Arbuscular Mycorrhizae Confers Salinity Tolerance to Medicago sativa L.
Abstract
1. Introduction
2. Results
2.1. Percentage of Colonization
2.2. Germination
2.3. Morphological Parameters
2.4. Pigments
2.5. Proline and Malondialdehyde (MDA)
3. Discussion
4. Materials and Methods
4.1. Germination
4.2. Inoculation with Rhizophagus Intraradices
4.3. Treatments, Experimental Design and Growing Conditions
4.4. Mycorrhizal Development
4.5. Plant Growth and Determination of Photosynthetic Pigments
4.6. Proline Content
4.7. Oxidative Damage to Lipids
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majeed, A.; Muhammad, Z. Salinity: A Major Agricultural Problem-Causes, Impacts on Crop Productivity and Management Strategies. In Plant Abiotic Stress Tolerance; Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Allbed, A.; Kumar, L. Soil salinity mapping and monitoring in arid and Semi-Arid Regions using remote sensing technology: A review. Adv. Remote Sens. 2013, 2, 373–385. [Google Scholar] [CrossRef]
- Adejumobi, M.A.; Alonge, T.A.; Ojo, O.I. A review of the techniques for monitoring soil salinity in irrigated fields. Adv. Multidiscip. Res. J. 2016, 2, 167–170. [Google Scholar]
- Willadino, L.; Camara, T. Origen y naturaleza de los ambientes salinos. In La Ecofisiología Vegetal: Una Cienciaen Síntesis; Reigosa, M.J., Pedrol, N., Sánchez-Moreiras, A., Eds.; Paraninfo S.A.: Madrid, Spain, 2003; pp. 303–330. [Google Scholar]
- Pagliaricci, H.R.; Saroff, A.C.; Ohanian, A.E. Densidad de plantas y producción de forraje de alfalfa (Medicago sativa L.) con diferentesfrecuencias de corte y descansos de otoño. Asoc. Arg. Prod. Anim. Rev. Arg. Prod. Anim. 1991, 11, 285–293. [Google Scholar]
- Wang, D.; Khurshid, M.; Min Sun, Z.; Xiong Tang, Y.; Liang Zhou, M.; Min Wu, Y. Genetic engineering of alfalfa (Medicago sativa L.). Protein Pept. Lett. 2016, 23, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Deja-Sikora, E.; Mercy, L.; Baum, C.; Hrynkiewicz, K. The Contribution of endomycorrhiza to the performance of potato virus Y-Infected Solanaceous Plants: Disease Alleviation or Exacerbation? Front. Microbiol. 2019, 10, 516. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Becerra, A. Los hongosmicorrícicosenambientesagrícolas, salinos, forestales y contaminados. In Proceedings of the IV ReuniónConjunta de Sociedades de Biología de La República Argentina, Mendoza, Argentina, 9–15 September 2020; p. 20. [Google Scholar]
- Liang, S.; Jiang, Y.; Li, M.; Zhu, W.; Xu, N.; Zhang, H. Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. J. Plant Interact. 2019, 14, 482–491. [Google Scholar]
- Amir, A.H.; White, R.A.; Pubudu, P.; Christer Jansson, H. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere 2017, 3, 233–243. [Google Scholar]
- Pedranzani, H.E.; Gutiérrez, M.E.; Molina Arias, S.; Zapico, M.G.; Ruiz-Lozano, J.M. Arbuscular Mycorrhiza Interaction with Medicago sativa Plants: Study of Abiotic Stress Tolerance in Sustainable Agriculture. Adv. Investig. Agropecu. 2021, 25, 26–40. [Google Scholar] [CrossRef]
- Pedranzani, H.E.; Barzana, G.; Gil, R.A.; Molina Arias, S.; Pacheco Insausti, M.C.; Ruiz Lozano, J.M. Jasmonates, aquaporins and nutritional response in Medicago sativa in symbiosis with arbuscular mycorrhizae under abiotic stresses. Ann. Agric. Sci. Res. 2022, 1, 1–14. [Google Scholar]
- Pacheco Insausti, M.C.; Zapico, M.G.; Gonzalez, E.A.; Fernández, E.; Gutiérrez, M.E.; Stege, P.W.; Pedranzani, H.E. Salt and Cadmium Stress Tolerance in Four Genotypes of Medicago sativa L. Adv. Investig. Agropecu. 2022, 26, 62–78. [Google Scholar]
- ISTA. Chapter 5: The germination test. In International Rules for Seed Testing; International Seed Testing Association: Bassersdorf, Switzerland, 2014; Effective from 1 January 2014; pp. 1–22. [Google Scholar]
- Szabados, L.; Savoure, A. Proline a multifunctional amino acid. Trend Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Kumar, A.; Kumar, P. Antioxidant potential of malondialdehyde in plants. J. Plat Physiol. 2017, 215, 133–141. [Google Scholar]
- