Arctic Plants Under Environmental Stress: A Review
Abstract
1. Introduction
2. Growth, Photosynthesis and Resistance
2.1. Arctic Dwarfs
2.2. Photosynthesis and Photosynthetic Pigments
3. Genomic Adaptations to Abiotic Stressors
4. Reproductive Development
5. Pollination and Seed Reproduction of Arctic Plants
5.1. Pollination
5.2. Seed Reproduction
6. The Arctic Plants and Warming of the Climate
6.1. Short History of Arctic Climate Changes and Vegetation Responses
6.2. Modern Warming in the Arctic
6.3. International Tundra Experiment
6.4. Consequences of Climate Warming in the Arctic
7. Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nowak, M.D.; Birkeland, S.; Mandakova, K.; Gustafsson, A.L.S.; Gizaw, A.; Schroder-Nielsen, A.S.; Fracassetti, M.; Brysting, A.K.; Riesenberg, L.; Slotte, T.; et al. The genome of Draba nivalis shows signatures of adaptation to the extreme environmental stresses of the Arctic. Mol. Ecol. Resour. 2021, 21, 661–676. [Google Scholar] [CrossRef]
- Billings, W.D. Arctic and alpine vegetations: Similarities, differences, and susceptibility to disturbance. BioScience 1973, 23, 697–704. [Google Scholar] [CrossRef]
- Eidesen, P.B.; Ehrich, D.; Bakkestuen, V.; Alsos, I.G.; Gilg, O.; Taberlet, P.; Brochmann, C. Genetic roadmap of the Arctic: Plant dispersal highways, traffic barriers and capitals of diversity. New Phytol. 2013, 200, 898–910. [Google Scholar] [CrossRef]
- Schmidt, N.M.; Hardwick, B.; Gilg, O.; Høye, T.T.; Krogh, P.H.; Meltofte, H.; Michelsen, A.; Mesbacher, J.B.; Raundrap, K.; Reneerkens, J.; et al. Interaction webs in Arctic ecosystems: Determinants of Arctic change? Ambio. 2017, 46, 12–25. [Google Scholar] [CrossRef]
- Archambault, A.; Strömvik, M.V. PR-10, defensin and cold dehydrin genes are among those over expressed in Oxytropis (Fabaceae) species adapted to the arctic. Funct. Integr. Genom. 2011, 11, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Lütz, C. Cell physiology of plants growing in cold environments. Protoplasma 2010, 244, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, M.M.; Bornman, J.F.; Ballaré, C.L.; Flint, S.D.; Kulandaivelu, G. Terrestrial ecosystems increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem. Photobiol. Sci. 2007, 3, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, J.; Guo, Z.; He, Z.; Shi, S. Genomic convergence in the adaptation to extreme environments. Plant Commun. 2020, 1, 100117. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Landis, J.B.; Shen, J.; Zhang, H.; Kuang, T.; Sun, W.; Sun, J.; Tiamiyu, B.B.; Deng, T.; et al. Transcriptomes of Saussurea (Asteraceae) provide insights into High-altitude adaptation. Plants 2021, 10, 1715. [Google Scholar] [CrossRef]
- Stewart, L.; Alsos, I.G.; Bay, C.; Breen, A.L.; Brochmann, C.; Boulanger-Lapointe, N.; Broennimann, O.; Bultmann, H.; Bøcher, P.K.; Damgaard, C.; et al. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate. Glob. Ecol. Biogeogr. 2016, 25, 430–442. [Google Scholar] [CrossRef]
- Kappen, L. Plant activity under snow and ice, with particular reference to lichens. Arctic 1993, 46, 297–302. [Google Scholar] [CrossRef]
- Lenoir, J.; Virtanen, R.; Oksanen, J.; Oksanen, L.; Luoto, M.; Grytnes, J.A.; Svenning, J.C. Dispersal ability links to cross-scale species diversity patterns across the Eurasian Arctic tundra. Glob. Ecol. Biogeogr. 2012, 21, 851–860. [Google Scholar] [CrossRef]
- Sørensen, T.J. Temperature Relations and Phenology of the Northeast Greenland Flowering Plants; Medd Grønland; Reitzel: Copenhagen, Denmark, 1941; p. 305. [Google Scholar]
- Hodgson, H.J. Floral initiation in Alaskan Gramineae. Bot. Gaz. 1966, 127, 64–70. [Google Scholar] [CrossRef]
- Bell, K.; Bliss, L.C. Plant reproduction in high Arctic environment. Arct. Alp. Res. 1980, 12, 1–10. [Google Scholar] [CrossRef]
- Sedova, E.A.; Vasilevskaya, N.V. Polyvariance of development of Arctous alpina (L.) Niedenzu (Ericaceae Juss) in mountain tundra of European Subarctic. Mosc. Univer. Biol. Sci. Bull. 2005, 1, 44–49. [Google Scholar]
- Sedova, E.A.; Vasilevskaya, N.V. Polyvariance of ontogenetic processes of Phyllodoce caerulea L. Bab. (Ericaceae Juss). in the mountain tundras of the Subarctic. Mosc. Univer. Biol. Sci. Bull. 2003, 2, 44–48. [Google Scholar]
- Bliss, L.; Gold, W. Vascular plant reproduction, establishment, and growth and the effects of cryptogamic crusts within a polar desert ecosystem, Devon Island, N.W.T., Canada. Can. J. Bot. 1999, 77, 623–636. [Google Scholar]
- Schubert, M.; Grønvold, L.; Sandve, S.R.; Hvidsten, T.R.; Fjellheim, S. Evolution of cold acclimation and its role in niche transition in the temperate grass subfamily Pooideae. Plant Physiol. 2019, 180, 404–419. [Google Scholar] [CrossRef]
- Birkeland, S.; Slotte, T.; Brysting, A.K.; Gustafsson, A.L.S.; Hvidsten, T.R.; Brochmann, C.; Nowak, M.D. What can cold-induced transcriptomes of Arctic Brassicaceae tell us about the evolution of cold tolerance? Mol. Ecol. 2022, 16, 4271–4275. [Google Scholar] [CrossRef] [PubMed]
- Birkeland, S. Tracing Molecular Patterns of Adaptation in Arctic Brassicaceae. Ph.D. Thesis, University of Oslo, Oslo, Norway, 2020. [Google Scholar]
- Shmakova, N.Y.; Markovskaya, E.F. Ecologo-biological characteristics and pigment contents of Saxifraga species with different growth forms on West Spitsbergen. Bot. Res. Intern. 2013, 6, 56–61. [Google Scholar]
- Shmakova, N.Y.; Markovskaya, E.F. Eco-physiological features of vascular plants in the arctic tundra of Western Spitsbergen. Trans. Kola Sci. Centre. Appl. Ecol. North. 2021, 12, 175–180. [Google Scholar]
- Semikhatova, O.A.; Gerasimenko, T.V.; Ivanova, T.I. Photosynthesis, respiration, and growth in the Soviet Arctic. In Arctic Ecosystems in Changing Climate. An Ecophysiologycal Perspective; Academic Press: London, UK, 1992; pp. 169–192. [Google Scholar]
- Huner, N.P.A.; Smith, D.R.; Cvetkovska, M.; Zhang, X.; Ivanov, A.G.; Szyszka-Mroz, B.; Kalra, I.; Morgan-Kiss, K. Photosynthetic adaptation to polar life: Energy balance, photoprotection and genetic redundancy. Plant Physiol. 2022, 268, 153557. [Google Scholar]
- Walter, G. Vegetation of the Globe; Ecological and Physiological Characteristics. In Tundras, Meadows, Steppes, Extratropical Deserts; Progress: Moscow, Russia, 1975; Volume 3, p. 429. [Google Scholar]
