In-Lieu Fee Credit Allocations on Public Lands in the United States: Ecosystem Prioritization and Development-Driven Impacts
Abstract
1. Introduction
- To what extent are ILF transactions on public lands attributed to government versus non-government activities?
- Which sectors (e.g., transportation, natural resource management) most frequently contribute to ILF transactions on public lands?
- How do these patterns inform our understanding of public land use, resource allocation, and long-term mitigation planning?
- Addressing these questions matters for three key reasons:
2. Materials and Methods
2.1. Categorization of In-Lieu Fee (ILF) Program Transactions
2.2. Analyses
2.2.1. Transaction Distribution
2.2.2. Proportional Differences
2.2.3. Co-Occurrence of Impact Categories and Ecosystem Types
3. Results
3.1. Credit Transactions
3.2. Credit Proportions per Transaction
3.3. Co-Occurrence Within Service Areas
4. Discussion
4.1. Private Development as the Primary Driver of ILF Transactions
4.2. The Role of ILFs in Mitigating Development Impacts
4.3. Interdependencies
4.4. Actionable Recommendations
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
| Estimate | Std Error | z-Value | Pr(>|z|) | ||
|---|---|---|---|---|---|
| Intercept | −4.591 | 0.481 | −9.538 | <2 × 10−16 | |
| RE | 0.406 | −0.105 | 3.856 | 0.000115 *** | |
| GV | 0.082 | 0.086 | 0.951 | 0.341557 | |
| MD | 0.127 | 0.105 | 1.203 | 0.228842 | |
| RB | 0.336 | 0.186 | 1.801 | 0.071643 | |
| RC | −0.010 | 0.098 | −0.106 | 0.915681 | |
| RD | −1.001 | −0.276 | −3.617 | 0.000299 *** | |
| Wetland | 0.927 | 0.354 | 2.619 | 0.008812 ** | |
| Seagrass | −0.829 | 0.369 | −2.244 | 0.024846 * | |
| Tidal | −0.627 | 0.350 | −1.791 | 0.073290 | |
| Random effect | Variance | Std. dev | |||
| Program | 1.15 | 1.072 | |||
| Overdispersion | Uniformity of residuals | Outlier test | |||
| dispersion | p-value | D | p-value | p-value | |
| 1.223 | 0.280 | 0.0928 | 0.098 | 0.377 | |
| Conditional R2 | Marginal R2 | ||||
| 0.625 | 0.221 | ||||
| Analysis of Deviance Table (Type III Wald chi-square tests) | |||||
| chisq | Df | Pr(>chisq) | |||
| Intercept | 116.385 | 1 | <2.2 × 10−16 | ||
| Impact | 11.037 | 6 | 0.08726 | ||
| Ecosystem | 78.862 | 4 | 3.034 × 10−16 *** | ||
| Multicollinearity | VIF | VIF 95% CI | SE | Tolerance | Tolerance 95% |
| Impact | 1.14 | [1.08, 1.25] | 1.07 | 0.87 | [0.80, 0.92] |
| Ecosystem | 1.14 | [1.08, 1.25] | 1.07 | 0.87 | [0.80, 0.92] |
| Low correlation | |||||
| Mean % | Median % | SD | CI lower | CI upper | |
| Stream | 1.38 | 0.526 | 2.73 | 1.07 | 1.70 |
| Seagrass | 0.0853 | 0.0449 | 0.145 | 0.0343 | 0.136 |
| Tidal | 0.274 | 0.0632 | 0.498 | 0.222 | 0.327 |
| Wetland | 1.09 | 0.228 | 6.21 | 0.451 | 1.73 |
| Mean % | Median % | SD | CI lower | CI upper | |
| RE | 1.89 | 0.266 | 8.41 | 0.732 | 3.05 |
| CD | 0.639 | 0.219 | 2.42 | 0.285 | 0.993 |
| GV | 0.967 | 0.293 | 1.71 | 0.617 | 1.32 |
| MD | 1.38 | 0.478 | 2.30 | 0.249 | 2.51 |
| RB | 1.28 | 0.674 | 1.68 | 0.951 | 1.60 |
| RC | 0.659 | 0.608 | 0.650 | 0.275 | 1.04 |
| RD | 0.343 | 0.103 | 0.578 | 0.289 | 0.398 |
Appendix A.2
| Name | Frequency | Degree (Centrality) |
|---|---|---|
| Impact category | ||
| RB | 30 | 11 |
| CD | 32 | 10 |
| RC | 6 | 8 |
| RD | 25 | 10 |
| MD | 9 | 7 |
| RE | 53 | 4 |
