 | 22 | 8.10 | 4.20 | 26 | 6.80 | 4.80 |
Plate | Thickness | Ta | Si | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Size | cm | °C | ‰ | % | % | % | % | μm | μm | μm | ‰ | gm−3 | |
3 cm | 1.3–1.7 | −10 | 26.2 | 0.5 | 0.44 | 14.0 | 1.8 | 146 | 54 | 41 | 67 | 7.8 | 0.94 |
6 cm | 1.8–2.0 | −10 | 23.2 | 0.9 | 0.44 | 12.5 | 1.6 | 820 | 171 | 41 | 86 | 10.8 | 0.93 |
12 cm | 1.5–2.1 | −10 | 22.6 | 1.3 | 0.72 | 8.4 | 5.3 | 801 | 50 | 43 | 51 | 11.4 | 0.93 |
Large | 3.0–4.5 | −10 | 16.2 | 7.9 | 0.06 | 5.6 | 4.0 | 849 | 210 | 70 | 90 | 17.8 | 0.86 |
Property | Relationship Strength, This Study | Other Studies |
---|---|---|
Temperature | + | Makkonen [22] |
Edge length | ++ | Golovin et al. [36] |
Sample thickness | ++ | Wang et al. [43], |
Rønneberg et al. [44], | ||
Rośkowicz et al. [45] | ||
Brine layer thickness | + | Makkonen [22], |
Chatterjee et al. [42] | ||
Geometry, edge overgrowth | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rübsamen-v. Döhren, P.; Maus, S.; Zhang, Z.; He, J. Insights into Sea Spray Ice Adhesion from Laboratory Testing. Thermo 2025, 5, 27. https://doi.org/10.3390/thermo5030027
Rübsamen-v. Döhren P, Maus S, Zhang Z, He J. Insights into Sea Spray Ice Adhesion from Laboratory Testing. Thermo. 2025; 5(3):27. https://doi.org/10.3390/thermo5030027
Chicago/Turabian StyleRübsamen-v. Döhren, Paul, Sönke Maus, Zhiliang Zhang, and Jianying He. 2025. "Insights into Sea Spray Ice Adhesion from Laboratory Testing" Thermo 5, no. 3: 27. https://doi.org/10.3390/thermo5030027
APA StyleRübsamen-v. Döhren, P., Maus, S., Zhang, Z., & He, J. (2025). Insights into Sea Spray Ice Adhesion from Laboratory Testing. Thermo, 5(3), 27. https://doi.org/10.3390/thermo5030027