- Tikhomirov, B.A. Ways and forms of adaptation of plants to the environment of the Far North. In Problems of Biogeocenology, Geobotany and Botanical Geography; Nauka: Leningrad, Russia, 1973; pp. 288–297. [Google Scholar]
- Archibold, O.W. Ecology of World Vegetation; Chapman & Hall: London, UK, 1995; p. 499. [Google Scholar]
- Yurtsev, B.A. Hypoarctic Botanical-Geographical Belt and Origin of Its Flora; Nauka: Moscow/Leningrad, Russia, 1966; p. 94. [Google Scholar]
- Borisovskaya, G.M.; Khitun, O.V. On some features of the structural adaptation of boreal plants to the conditions of the Arctic. Bull. Leningrad St. Univer. 1993, 1, 15–22. [Google Scholar]
- Matveyeva, N.V. Zonation of the Plant Cover in the Arctic. Proceedings of Komarov Botanical Institute; Russian Academy of Sciences: St. Petersburg, Russia, 1998; Volume 21, p. 218. [Google Scholar]
- Gamaley, Y.V. Transport System of Vascular Plants; Publishing House of St. Petersburg State University: St. Petersburg, Russia, 2004; p. 421. [Google Scholar]
- Xiong, F.S.; Mueller, E.C.; Day, T.A. Photosynthetic and respiratory acclimation, and growth response of Antarctic vascular plants to contrasting temperature regimes. Am. J. Bot. 2000, 87, 700–710. [Google Scholar] [CrossRef]
- Farrar, J.S.; Gunn, S. Effects of temperature and atmospheric carbon dioxide on source-sink relations in the context of climate change. In Photo Assimilate Distribution in Plants and Crops Source-Sink Relations; Routledge: New York, NY, USA, 1996; pp. 389–406. [Google Scholar]
- Miroslavov, E.A.; Kravkina, I.M.; Bubolo, L.S. Structural adaptation of plastidom and chondriom to the conditions of high mountains and the Far North. Russ. J. Ecol. 1990, 4, 36–42. [Google Scholar]
- Miroslavov, E.A.; Voznesenskaya, E.V.; Koteeva, N.K. Comparative characteristics of the leaf anatomy of plants in the Arctic and the Boreal zones. Bot. Zhurnal. 1998, 3, 21–27. [Google Scholar]
- Chapin, F.S.; Shaver, G.R. Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 1996, 77, 822–840. [Google Scholar] [CrossRef]
- Starr, G.; Oberbauer, S.E. Photosynthesis of Arctic evergreens under snow: Implications for tundra ecosystem carbon balance. Ecology 2003, 84, 1415–1420. [Google Scholar] [CrossRef]
- Shmakova, N.Y.; Ushakova, G.I.; Kostyuk, V.I. Mountain, and Tundra Communities of the Kola Subarctic: Ecological and Physiological Aspect; Publishing House of the Kola Scientific Center of RAS: Apatity, Russia, 2008; p. 167. [Google Scholar]
- Markovskaya, E.F.; Novichonok, E.V.; Shmakova, N.Y. Eco-physiological peculiarities of Stellaria humifusa in West Spitsbergen. Czech Polar Rep. 2019, 9, 152–159. [Google Scholar] [CrossRef]
- Stunz, E.; Fetcher, N.; Lavretsky, P.; Mohl, J.E.; Tang, J.; Moody, M.L. Landscape genomics provides evidence of ecotypic adaptation and a barrier to gene flow at tree line for the Arctic foundation species. Front. Plant Sci. 2022, 31, 860439. [Google Scholar]
- Shmakova, N.Y.; Lukyanova, L.M.; Ermolaeva, O.V. Photosynthetic apparatus of plants in Khibiny Mountains. Bot. Zhurnal 2011, 96, 256–273. [Google Scholar]
- Gerasimenko, T.V.; Shvetsova, V.M. The main results of ecological and physiological studies of photosynthesis in the Arctic. In Ecological and Physiological Studies of Photosynthesis and Respiration of Plants; Semikhatova, O.A., Ed.; Nauka: Leningrad, Russia, 1989; pp. 45–115. [Google Scholar]
- Shpak, O.V. Ecological and Physiological Characteristics of Some Species of Mosses in the Khibiny. Ph.D. Thesis, Komarov Botanical Institute, Saint Petersburg, FL, USA, 2008; p. 23. [Google Scholar]
- Medlyn, B.E.; Loustau, D.; Delzon, S. Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.). Plant Cell Environ. 2002, 25, 1155–1165. [Google Scholar] [CrossRef]
- Kumarathunge, D.P.; Medlyn, B.E.; Drake, J.E.; Tjoelker, M.G.; Aspinwall, M.G.; Battaglia, M.; Cano, F.G.; Carter, K.R.; Cavaleri, M.A.; Cernusak, L.A.; et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 2019, 222, 768–784. [Google Scholar] [CrossRef]
- Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araujo, M.B.; Balaguer, L.; Benito-Garzon, M.; Cornwell, W.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 2014, 17, 1351–1364. [Google Scholar] [CrossRef]
- Gunderson, C.A.; O’Hara, K.H.; Campion, C.M.; Walker, A.V.; Edwards, N.T. Thermal plasticity of photosynthesis: The role of acclimation in forest responses to a warming climate. Glob. Change Biol. 2009, 16, 2272–2286. [Google Scholar] [CrossRef]
- Popova, I.A.; Maslova, T.G.; Popova, O.F. Features of the pigment apparatus of plants of various botanical and geographical zones. In Ecological and Physiological Studies of Photosynthesis and Respiration of Plants; Semikhatova, O.A., Ed.; Nauka: Leningrad, Russia, 1989; pp. 115–131. [Google Scholar]
- Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 571–599. [Google Scholar] [CrossRef] [PubMed]
- Janská, A.; Marsík, P.; Zelenková, S.; Ovesná, J. Cold stress and acclimation: What is important for metabolic adjustment? Plant Biol. 2010, 12, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Preston, J.C.; Sandve, S.R. Adaptation to seasonality and the winter freeze. Front. Plant Sci. 2013, 4, 167. [Google Scholar] [CrossRef]
- Park, S.; Lee, C.-M.; Doherty, C.J.; Gilmour, S.J.; Kim, Y.; Thomashow, M.F. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J. 2015, 82, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Kole, C.; Muthamilarasan, M.; Henry, R.J.; Edwards, D.; Sharma, R.; Aberton, M.; Batley, J.; Bentley, A.; Blakeney, M.; Bryant, J.; et al. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects. Front. Plant Sci. 2015, 6, 563. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Breen, A.L.; Iversen, C.M.; Olson, M.S.; Näsholm, T.; Ganeteg, U.; Wallenstein, M.D.; Weston, D.J. Genomics in a changing Arctic: Critical questions await the molecular ecologist. Mol. Ecol. 2015, 24, 2301–2309. [Google Scholar] [CrossRef]
- Colella, J.P.; Talbot, S.L.; Brochmann, C.; Taylor, E.B.; Hoberg, E.P.; Cook, J.A. Conservation genomics in a changing Arctic. Trends Ecol. Evol. 2020, 35, 149–162. [Google Scholar]
- Elphistone, C. Arctic Plant Genomics. Biogeography, Comparative Genomics, DNA Methylation, Gene Expression and Centromeres. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 2025. [Google Scholar]