| Other | 3 | 7 |
| GV | 28 | 11 |
| Ecosystem type | ||
| Wetland | 58 | 5 |
| Non-tidal | 1 | 7 |
| Seagrass | 2 | 7 |
| Tidal | 2 | 7 |
| Subaqueous | 1 | 1 |
| Stream | 55 | 5 |
Appendix A.3
| Source | Target | Haberman | p(Z) |
|---|---|---|---|
| Seagrass | Tidal | 8.72 | 2.32 × 10−13 *** |
| Non-tidal | Seagrass | 6.12 | 1.87 × 10−8 *** |
| Non-tidal | Tidal | 6.12 | 1.87 × 10−8 *** |
| CD | GV | 5.4 | 3.68 × 10−7 *** |
| CD | RD | 3.7 | 2.06 × 10−4 *** |
| RE | Wetland | 3.26 | 8.31 × 10−4 *** |
| RB | RD | 3.06 | 1.52 × 10−3 ** |
| RD | MD | 3.05 | 1.56 × 10−3 ** |
| CD | MD | 3.03 | 1.68 × 10−3 ** |
| RD | GV | 2.93 | 2.24 × 10−3 ** |
| MD | GV | 2.71 | 4.14 × 10−3 ** |
| RE | Stream | 2.59 | 5.70 × 10−3 ** |
| RC | Seagrass | 2.24 | 0.01 * |
| RC | Tidal | 2.24 | 0.01 * |
| RB | Other | 2.19 | 0.02 * |
| RD | Seagrass | 2.05 | 0.02 * |
| RD | Tidal | 2.05 | 0.02 * |
| GV | Seagrass | 1.88 | 0.03 * |
| GV | Tidal | 1.88 | 0.03 * |
| RC | RD | 1.83 | 0.04 * |
| CD | Seagrass | 1.68 | 0.05 * |
| CD | Tidal | 1.68 | 0.05 * |
| RC | MD | 1.7 | 0.05 * |
| RC | Other | 1.67 | 0.05 * |
| RB | RC | 1.42 | 0.08 |
| RD | Non-tidal | 1.44 | 0.08 |
| CD | RC | 1.27 | 0.1 |
| RD | Other | 1.27 | 0.1 |
| GV | Non-tidal | 1.32 | 0.1 |
| RB | Non-tidal | 1.25 | 0.11 |
| RB | Subaqueous | 1.25 | 0.11 |
| CD | Non-tidal | 1.18 | 0.12 |
| MD | Stream | 1.18 | 0.12 |
| RE | Other | 1.16 | 0.12 |
| RB | CD | 1.13 | 0.13 |
| Other | GV | 1.09 | 0.14 |
| RB | MD | 1.05 | 0.15 |
| Other | Wetland | 0.98 | 0.16 |
| RB | GV | 0.95 | 0.17 |
| MD | Wetland | 0.94 | 0.17 |
| GV | Wetland | 0.91 | 0.18 |
| GV | Stream | 0.92 | 0.18 |
| CD | Other | 0.88 | 0.19 |
| RC | GV | 0.7 | 0.24 |
| RB | Stream | 0.68 | 0.25 |
| RE | Non-tidal | 0.66 | 0.25 |
| RD | Wetland | 0.53 | 0.3 |
| CD | Stream | 0.44 | 0.33 |
| RB | Seagrass | 0.31 | 0.38 |
| RB | Tidal | 0.31 | 0.38 |
References
- Banks-Leite, C.; Ewers, R.M.; Folkard-Tapp, H.; Fraser, A. Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth 2020, 3, 672–676. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Kumar, P.S.; Kabir, M.; Zuhara, F.T.; Mehjabin, A.; Tasannum, N.; Hoang, A.T.; Kabir, Z.; Mofijur, M. Threats, challenges and sustainable conservation strategies for freshwater biodiversity. Environ. Res. 2022, 214, 113808. [Google Scholar] [CrossRef]
- Baum, C.M.; Gross, C. Sustainability policy as if people mattered: Developing a framework for environmentally significant behavioral change. J. Bioecon. 2017, 19, 53–95. [Google Scholar] [CrossRef]
- Crase, L. The Murray–Darling basin plan: An adaptive response to ongoing challenges. Econ. Pap. J. Appl. Econ. Policy 2012, 31, 318–326. [Google Scholar] [CrossRef]
- Arlidge, W.N.S.; Bull, J.W.; Addison, P.F.E.; Burgass, M.J.; Gianuca, D.; Gorham, T.M.; Jacob, C.; Shumway, N.; Sinclair, S.P.; Watson, J.E.M. A global mitigation hierarchy for nature conservation. BioScience 2018, 68, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Loeb, C.D.; D’Amato, A.W. Large landscape conservation in a mixed ownership region: Opportunities and barriers for putting the pieces together. Biol. Conserv. 2020, 243, 108462. [Google Scholar] [CrossRef]
- Keiter, R.B. Toward a National Conservation Network Act: Transforming landscape conservation on the public lands into law. Harv. Environ. Law Rev. 2018, 42, 61. [Google Scholar] [CrossRef]
- Barbé, H.; Frascaria-Lacoste, N. Integrating Ecology into Land Planning and Development: Between Disillusionment and Hope, Questioning the Relevance and Implementation of the Mitigation Hierarchy. Sustainability 2021, 13, 12726. [Google Scholar] [CrossRef]
- Gelot, S.; Bigard, C. Challenges to developing mitigation hierarchy policy: Findings from a nationwide database analysis in France. Biol. Conserv. 2021, 263, 109343. [Google Scholar] [CrossRef]
- Phalan, B.; Hayes, G.; Brooks, S.; Marsh, D.; Howard, P.; Costelloe, B.; Vira, B.; Kowalska, A.; Whitaker, S. Avoiding impacts on biodiversity through strengthening the first stage of the mitigation hierarchy. Oryx 2018, 52, 316–324. [Google Scholar] [CrossRef]
- Kørnøv, L.; Boess, E.R.; Eliasen, S.Q.; Larsen, S.V.; Locher-Krause, K.E.; Zhu, Y.; Wittmer, H.; Laporta, L.B.; Geneletti, D.; Monteiro, M.B.; et al. Beyond compliance: Enhancing biodiversity through transformative mitigation strategies in spatial planning related SEAs and EIAs. Environ. Impact Assess. Rev. 2025, 114, 107960. [Google Scholar] [CrossRef]
- Bull, J.W.; Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 2018, 1, 790–798. [Google Scholar] [CrossRef]
- Gamarra, M.J.C.; Lassoie, J.P.; Milder, J.C. Accounting for no net loss: A critical assessment of biodiversity offsetting metrics and methods. J. Environ. Manag. 2018, 220, 36–43. [Google Scholar] [CrossRef] [PubMed]
- BenDor, T.; Sholtes, J.; Doyle, M.W. Landscape characteristics of a stream and wetland mitigation banking program. Ecol. Appl. 2009, 19, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Habib, T.J.; Farr, D.; Schneider, R.R.; Boutin, S. Economic and ecological outcomes of flexible biodiversity offset systems. Conserv. Biol. 2013, 27, 1313–1323. [Google Scholar] [CrossRef]
- Jacob, C.; Vaissiere, A.C.; Bas, A.; Calvet, C. Investigating the inclusion of ecosystem services in biodiversity offsetting. Ecosyst. Serv. 2016, 21, 92–102. [Google Scholar] [CrossRef]
- Roper, B.B.; Saunders, W.C.; Ojala, J.V. Did changes in western federal land management policies improve salmonid habitat in streams on public lands within the Interior Columbia River Basin? Environ. Monit. Assess. 2019, 191, 574. [Google Scholar] [CrossRef] [PubMed]
- Pidot, J.R. Compensatory Mitigation and Public Lands. BCL Rev. 2020, 61, 1045. [Google Scholar]
- Schelsky, W.; Burkwald, K.; Swedberg, D.; Dillard, M. Endangered Species Mitigation Needs Assessment; FHWA-ICT-24-004; Illinois Center for Transportation: Rantoul, IL, USA, 2024. [Google Scholar]
- Latimer, W.; Hill, D. Mitigation banking: Securing no net loss to biodiversity? A UK perspective. Plan. Pract. Res. 2007, 22, 155–175. [Google Scholar] [CrossRef]
- Stein, E.D. PROFILE: Wetland Mitigation Banking: A Framework for Crediting and Debiting. Environ. Manag. 2000, 26, 233–250. [Google Scholar] [CrossRef]
- Stephenson, K.; Tutko, B. The Role of in Lieu Fee Programs in Wetland/Stream Mitigation Credit Trading: Illustrations from Virginia and Georgia. Wetlands 2018, 38, 1211–1221. [Google Scholar] [CrossRef]
- Peterson, K.; BenDor, T.K. Wetland and Stream Compensatory Mitigation as a Funding Vehicle for US Public Housing Authorities. Urban Aff. Rev. 2025, 10780874251363218. [Google Scholar] [CrossRef]