- Zhang, J. Evolution by gene duplication. Trends Ecol. Evol. 2003, 18, 292–298. [Google Scholar] [CrossRef]
- Oh, D.; Dassanayake, M.; Bohnert, H.J.; Chelseman, J.M. Life at the extreme: Lessons from the genome. Genome Biol. 2012, 13, 241. [Google Scholar] [CrossRef]
- Van Buren, R.; Parado, J.; Wai, C.M.; Evans, S.; Bartels, D. Massive tandem proliferation of ELIPs supports convergent evolution of desiccation tolerance across land plants. Plant Physiol. 2019, 179, 1040–1049. [Google Scholar] [CrossRef]
- Wu, S.; Han, B.; Jiao, Y. Genetic contribution of paleopolyploid to adaptive evolution in angiosperms. Mol. Plant 2020, 13, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Xiong, L.; Shi, H.; Yang, S.; Herrera-Estrella, L.R.; Xu, G.; Chao, D.Y.; Li, J.; Wang, P.Y.; Qin, F.; et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.S.; Liang, C.C.; Hou, S.G.; Wang, X.; Chen, D.H.; Shen, J.L.; Zhang, W.; Wang, M. The LRR-RLK protein HSL3 regulates stomatal closure and the drought stress response by modulating hydrogen peroxide homeostasis. Front. Plant Sci. 2020, 11, 548034. [Google Scholar] [CrossRef]
- Nocchi, G.; Whiting, J.R.; Yeaman, S. Repeated global adaptation across plant species. Proc. Nat. Acad. Sci. USA 2024, 121, e2406832121. [Google Scholar] [CrossRef]
- Bureš, P.; Elliot, T.; Vesely, P.; Smarda, P.; Forest, F.; Leitch, I.J.; Lughanda, E.M.; Games, M.S.; Pironon, S.; Brown, M.J.M.; et al. The global distribution of angiosperm genome size is shaped by climate. New Phytol. 2024, 242, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Brochmann, C.; Brysting, A.K.; Alsos, I.G.; Borgen, L.; Grundt, H.H.; Scheen, A.-C.; Elven, R. Polyploidy in arctic plants. Biol. J. Linn. Soc. 2004, 82, 521–536. [Google Scholar] [CrossRef]
- Kim, J.; Lim, J.; Kim, M.; Lee, Y.K. Whole genome sequencing of 13 Arctic plants and dwarf genomes of Oxyria digina and Cochlearia groenlandica. Sci. Data 2024, 11, 793. [Google Scholar] [CrossRef]
- Naish, M.; Henderson, I.R. The structure, function, and evolution of plant centromeres. Genome Res. 2024, 34, 161–178. [Google Scholar] [CrossRef]
- Molau, U. Relationships between flowering phenology and life history strategies in tundra plants. Arc. Alp. Res. 1993, 25, 391–402. [Google Scholar] [CrossRef]
- Murray, D.F. Systematics of the ITEX species. Glob. Change Biol. 1997, 3, 10–19. [Google Scholar] [CrossRef]
- Nams, M.L.N.; Freedman, B. Phenology, and resource allocation in a high arctic evergreen dwarf shrub Cassiope tetragona. Holarctic. Ecography 1987, 10, 128–136. [Google Scholar] [CrossRef]
- Gavrilyuk, V.A. The duration of the fruiting period and seed productivity of plants in south-east Chukotka. Bot. Zhurnal 1961, 46, 90–97. [Google Scholar]
- Deeva, P.M. Seasonal development of plants and plant communities of the Taimyr biogeocenological station. In Biogeocenoses of the Taimyr Tundra; Nauka: Leningrad, Russia, 1980; pp. 59–96. [Google Scholar]
- Sedova, E.A.; Vasilevskaya, N.V. Polyvariance of ontogenetic processes of Cassiope tetragona (L.) D. Don. in mountain tundra of Khibiny Mountains. Mosc. Univer. Biol. Sci. Bull. 2005, 4, 37–43. [Google Scholar]
- Obeso, J.R. The costs of reproduction in plants. New Phytol. 2002, 155, 321–348. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; Springer: Berlin, Germany, 2023; p. 344. [Google Scholar]
- Vasilevskaya, N.V. Polyvariance of Ontogenetic Processes of Plants in the High Latitudes; MSPU: Murmansk, Russia, 2007; p. 231. [Google Scholar]
- Pradal, C.; Olesen, J.V.; Wiuf, C. Temporal development and collapse of an Arctic plant-pollinator network. BMC Ecol. 2009, 9, 24. [Google Scholar] [CrossRef]
- Wipf, S. Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecol. 2010, 207, 53–66. [Google Scholar] [CrossRef]
- Becker-Scarpitta, A.; Antão, L.H.; Schmidt, N.M.; Blanchet, F.G.; Kaarlejärvi, E.; Raundrup, K.; Roslin, T. Diverging trends and driver of Arctic flower production in Greenland over space and time. Polar Biol. 2023, 46, 837–848. [Google Scholar] [CrossRef]
- Thórhallsdóttir, T. Flowering phenology in the central highland of Iceland and implications for climatic warming in the Arctic. Oecologia 1998, 114, 43–49. [Google Scholar] [CrossRef]
- Panchen, Z.A.; Gorelick, R. Flowering and fruiting responses to climate change of two Arctic plant species, purle saxifrage (Saxifraga oppositifolia) and mountain avens (Dryas integrifolia). Arct. Sci. 2015, 1, 45–58. [Google Scholar] [CrossRef]
- Havstrom, M.; Callaghan, T.V.; Jonasson, S. Differential growth responses of Cassiope tetragona, an arctic dwarf-shrub, to environmental perturbations among three contrasting high- and subarctic sites. Oikos 1993, 66, 389–402. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Henry-Greg, H.R. Retrospective analysis of growth and reproduction in Cassiope tetragona and relations to climate in the Canadian High Arctic. Arct. Alp. Res. 1997, 29, 459–469. [Google Scholar] [CrossRef]
- Cooper, E.J.; Dullinger, S.; Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 2011, 180, 157–167. [Google Scholar] [CrossRef]
- Mallik, A.U.; Wdowiak, J.V.; Cooper, E.J. Growth and reproductive responses of Cassiope tetragona, a circumpolar evergreen shrub, to experimentally delayed snowmelt. Arct. Antarct. Alp. Res. 2011, 43, 404–409. [Google Scholar] [CrossRef]
- Semenchuk, P.R.; Elberling, B.; Cooper, E.J. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecol. Evol. 2013, 3, 2586–2599. [Google Scholar] [CrossRef]
- Milner, J.M.; Varpe, Ø.; Wal, R.; Hansen, B.B. Experimental icing affects growth, mortality, and flowering in a high Arctic dwarf shrub. Ecol. Evol. 2016, 6, 2139–2148. [Google Scholar] [CrossRef] [PubMed]
- Prevéy, J.S.; Elmendorf, S.C.; Bjorkman, A.; Alatalo, J.M.; Ashton, J.; Assmann, J.J.; Björk, R.G.; Björkman, M.P.; Cannone, N.; Carbognani, M.; et al. The tundra phenology database: More than two decades of tundra phenology responses to climate change. Arct. Sci. 2022, 8, 1026–1029. [Google Scholar] [CrossRef]
- Høye, T.T.; Ellebjerg, S.M.; Philipp, M. The impact of climate on flowering in the high arctic- the case of Dryas in a hybrid zone. Arct. Antarct. Alp. Res. 2007, 39, 412–421. [Google Scholar] [CrossRef]
- Oberbauer, S.F.; Elmendorf, S.C.; Troxler, T.G.; Hollister, R.D.; Rocha, A.V.; Bret-Harte, M.S.; Dawes, M.A.; Fosaa, A.M.; Henry, G.H.; Høye, T.T.; et al. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120481. [Google Scholar] [CrossRef]
- Bjorkman, A.D.; Elmendorf, S.C.; Beamish, A.L.; Vellend, M.; Henry, G.H. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob. Change Biol. 2015, 21, 4651–4661. [Google Scholar] [CrossRef]
- Parmesan, C.; Hanley, M.E. Plants and climate change: Complexities and surprises. Ann. Bot. 2015, 116, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Henry, G.H.R.; Molau, U. Tundra plants and climate change: The International Tundra Experiment (ITEX). Glob. Change Biol. 1997, 3, 1–9. [Google Scholar] [CrossRef]
- Arft, A.M.; Walker, M.D.; Gurevitch, J.; Alatalo, J.V.; Bret-Harte, M.S.; Dale, M.; Diemer, M.; Gugerli, F.; Henry, G.H.; Jones, M.H.; et al. Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment. Ecol. Monogr. 1999, 69, 491–511. [Google Scholar] [CrossRef]
- Klady, R.A.; Henry, G.H.R.; Lemay, V. Changes in High Arctic tundra plant reproduction in response to long-term experimental warming. Glob. Change Biol. 2011, 17, 1611–1624. [Google Scholar] [CrossRef]
- Collins, C.G.; Elmendorf, S.C.; Hollister, R.D.; Henry, G.H.R.; Clark, K.; Bjorkman, A.D.; Myers-Smith, I.H.; Prevéy, J.S.; Ashton, I.W.; Assmann, J.J.; et al. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat. Commun. 2021, 12, 3442. [Google Scholar] [CrossRef] [PubMed]
- Khorsand, R.S.; Sancier-Barbosa, F.; May, J.I.; Hoye, T.T.; Oberbauer, S.F. Effect of short- and long-term experimental warming on plant pollinator interactions and floral rewards in the Low Arctic. Arct. Sci. 2024, 10, 424–442. [Google Scholar] [CrossRef]
- Høye, T.T.; Post, E.; Schmidt, N.M.; Trøjelsgaard, K.; Forchhammer, M.C. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat. Clim. Change 2013, 3, 759–763. [Google Scholar] [CrossRef]
- Preve’y, J.S.; Rixen, C.; Ruger, N.; Høye, T.T.; Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Ashton, I.W.; Cannone, N.; Chisholm, C.L.; et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 2019, 3, 45–52, Erratum in Nat. Ecol. Evol. 2019, 3, 709. [Google Scholar] [CrossRef]
- Lyngstad, A.; Moen, A.; Pedersen, B. Flowering in the rich fen species Eriophorum latifolium depends on climate and reproduction in the previous year. Wetlands 2017, 37, 1–13. [Google Scholar] [CrossRef]
- Kudo, G.; Cooper, E.J. When spring ephemerals fail to meet pollinators: Mechanism of phenological mismatch and its impact on plant reproduction. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190573. [Google Scholar] [CrossRef] [PubMed]
- Frei, E.R.; Henry, G.H.R. Long-term effects of snowmelt timing and climate warming on phenology, growth, and reproductive effort of Arctic tundra plant species. Arct. Sci. 2022, 8, 700–721. [Google Scholar] [CrossRef]
- Hollister, R.D.; Webber, P.J.; Tweedie, C.E. The response of Alaskan Arctic tundra to experimental warming: Differences between short- and long-term responses. Glob. Change Biol. 2005, 11, 525–536. [Google Scholar] [CrossRef]
- Harris, J.A.; Hollister, R.D.; Botting, T.F.; Tweedie, C.E.; Betway, K.R.; May, J.L.; Barrett, R.T.; Leibig, J.A.; Christoffersen, H.L.; Vargas, S.A.; et al. Understanding the climate impacts on decadal vegetation change in northern Alaska. Arc. Sci. 2022, 8, 878–898. [Google Scholar] [CrossRef]
- Elmendorf, S.C.; Henry, G.H.R.; Hollister, R.D.; Bjork, R.G.; Boulanger-Lapointe, N.; Cooper, E.J.; Cornelissen, J.H.C.; Day, T.A.; Dorrepaal, E.; Elumeeva, E.G.; et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2012, 2, 453–457. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E.; et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef]
- May, J.L.; Oberbauer, S.F.; Unger, S.L.; Simon, M.J.; Betway, K.R.; Hollister, R.D. Shading decreases and delays NDVI and flowering of prostrate Arctic shrubs. Arct. Sci. 2022, 8, 967–978. [Google Scholar] [CrossRef]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef]
- Friedman, J.; Barrett, S.C.H. Wind of change: New insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot. 2009, 103, 1515–1527. [Google Scholar] [CrossRef]
- Pellissier, L.; Eidesen, P.B.; Ehrich, D.; Descombes, P.; Schönswetter, P.; Tribsch, A.; Westergaard, K.B.; Alvarez, N.; Guisan, A.; Zimmermann, N.E.; et al. Past climate-driven range shifts and population genetic diversity in arctic plants. J. Biogeogr. 2016, 43, 461–470. [Google Scholar] [CrossRef]
- Molau, U.; Larsson, E.-L. Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland. Can. J. Bot. 2000, 78, 728–747. [Google Scholar]
- Thompson, K. The occurrence of buried viable seeds in relation to environmental gradients. J. Biogeogr. 1978, 5, 425–430, Erratum in J. Biogeogr. 1979, 6, 310. [Google Scholar] [CrossRef]
- Jankovska, V. Pollen and nonpollen palynomorphs—Analyses from Svalbard. Czech Polar Rep. 2017, 7, 123–132. [Google Scholar] [CrossRef]
- Khodachek, E.A. Seed reproduction in arctic environments. Opera Bot. 1997, 132, 129–135. [Google Scholar]
- Tikhmenev, E.A. The reproductive features of the northern angiosperms as a factor of plant diversity and stability of community. Opera Bot. 1997, 132, 67–75. [Google Scholar]
- Carlson, M.; Fulkerson, J. Pollinator-Mediated Selection on Floral Traits in the Arctic Plant Parrya nudicaulis (Brassicaceae). Authorea, 2021; in press. [Google Scholar] [CrossRef]
- Grundt, H.H.; Elven, R.; Brochmann, C. A rare case of self-incompatibility in arctic plants: Draba palanderiana (Brassicaceae). Flora 2005, 200, 321–325. [Google Scholar] [CrossRef]
- Fulkerson, J.R.; Whittall, J.B.; Carlson, M.L. Reproductive ecology and severe pollen limitation in the polychromic tundra plant, Parrya nudicaulis (Brassicaceae). PLoS ONE 2012, 7, e32790. [Google Scholar] [CrossRef]
- Totland, Ø.; Alatalo, J.M. Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia 2002, 133, 168–175. [Google Scholar] [CrossRef]
- Robinson, S.V.J.; Henry, G.H.R. High Arctic plants show independent responses to pollination and experimental warming. Botany 2018, 96, 385–396. [Google Scholar] [CrossRef]
- Panchen, Z.A.; Frei, E.R.; Henry, G.H.R. Increased Arctic climate extremes constrain expected higher plant reproductive success in a warmer climate. Arc. Sci. 2022, 8, 680–699. [Google Scholar] [CrossRef]