- Gardner, R.C. In-lieu Fee Mitigation: Money for Nothing? In Lawyers, Swamps, and Money: US Wetland Law, Policy, and Politics; Gardner, R.C., Ed.; Island Press/Center for Resource Economics: Washington, DC, USA, 2011; pp. 129–140. [Google Scholar] [CrossRef]
- Wilkinson, J. In-lieu fee mitigation: Coming into compliance with the new Compensatory Mitigation Rule. Wetl. Ecol. Manag. 2009, 17, 53–70. [Google Scholar] [CrossRef]
- Bosack, E.; Miller, L. In-Lieu Fee Program Case Studies: Lessons Learned for Potentially Expanding In-Lieu Fee Habitat Coverage in Virginia. Va. Coast. Policy Cent. 2022, 83. [Google Scholar]
- zu Ermgassen, S.O.S.E.; Baker, J.; Griffiths, R.A.; Strange, N.; Struebig, M.J.; Bull, J.W. The ecological outcomes of biodiversity offsets under “no net loss” policies: A global review. Conserv Lett. 2019, 12, e12664. [Google Scholar] [CrossRef]
- Inkinen, V.P.T. Wetland Mitigation Banking in the United States. Ph.D. Thesis, University of Gothenburg, Göteborg, Sweden, 15 September 2023. [Google Scholar]
- RIBITS. ribits.ops.usace.army.mil. 2023. Available online: https://ribits.ops.usace.army.mil/ords/f?p=107:2:::::: (accessed on 4 October 2025).
- CRS. Federal Land Ownership: Overview and Data. 2020. Available online: https://sgp.fas.org/crs/misc/R42346.pdf (accessed on 4 October 2025).
- Kamal, S.; Grodzinska-Jurczak, M.; Kaszynska, A.P. Challenges and opportunities in biodiversity conservation on private land: An institutional perspective from Central Europe and North America. Biodivers. Conserv. 2015, 24, 1271–1292. [Google Scholar] [CrossRef]
- Arriagada, R.A.; Echeverria, C.M.; Moya, D.E. Creating protected areas on public lands: Is there room for additional conservation? PLoS ONE 2016, 11, e0148094. [Google Scholar] [CrossRef]
- Forrest, S.C. Creating New Opportunities for Ecosystem Restoration on Public Lands: An Analysis of the Potential for Bureau of Land Management Lands. Public Land Resour. Rev. 2002, 23, 21. [Google Scholar]
- Theis, S.; Poesch, M. Current capacity, bottlenecks, and future projections for offsetting habitat loss using Mitigation and Conservation banking in the United States. J. Nat. Conserv. 2022, 67, 126159. [Google Scholar] [CrossRef]
- Theis, S.; Castellanos-Acuña, D.; Hamann, A.; Poesch, M. Exploring the potential of habitat banking in preserving freshwater biodiversity and imperiled species. Biol. Conserv. 2022, 273, 109700. [Google Scholar] [CrossRef]
- Badoe, D.A.; Miller, E.J. Transportation–land-use interaction: Empirical findings in North America, and their implications for modeling. Transp. Res. Part Transp. Environ. 2000, 5, 235–263. [Google Scholar] [CrossRef]
- Chandra, A.; Thompson, E. Does public infrastructure affect economic activity?: Evidence from the rural interstate highway system. Reg. Sci. Urban Econ. 2000, 30, 457–490. [Google Scholar] [CrossRef]
- Lang, R.E.; Simmons, P.A. Boomburbs: The Emergence of Large, Fast-Growing Suburban Cities in the United States; Fannie Mae Foundation: Washington, DC, USA, 2001; p. 14. [Google Scholar]
- Baker, C. Package “Slowraker” Type Package Title A Slow Version of the Rapid Automatic Keyword Extraction (RAKE) Algorithm. 2022. Available online: https://cran.r-project.org/web/packages/slowraker/slowraker.pdf (accessed on 1 January 2023).
- Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Verkuilen, J.; Smithson, M. Mixed and mixture regression models for continuous bounded responses using the beta distribution. J. Educ. Behav. Stat. 2012, 37, 82–113. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Random and mixed effects. In Modern Applied Statistics with S-PLUS; Springer: Berlin/Heidelberg, Germany, 2002; pp. 297–322. [Google Scholar]
- Bolker, B. Getting started with the glmmTMB package. Cran. R-Proj. Vignette 2019, 9. [Google Scholar]
- Escobar, M.; Martinez-Uribe, L. Network coincidence analysis: The netCoin R package. J. Stat. Softw. 2020, 93, 1–32. [Google Scholar] [CrossRef]
- Csardi, M.G. Package ‘igraph’. Last Accessed 2013, 3, 2013. [Google Scholar]
- Zhang, J.; Luo, Y. Degree centrality, betweenness centrality, and closeness centrality in social network. In Proceedings of the 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017), Bangkok, Thailand, 26–27 March 2017; Atlantis Press: Dordrecht, The Netherlands, 2017; pp. 300–303. [Google Scholar]
- Traag, V. leidenalg Documentation. Release 2023, 102, 15–16. [Google Scholar]
- Anuar, S.H.H.; Abas, Z.A.; Yunos, N.M.; Zaki, N.H.M.; Hashim, N.A.; Mokhtar, M.F.; Asmai, S.A.; Abidin, Z.Z.; Nizam, A.F. Comparison between Louvain and Leiden algorithm for network structure: A review. J. Phys. Conf. Ser. 2021, 2129, 012028. [Google Scholar] [CrossRef]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012, 6, 343–351. [Google Scholar] [CrossRef]
- USACE. Compensatory Mitigation for Losses of Aquatic Resources. U.S. Army Corps of Engineers. 2008. Available online: https://www.govinfo.gov/content/pkg/CFR-2012-title33-vol3/xml/CFR-2012-title33-vol3-part332.xml (accessed on 4 October 2025).
- Campbell, K.; Bennett, K.; Adams, C.; Collier, D.; Messerly, V. The State of Compensatory Mitigation. Envtl. Rep. News Anal. 2017, 47, 10817. [Google Scholar]
- Hough, P.; Robertson, M. Mitigation under Section 404 of the Clean Water Act: Where it comes from, what it means. Wetl. Ecol. Manag. 2009, 17, 15–33. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. US EPA. US EPA. 2022. Available online: https://www.epa.gov (accessed on 4 October 2025).
- Apostolopoulou, E.; Adams, W.M. Biodiversity offsetting and conservation: Reframing nature to save it. Oryx 2017, 51, 23–31. [Google Scholar] [CrossRef]
- Mikelbank, B.A. A typology of US suburban places. Hous. Policy Debate 2004, 15, 935–964. [Google Scholar] [CrossRef]
- Barrington-Leigh, C.; Millard-Ball, A. A century of sprawl in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 8244–8249. [Google Scholar] [CrossRef]
- Bigelow, D.; Borchers, A. Major Uses of Land in the United States, 2012; AgEcon: St. Paul, MN, USA, 2017. [Google Scholar]
- Theobald, D.M. Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecol. Soc. 2005, 10, 34. [Google Scholar] [CrossRef]
- Wade, A.A.; Theobald, D.M. Residential development encroachment on US protected areas. Conserv. Biol. 2010, 24, 151–161. [Google Scholar] [CrossRef]
- Rosenberg, R.H. The changing culture of American land use regulation: Paying for growth with impact fees. SMUL Rev. 2006, 59, 177. [Google Scholar]
- Hardiman, N.; Burgin, S. Recreational impacts on the fauna of Australian coastal marine ecosystems. J. Environ. Manag. 2010, 91, 2096–2108. [Google Scholar] [CrossRef]
- Lew, A.A.; Wu, T.-C. Cultural ecosystem services, tourism and community resilience in coastal wetland conservation in Taiwan. In Tourism Resilience and Adaptation to Environmental Change; Routledge: Abingdon, UK, 2017; pp. 102–126. [Google Scholar]
- Cox, M.E.; Johnstone, R.; Robinson, J. Effects of coastal recreation on social aspects of human well-being. In Proceedings of the Coastal Zone Asia Pacific Conference 2004: Improving the Quality of Life in Coastal Areas, Brisbane, Australia, 5–9 September 2004. [Google Scholar]
- Bendor, T. A dynamic analysis of the wetland mitigation process and its effects on no net loss policy. Landsc. Urban Plan. 2009, 89, 17–27. [Google Scholar] [CrossRef]
- Porter, D.R.; Davison, E.B. Evaluation of In-Lieu Fees and Offsite Construction as Incentives for Affordable Housing Production. Cityscape 2009, 11, 27–59. [Google Scholar]
- Hruby, T.; Harper, K.; Stanley, S. Selecting Wetland Mitigation Sites Using a Watershed Approach (Eastern Washington); Washington State Department of Ecology: Lacey, WA, USA, 2010. [Google Scholar]
- Thomas, R.; Lamb, Z. Compensatory wetland mitigation and the watershed approach: A review of selected literature. Wetl. Sci. Pract. 2005, 22, 61–70. [Google Scholar] [CrossRef]
- Theis, S.; Poesch, M.S. Assessing Conservation and Mitigation Banking Practices and Associated Gains and Losses in the United States. Sustainability 2022, 14, 6652. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Fork, M.L.; Hawley, R.J.; Hopkins, K.G.; Ríos-Touma, B.; Roy, A.H. Stream restoration milestones: Monitoring scales determine successes and failures. Urban. Ecosyst. 2023, 26, 1131–1142. [Google Scholar] [CrossRef]
- Bohn, B.A.; Kershner, J. Establishing aquatic restoration priorities using a watershed approach. J. Environ. Manag. 2002, 64, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Poulton, D.; Driedzic, A. In-Lieu Payments and Fees as a Mechanism of Environmental Compensation: An Examination of Experiences Throughout North America; University of Alberta: Edmonton, AB, Canada, 2017. [Google Scholar]
- Mayani-Parás, F.; Botello, F.; Castañeda, S.; Munguía-Carrara, M.; Sánchez-Cordero, V. Cumulative habitat loss increases conservation threats on endemic species of terrestrial vertebrates in Mexico. Biol. Conserv. 2021, 253, 108864. [Google Scholar] [CrossRef]
- Mackey, B.; Campbell, C.; Norman, P.; Hugh, S.; DellaSala, D.A.; Malcolm, J.R.; Desrochers, M.; Drapeau, P. Assessing the cumulative impacts of forest management on forest age structure development and woodland caribou habitat in boreal landscapes: A case study from two Canadian provinces. Land 2023, 13, 6. [Google Scholar] [CrossRef]
- Moilanen, A. Planning impact avoidance and biodiversity offsetting using software for spatial conservation prioritisation. Wildl. Res. 2012, 40, 153–162. [Google Scholar] [CrossRef]
- Doka, S.E.; Minns, C.K.; Valere, B.G.; Cooke, S.J.; Portiss, R.J.; Sciscione, T.F.; Rose, A. An Ecological Accounting System for Integrated Aquatic Planning and Habitat Banking with Case Study on the Toronto Waterfront, Ontario, Canada. Environ. Manag. 2022, 69, 952–971. [Google Scholar] [CrossRef]
- Robertson, M.; Hayden, N. Evaluation of a Market in Wetland Credits: Entrepreneurial Wetland Banking in Chicago. Conserv. Biol. 2008, 22, 636–646. [Google Scholar] [CrossRef] [PubMed]
- BenDor, T.K.; Guo, T.; Yates, A.J. Optimal Advanced Credit Releases in Ecosystem Service Markets. Environ. Manag. 2013, 53, 496–509. [Google Scholar] [CrossRef]
- Theis, S.; Poesch, M. What Makes A Bank A Bank? Differences and Commonalities in Credit Calculation, Application, and Risks in Mitigation Banks Targeting Freshwater Fish Species and Associated Ecosystems. Environ. Manag. 2024, 73, 199–212. [Google Scholar] [CrossRef]
- USACE; EPA. Determining Appropriate Compensatory Mitigation Credit for Dam Removal Projects in North Carolina. US Army Corps of Engineers & US Environmental Protection Agency. 2008. Available online: https://deq.nc.gov/media/4859/download (accessed on 4 October 2025).