- Tiusanen, M.; Huotari, T.; Hebert, P.D.N.; Andersson, T.; Asmus, A.; Bety, J. Flower visitor communities of an Arcto-alpine plant—Global patterns in species richness, phylogenetic diversity, and ecological functioning. Mol. Ecol. 2018, 28, 318–335. [Google Scholar] [CrossRef] [PubMed]
- Tiusanen, M.; Hebert, P.D.N.; Schmidt, N.M.; Roslin, T. One fly to rule them all—Muscid flies are the key pollinators in the Arctic. Proc. R. Soc. B. 2016, 283, 20161271. [Google Scholar] [CrossRef]
- Burns, C.T.; Burns, M.L.; Cannings, S.; Carlson, M.L.; Coulson, S.; Gillespie, M.A.K.; Høye, T.T.; MacNearney, D.; Oberndorfer, E.; Rykken, J.J.; et al. Arctic pollinators. NOAA Tech. Rep. OAR ARC 2022, 22, 13. [Google Scholar]
- Lundgren, R.; Olesen, J.M. The dense and highly connected world of Greenland’s plants and their pollinators. Arct. Antarct. Alp. Res. 2005, 37, 514–520. [Google Scholar] [CrossRef]
- Høye, T.T.; Eskildsen, A.; Hansen, R.R.; Bowden, J.J.; Schmidt, N.M.; Kissling, W.D. Phenology of high-arctic butterflies and their floral resources: Species specific responses to climate change. Curr. Zool. 2014, 60, 243–251. [Google Scholar] [CrossRef]
- Tikhmenev, E.A. Pollination and self-pollination potential of entomophilous plants in the Arctic and mountain tundra of the North-East of the USSR. Russ. J. Ecol. 1984, 4, 8–15. [Google Scholar]
- Tikhmenev, E.A. Pollen viability and pollination of the Arctic plants. Russ. J. Ecol. 1981, 5, 25–31. [Google Scholar]
- Shamurin, V.F. Seasonal rhythm and ecology of flowering plants of tundra communities in the North of Yakutia. In Adaptation of Arctic Plants to Environmental Conditions; Nauka: Leningrad, Russia, 1966; pp. 5–125. [Google Scholar]
- Warming, E. (Ed.) The Structure and Biology of Arctic Flowering Plants; Meddelelsar on Gronland; Academic Press: New York, NY, USA, 1908–1921; p. 36. [Google Scholar]
- Cirtwill, A.R.; Kaartinen, R.; Rasmussen, C.; Redr, D.; Wirta, H.; Olesen, J.M.; Tiusanen, M.; Ballantyne, G.; Cunnold, H.; Stone, G.N.; et al. Stable pollination service in a generalist high Arctic community despite the warming climate. Ecol. Monogr. 2023, 93, e1551. [Google Scholar] [CrossRef]
- Chernov, Y.I.; Matveeva, N.V. South tundra in the system of zoning. In South Tundra of Taimyr; Science: Leningrad, Russia, 1986; pp. 194–204. [Google Scholar]
- Tikhmenev, E.A. Seasonal rhythm and flowering ecology of some species of arctic saxifrage (Saxifraga L.). In Ecology of Pollination; Bannikov, V.D., Ed.; Perm University Publishing House: Perm, Russia, 1980; pp. 22–32. [Google Scholar]
- Potapov, G.S.; Berezin, M.V.; Kolosova, Y.S.; Kondakov, A.V.; Tomilova, A.A.; Spitsyn, V.M.; Zheludkova, A.A.; Zubrii, N.A.; Filippov, B.Y.; Bolotov, I.N. The last refugia for a polar relict pollinator: Isolates of Bombus glacialis on Novaya Zemlya and Wrangel Island indicate its broader former range in the Pleistocene. Polar Biol. 2021, 44, 1691–1709. [Google Scholar] [CrossRef]
- Bascompte, J.; Olesen, J.M. Mutualistic networks. In Mutualizm; Oxford University Press: Oxford, UK, 2015; pp. 203–220. [Google Scholar]
- Høye, T.T.; Forchhammer, M.C. Phenology of high-arctic arthropods: Effects of climate on spatial, seasonal, and inter-annual variation. Adv. Ecol. Res. 2008, 40, 299–324. [Google Scholar]
- Hegland, S.J.; Nielsen, A.; La’zaro, A.; Bjerknes, A.-L.; Totland, Ø. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 2009, 12, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Loboda, S.; Savage, J.; Buddle, C.M.; Schmidt, N.M.; Hoye, T.T. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 2018, 4, 265–277. [Google Scholar] [CrossRef]
- Arctic Biodiversity Trends 2010—Selected Indicators of Change; CAFF International Secretariat: Akureyri, Iceland, 2010; p. 121.
- Schmidt, N.M.; Mosbacher, J.B.; Nielsen, P.S.; Rasmussen, C.; Høye, T.T.; Roslin, T. An ecological function in crisis? The temporal overlap between plant flowering and pollinator function shrinks as the Arctic warms. Ecography 2016, 39, 1250–1252. [Google Scholar] [CrossRef]
- Morewood, W.D.; Ring, R.A. Revision of the life history of the High Arctic moth Gynaephora groenlandica (Wocke) (Lepidoptera: Lymantriidae). Can. J. Zool. 1998, 76, 1371–1381. [Google Scholar] [CrossRef]
- Landrum, L.; Holland, M.M. Extremes Become Routinein an Emerging New Arctic. Nat. Clim. Change 2020, 10, 1108–1115. [Google Scholar] [CrossRef]
- Rasmussen, C.; Dupont, Y.L.; Mosbacher, J.B.; Trjøelsgaard, K.; Olesen, J.M. Strong Impact of Temporal Resolution on the Structure of an Ecological Network. PLoS ONE 2013, 8, e81694. [Google Scholar] [CrossRef] [PubMed]
- Dalsgaard, B.; Trojelsgaard, K.; Martin Gonzales, A.V.; Nogues-Bravo, D.; Ollerton, J.; Petanidou, T.; Sandel, B.; Schleuning, M.; Wang, Z.; Rahbek, C.; et al. Historical climate-change influences modularity and nestedness of pollination networks. Ecography 2013, 36, 1331–1340. [Google Scholar] [CrossRef]
- Henry, G.H.R.; Hollister, R.; Klanderud, K.; Björk, R.; Bjorkman, A.; Elphinstone, C.; Jónsdóttir, I.; Molau, U.; Petraglia, A.; Oberbauer, S.; et al. The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. Arc. Sci. 2022, 8, 550–571. [Google Scholar] [CrossRef]
- Urbanowicz, C.; Virginia, R.A.; Irwin, R.E. The response of pollen-transport networks to landscape-scale climate variation. Polar Biol. 2017, 40, 2253–2263, Erratum in Polar Biol. 2018, 41, 1651. [Google Scholar] [CrossRef]
- Koch, V.; Zoller, L.; Bennett, J.M.; Knight, T.M. Pollinator dependence but no pollen limitation for eight plants occurring north of the Arctic Circle. Ecol. Evol. 2020, 10, 13664–13672. [Google Scholar] [CrossRef]
- Scaven, V.L.; Rafferty, N.E. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr. Zool. 2013, 59, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Hoiss, B.; Krauss, J.; Steffan-Dewenter, I. Interactive effects of elevation, species richness and extreme climatic events on plant—Pollinator networks. Glob. Change Biol. 2015, 21, 4086–4097. [Google Scholar] [CrossRef]
- Gillespie, M.A.K.; Baggesen, N.; Cooper, E.J. High Arctic flowering phenology and plant–pollinator interactions in response to delayed snow melt and simulated warming. Environ. Res. Lett. 2016, 11, 115006. [Google Scholar] [CrossRef]
- Gillespie, M.A.K.; Cooper, E.J. The seasonal dynamics of a High Arctic plant—Visitors network: Temporal observations and responses to delayed snow melt. Arct. Sci. 2021, 1, 18. [Google Scholar] [CrossRef]
- Descamps, C.; Boubnan, N.; Jacquemart, A.L.; Quinet, M. Growing and flowering in a changing climate: Effects of higher temperatures and drought stress on the bee-pollinated species Impatiens glandulifera Royle. Plants 2021, 10, 988. [Google Scholar] [CrossRef]
- Molau, U. Responses to natural climatic variation and experimental warming in two tundra plant species with contrasting life forms: Cassiope tetragona and Ranunculus nivalis. Glob. Change Biol. 1997, 3, 97–107. [Google Scholar] [CrossRef]
- Adamson, C.P.; Iler, A.M. Open-top warming chambers reduce animal pollination of two subalpine herbs. J. Poll. Ecol. 2021, 29, 231–239. [Google Scholar] [CrossRef]
- Forrest, J.R. Plant–pollinator interactions and phenological change: What can we learn about climate impacts from experiments and observations? Oikos 2015, 124, 4–13. [Google Scholar] [CrossRef]
- Olesen, J.M.; Jordano, P. Geographic patterns in plant–pollinator mutualistic networks. Ecology 2002, 83, 2416–2424. [Google Scholar] [CrossRef]
- Raguso, R.A. Don’t forget the flies: Dipteran diversity and its consequencesfor floral ecology and evolution. Appl. Entomol. Zool. 2020, 55, 1–7. [Google Scholar] [CrossRef]
- Woodcock, T.S.; Larson, B.M.; Kevan, P.G.; Inouye, D.W.; Lunau, K. Flies and flowers II: Floral attractants and rewards. J. Pollin. Ecol. 2014, 12, 63–94. [Google Scholar] [CrossRef]
- Lévesque, E.; Desforges, M.N.; Jones, G.A.; Henry, G.H.R. Germinable seed propagule banks monitoring at ITEX sites. In ITEX Manual; Molau, U., Mølgaard, P., Eds.; Danish Polar Center: Copenhagen, Denmark, 1996; pp. 43–45. [Google Scholar]
- Steltzer, H.; Hufbauer, R.A.; Welker, J.M.; Casalis, M.; Sullivan, P.F.; Chimner, R. Frequent sexual reproduction and high intraspecific variation in Salix arctica: Implications for terrestrial feedback to climate change in the High Arctic. J. Geophys. Res. 2008, 113, G03S10. [Google Scholar] [CrossRef]
- Tikhomirov, B.A. Essays on the Biology of Arctic Plants; Publishing House of the Academy of Sciences: Moscow, Russia; Leningrad, Russia, 1963; p. 154. [Google Scholar]
- Levesque, E.; Svoboda, J. Viable seed bank in soils of polar desert community (central Ellesmere Island, Canada) and seedling survival in experiment. Bot. Zhurnal 1997, 2, 30–44. [Google Scholar]
- Hagen, D. Propagation of native Arctic and alpine species with a restoration potential. Polar Res. 2002, 21, 37–47. [Google Scholar] [CrossRef]
- Khodachek, E.A. Patterns of seed germination in Arctic plants (the Western Taimyr). Bot. Zhurnal 1993, 78, 15–28. [Google Scholar]
- Dorji, T.; Totland, Ø.; Moe, S.R.; Hopping, K.A.; Pan, J.B.; Klein, J.A. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob. Change Biol. 2013, 19, 459–472. [Google Scholar] [CrossRef]
- Wookey, P.A.; Parsons, A.N.; Welker, J.M.; Potter, J.A.; Callaghan, T.V.; Lee, J.A.; Press, M.C. Comparative responses of phenology and reproductive development to simulated environmental change in sub-Arctic and High Arctic plants. Oikos 1993, 67, 490–502. [Google Scholar] [CrossRef]
- Welker, J.; Rayback, S.; Henry, G.H.R. Arctic and North Atlantic oscillation phase changes are recorded in the isotopes (d18O and d13C) of Cassiope tetragona plants. Glob. Change Biol. 2005, 11, 997–1002. [Google Scholar] [CrossRef]
- Billings, W.D.; Mooney, H.A. The ecology of arctic and alpine plants. Biol. Rev. 1968, 43, 481–529. [Google Scholar] [CrossRef]
- Excoffier, L.; Foll, M.; Petit, R.J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 481–501. [Google Scholar] [CrossRef]
- Wang, Y.; Pedersen, M.W.; Alsos, I.G.; De Sanctis, B.; Racimo, F.; Prohaska, A.; Coissac, E.; Owens, H.L.; Merkel, M.K.F.; Fernandez-Guerra, A.; et al. Late quaternary dynamics of arctic biota from ancient environmental genomics. Nature 2021, 600, 86–92, Erratum in Nature 2022, 610, 7931. [Google Scholar] [CrossRef]
- Kadereit, J.W.; Griebele, E.M.; Comes, H.P. Quaternary diversification in European alpine plants: Pattern and process. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 265–274. [Google Scholar] [CrossRef]
- Birks, H.H. The Late-Quaternary history of arctic and alpine plants. Plant Ecol. Divers. 2008, 1, 135–146. [Google Scholar] [CrossRef]
- Birks, H.J.B. Is the hypothesis of survival on glacial nunataks necessary to explain the present-day distributions of Norwegian mountain plants? Phytocoenologia 1993, 23, 399–426. [Google Scholar] [CrossRef]
- Birks, H.H. Plant macrofossils and the Nunatak Theory of per-glacial survival. Diss. Bot. 1994, 234, 129–143. [Google Scholar]
- Kharyutkina, E.V.; Loginov, S.V. Tendencies in current climate change and atmospheric circulation variability in the Arctic region of West Siberia. Czech Polar Rep. 2017, 7, 311–320. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pan, C., Berger, S., Caud, N., Chen, Y., Huang, M., Zhou, B., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Malik, I.H.; Ahmed, R.; Ford, J.D.; Hamidi, A.R. Arctic Warming Cascading Climate Impacts and Global Consequences. Climate 2025, 13, 85. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M.; Walsh, J.E.; Stroeve, J.C. Future Arctic climate changes: Adaptation and mitigation time scales. Earths Future 2014, 2, 68–74. [Google Scholar] [CrossRef]
- Swanson, D.K.; Sousanes, P.J.; Hill, K. Increased mean annual temperatures in 2014–2019 indicate permafrost thaw in Alaskan national park. Arct. Antarct. Alp. Res. 2021, 53, 1–19. [Google Scholar] [CrossRef]
- Lindgren, A.; Hugelius, G.; Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 2018, 560, 219–222. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Anisimov, O.A. Potential feedback of thawing permafrost to the global climate system through methane emission. Environ. Res. Lett. 2007, 2, 045016. [Google Scholar] [CrossRef]
- Miner, K.R.; Turetsky, M.R.; Malina, E.; Bartsch, A.; Tamminen, J.; McGuire, A.D.; Fix, A.; Sweeney, C.; Elder, C.D.; Miller, C.E. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 2022, 3, 55–67. [Google Scholar] [CrossRef]
- Taketani, F.; Miyakawa, T.; Takigawa, M.; Yamaguchi, M.; Komazaki, Y.; Mordovskoi, P.; Takashima, H.; Zhu, C.; Nishino, S.; Tohjima, Y.; et al. Characteristics of atmospheric black carbon and other aerosol particles over the Arctic Ocean in early autumn 2016: Influence from biomass burning as assessed with observed microphysical properties and model simulations. Sci. Total Environ. 2022, 848, 157671. [Google Scholar] [CrossRef] [PubMed]