- Allsopp, M.H.; De Lange, W.J.; Veldtman, R. Valuing Insect Pollination Services with Cost of Replacement. PLoS ONE 2008, 3, e3128. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Al-assaf, A.; Nawash, O.; Omari, M. Identifying forest ecosystem services through socio-ecological bundles: A case study from northern Jordan. Int. J. Sustain. Dev. World Ecol. 2014, 21, 314–321. [Google Scholar] [CrossRef]
- Balvanera, P.; Brauman, K.A.; Cord, A.F.; Drakou, E.G.; Geijzendorffer, I.R.; Karp, D.S.; Martín-López, B.; Mwampamba, T.H.; Schröter, M. Essential ecosystem service variables for monitoring progress towards sustainability. Curr. Opin. Environ. Sustain. 2022, 54, 101152. [Google Scholar] [CrossRef]
- Templeton, S.R.; Dumas, C.F.; Sessions, W.T.; Victoria, M. Estimation and Analysis of Expenses of In-Lieu-Fee Projects that Mitigate Damage to Streams from Land Disturbance in North Carolina; AgEcon: St. Paul, MN, USA, 2009. [Google Scholar]
- Lave, R. Stream mitigation banking. WIREs Water 2018, 5, e1279. [Google Scholar] [CrossRef]



| Variable | Definition |
|---|---|
| Credit amount | Represents the raw credit amount per transaction, indicating the number of credits issued for each ILF transaction. |
| Credit proportion | Indicates the proportionate credit amount relative to the total credits of the associated ILF program, contextualizing transaction scale. |
| Impact categories/ types | Classifies impacts by the nature of the activity. Road and Bridgework (RB) Residential Development (RD) Commercial Development (CD) Resource Extraction (RE) Recreational (RC) Mixed-use development (MD) Other or undefined (Other) Government use (GV) |
| Location | Identifies the state in which each ILF program operates, providing geographic context for regional analysis. |
| Sponsor | Lists the entity managing the ILF program, which may be non-profits, government agencies, or conservation groups. |
| Land jurisdiction | Specifies the governing entity with jurisdiction over the land involved, categorized as federal, state, local, or other. |
| Target ecosystem/credit type | Specifies the ecosystem or type of credit targeted by the ILF program, such as wetland or stream, and sub-types (wetland-general, wetland-tidal, wetland-seagrass, stream). |
| Service area | Defines the geographic area where impacts must occur to qualify for compensation, ensuring the ecological relevance of the impacted area. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theis, S. In-Lieu Fee Credit Allocations on Public Lands in the United States: Ecosystem Prioritization and Development-Driven Impacts. Conservation 2025, 5, 64. https://doi.org/10.3390/conservation5040064
Theis S. In-Lieu Fee Credit Allocations on Public Lands in the United States: Ecosystem Prioritization and Development-Driven Impacts. Conservation. 2025; 5(4):64. https://doi.org/10.3390/conservation5040064
Chicago/Turabian StyleTheis, Sebastian. 2025. "In-Lieu Fee Credit Allocations on Public Lands in the United States: Ecosystem Prioritization and Development-Driven Impacts" Conservation 5, no. 4: 64. https://doi.org/10.3390/conservation5040064
APA StyleTheis, S. (2025). In-Lieu Fee Credit Allocations on Public Lands in the United States: Ecosystem Prioritization and Development-Driven Impacts. Conservation, 5(4), 64. https://doi.org/10.3390/conservation5040064