- Post, E.; Forchhammer, M.C.; Bret-Harte, M.S.; Callaghan, T.V.; Christensen, T.R.; Elberling, B.; Fox, A.D.; Gilg, O.; Hik, D.S.; Høye, T.T.; et al. Ecological dynamics across the Arctic associated with recent climate change. Science 2009, 325, 1355–1358. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Kerby, J.T.; Phoenix, G.K.; Bjerke, J.W.; Epstein, H.E.; Assmann, J.J.; John, C.; Andreu-Hayles, L. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 2020, 10, 106–117. [Google Scholar] [CrossRef]
- Taylor, J.J.; Lawler, J.P.; Aronsson, M.; Barry, T.; Bjorkman, A.D.; Christensen, T.; Coulson, S.J.; Cuyler, C.; Ehrich, D.; Falk, K.; et al. Arctic terrestrial biodiversity status and trends: A synopsis of science supporting the CBMP State of Arctic Terrestrial Biodiversity Report. Ambio 2020, 49, 833–847. [Google Scholar] [CrossRef]
- Stewart, L.; Aastrup, P. Recovery of damaged high-Arctic vegetation under climate change. Arct. Antarct. Alp. Res. 2025, 51, 2465204. [Google Scholar] [CrossRef]
- Beamish, A.; Raynolds, M.K.; Epstein, H.; Frost, G.V.; Macander, M.J.; Bergstedt, H.; Bartsch, A.; Kruse, S.; Miles, V.; Tanis, C.M.; et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sens. Environ. 2020, 246, 111872. [Google Scholar] [CrossRef]
- Cray, H.A.; Pollard, W.H. Vegetation recovery patterns following permafrost disturbance in a Low Arctic setting: Cause study of Herschel Island, Yukon, Canada. Arct. Antarct. Alp. Res. 2015, 47, 99–113. [Google Scholar] [CrossRef]
- Becker, M.S.; Davies, T.J.; Pollard, W.H. Ground ice melt in the high Arctic leads to greater ecological heterogeneity. J. Ecol. 2016, 104, 114–124. [Google Scholar] [CrossRef]
- Vasilevskaya, N.V.; Putilova, N.V. State of coenopopulations of Dactylorhiza maculata (L.) Soo. (Orchidaceae Juss.) in disturbed habitats of the Arctic urbanized territory. IOP Conf. Ser. Earth Environ. Sci. 2022, 979, 012105. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Press, M.C.; Lee, J.A.; Robinson, D.L.; Anderson, C.W. Spatial and temporal variation in the responses of arctic terrestrial ecosystems to environmental change. Polar Res. 1999, 18, 191–197. [Google Scholar] [CrossRef]
- Tolvanen, A.; Henry, G.H.R. Responses of carbon and nitrogen concentrations in high Arctic plants to experimental increased temperature. Can. J. Bot. 2001, 79, 711–718. [Google Scholar]
- Ermokhina, K.A.; Terskaia, A.I.; Ivleva, T.Y.; Dudov, S.V.; Zemlianskii, V.A.; Telyatnikov, M.Y.; Khitun, O.V.; Troeva, E.I.; Koroleva, N.E.; Abdulmanova, S.Y. The High–Low Arctic boundary: How is it determined and where is it located? Ecol. Evol. 2023, 13, e10545. [Google Scholar] [CrossRef] [PubMed]
- Pouliot, D.; Latifovic, R.; Olthof, I. Trends in vegetation NDVI from 1 km AVHRR data over Canada for the period 1985–2006. Int. J. Remote Sens. 2009, 30, 149–168. [Google Scholar] [CrossRef]
- Elmendorf, S.C.; Hollister, R.D. Limits on phenological response to high temperature in the Arctic. Sci. Rep. 2023, 13, 208. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Gatti, R.S.; Phoenix, G. The need to understand the stability of arctic vegetation during rapid climate change: An assessment of imbalance in the literature. Ambio 2022, 51, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, A.A.; Sokolova, N.A.; Ims, R.A.; Brucker, L.; Ehrich, D. Emergent rainy winter warm spells may promote boreal predator expansion into the Arctic. Arctic 2016, 69, 121–129. [Google Scholar] [CrossRef]
- Prach, K.; Kosnar, J.; Klimesova, J.; Hais, M. High Arctic vegetation after 70 years: A repeated analysis from Svalbard. Polar Biol. 2010, 33, 635–639. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Christensen, T.R.; Jantze, E.J. Plant and vegetation dynamics on Disko Island, West Greenland: Snapshots separated by over 40 years. Multi-decadal changes in tundra environments and ecosystems: The International polar year back to the future project. Ambio 2011, 40, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Matveyeva, N.V.; Zanokha, L.L. Plant cover stability under significant landscape transformation in Western Taymyr tundras. In Proceedings of the Rudy Vserossiiskoi nauchnoi konferentsii, the Biodiversity of Ecosystems of the Far North: Inventarisation, Monitoring, Protection, Syktyvkar, Russia, 3–7 July 2013; pp. 96–106. [Google Scholar]
- Berner, L.T.; Massey, R.; Jantz, P.; Forbes, B.C.; Macias-Fauria, M.; Myers-Smith, I.; Kumpula, T.; Gauthier, G.; Andreu-Hayles, L.; Gaglioti, B.V.; et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 2020, 11, 4621. [Google Scholar] [CrossRef]
- Prevéy, J.; Vellend, M.; Rüger, N.; Hollister, R.D.; Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Clark, K.; Cooper, E.J.; Elberling, B.; et al. Greater temperature sensitivity of plant phenology at colder sites: Implications for convergence across northern latitudes. Glob. Change Biol. 2017, 23, 2660–2671. [Google Scholar] [CrossRef]
- Barrett, R.T.; Hollister, R.D. Arctic plants are capable of sustained responses to long-term warming. Polar Res. 2016, 35, 25405. [Google Scholar] [CrossRef]
- Rustad, L.; Campbell, J.; Marion, G.; Norby, R.; Mitchell, M.; Hartley, A.; Cornelissen, J.; Gurevitch, J.; GCTE News. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 2001, 126, 543–562. [Google Scholar] [CrossRef]
- Walker, M.D.; Wahren, C.; Hollister, R.D.; Henry, G.H.R.; Ahlqist, L.E.; Alatalo, J.M.; Syndonia Bret-Harte, M.; Calef, M.P.; Callaghan, T.V.; Carroll, A.B.; et al. Plant community responses to experimental warming across the tundra biome. Proc. Nat. Acad. Sci. USA 2006, 103, 1342–1346. [Google Scholar] [CrossRef]
- Post, E.; Forchhammer, M.C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 2369–2375. [Google Scholar] [CrossRef]
- Walker, M.D.; Walker, D.A.; Welker, J.M.; Arft, M.; Bardsley, T.; Brooks, P.D.; Fahnestock, J.T.; Jones, M.H.; Losleben, M.; Parsons, A.N.; et al. Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra. Hydrol. Process. 1999, 13, 2315–2330. [Google Scholar] [CrossRef]
- Wheeler, H.C.; Nøye, T.T.; Schmidt, N.M.; Svenning, J.-C.; Forchhammer, M.C. Phenological mismatch with abiotic conditions—Implications for flowering in Arctic plants. Ecology 2015, 96, 775–787. [Google Scholar] [CrossRef]
- Hedenås, H.; Carlsson, B.A.; Emanuelsson, U.; Headley, A.D.; Jonasson, C.; Svensson, B.M.; Callaghan, T.V. Changes versus homeostasis in alpine and sub-alpine vegetation over three decades in the sub-Arctic. Ambio 2012, 41, 187–196. [Google Scholar] [CrossRef]
- Hollister, R.D.; Webber, P.J.; Bay, C. Plant response to temperature in northern Alaska: Implications for predicting vegetation change. Ecology 2005, 86, 1562–1570. [Google Scholar] [CrossRef]
- Hudson, J.M.G.; Henry, G.H.R.; Cornwell, W.K. Taller and larger: Shifts in Arctic tundra leaf traits after 16 years of experimental warming. Glob. Change Biol. 2011, 17, 1013–1021. [Google Scholar] [CrossRef]
- Campioli, M.; Schmidt, N.M.; Albert, K.R.; Leblans, N.; Ro-Poulsen, H.; Michelsen, A. Does warming affect growth rate and biomass production of shrubs in the High Arctic? Plant Ecol. 2013, 214, 1049–1058. [Google Scholar] [CrossRef]
- Boelman, N.T.; Stieglitz, M.; Rueth, H.M.; Sommerkorn, M.; Griffin, K.L.; Shaver, G.R.; Gamon, J.A. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia 2003, 35, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Michelsen, A.; Rinnan, R.; Jonasson, S. Two decades of experimental manipulations of heaths and forest understory in the Subarctic. Ambio 2012, 41, 218–230. [Google Scholar] [CrossRef]
- Jenkins, L.K.; Barry, T.; Bosse, K.R.; Currie, W.S.; Christensen, T.; Longan, S.; Shuchman, R.A.; Tanzer, D.; Taylor, J.J. Satellite-based decadal change assessments of pan-Arctic environments. Ambio 2020, 49, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Bjorkman, A.D.; García Criado, M.; Myers-Smith, I.H.; Ravolainen, V.; Jonsdottir, I.S.; Westergaard, K.B.; Lawler, J.P.; Aronsson, M.; Bennett, B.; Gardfjell, H.; et al. Status, and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 2020, 49, 678–692. [Google Scholar] [CrossRef]
- Lyon, B.R.; Mock, T. Polar microalgae: New approaches towards understanding adaptations to an extreme and changing environment. Biology 2014, 3, 56–80. [Google Scholar] [CrossRef] [PubMed]
- García Criado, M.; Myers-Smith, I.H.; Bjorkman, A.D.; Lehmann, C.E.R.; Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 2020, 29, 925–943. [Google Scholar] [CrossRef]
- Boulanger-Lapointe, N.; Baittinger, C. Studies of the growth of arctic willow (Salix arctica) and arctic bell-heather (Cassiope tetragona) in the High Arctic. In Northern Worlds–Landscapes, Interactions, and Dynamics; Gulløv, H.C., Ed.; Univer. Press of Southern Denmark: Copenhagen, Denmark, 2014; pp. 215–226. [Google Scholar]
- Von Oppen, J.; Assmann, J.J.; Bjorkman, D.D.; Treier, T.T.; Elberling, B.; Nabe–Nielsen, J.; Normand, S. Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra. Glob. Change Biol. 2022, 28, 7296–7312. [Google Scholar] [CrossRef]
- Moffat, N.D.; Lantz, T.C.; Fraser, R.H.; Olthof, I. Recent vegetation change (1980–2013) in the tundra ecosystems of the Tuktoyaktuk Coastlands, NWT, Canada. Arct. Antarct. Alp. Res. 2016, 48, 581–597. [Google Scholar] [CrossRef]
- Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; van Huissteden, J.; et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Change 2015, 5, 67–70. [Google Scholar] [CrossRef]
- Nabe-Nielsen, J.; Normand, S.; Hui, F.K.S.; Stewart, L.; Bay, K.; Nabe-Nielsen, L.I.; Schmidt, N.M. Plant community composition and species richness in the High Arctic tundra: From the present to the future. Ecol. Evol. 2017, 7, 10233–10242. [Google Scholar] [CrossRef]
- Alsos, I.G.; Ehrich, D.; Thuiller, W.; Eidesen, P.B.; Tribsch, A.; Schonswetter, P.; Lagaye, C.; Taberlet, P.; Brochmann, C. Genetic consequences of climate change for northern plants. Proc. R. Soc. B Biol. Sci. 2012, 279, 2042–2051. [Google Scholar] [CrossRef]
- Jump, A.S.; Marchant, R.; Penuelas, J. Environmental change, and the option value of genetic diversity. Trends Plant Sci. 2009, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Diebold, F.X.; Rudebusch, G.D.; Göbel, M.; Coulombe, P.G.; Zhang, B. When will Arctic Sea ice disappear? Projections of area, extent, thickness, and volume. J. Econom. 2023, 236, 105479. [Google Scholar] [CrossRef]
- Hanna, E.; Topál, D.; Box, J.E.; Buzzard, S.; Christie, F.D.W.; Hvidberg, C.; Morlighem, M.; De Santis, L.; Silvano, A.; Colleoni, F.; et al. Short- and long-term variability of the Antarctic and Greenland ice sheets. Nat. Rev. Earth Environ. 2024, 5, 193–210. [Google Scholar] [CrossRef]
- Khare, N.; Khare, R. The Arctic: A Barometer of Global Climate Variability; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Hope, A.G.; Waltari, E.; Malaney, J.L.; Payer, D.C.; Cook, J.A.; Talbot, S.L. Arctic biodiversity: Increasing richness accompanies shrinking refugia for a cold-associated tundra fauna. Ecosphere 2015, 6, 1–67. [Google Scholar] [CrossRef]
- Johnson, A.; Trant, A.; Hermanutz, L.; Davis, E.; Saunders, M.; Siegwart Collier, L.; Way, R.; Knight, T. Climate warming impacts tuttuk (caribou) forage availability in Tongait (Torngat) Mountains, Labrador. Arct. Sci. 2025, 11, 1–14. [Google Scholar] [CrossRef]
- Fickert, T.; Friend, D.; Grüninger, F.; Molnia, B.; Richter, M. Did debris-covered glaciers serve as Pleistocene refugia for plants? A new hypothesis derived from observations of recent plant growth on glacier surfaces. Arct. Antarct. Alp. Res. 2007, 39, 245–257. [Google Scholar] [CrossRef]
- Crawford, R.M.M.; Chapman, H.M.; Smith, L.C. Adaptation to variation in growing season length in arctic populations of Saxifraga oppositifolia L. Bot. J. Scotl. 1995, 47, 177–192. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilevskaya, N.V. Arctic Plants Under Environmental Stress: A Review. Stresses 2025, 5, 64. https://doi.org/10.3390/stresses5040064
Vasilevskaya NV. Arctic Plants Under Environmental Stress: A Review. Stresses. 2025; 5(4):64. https://doi.org/10.3390/stresses5040064
Chicago/Turabian StyleVasilevskaya, Natalia Vladimirovna. 2025. "Arctic Plants Under Environmental Stress: A Review" Stresses 5, no. 4: 64. https://doi.org/10.3390/stresses5040064
APA StyleVasilevskaya, N. V. (2025). Arctic Plants Under Environmental Stress: A Review. Stresses, 5(4), 64. https://doi.org/10.3390/stresses5040064
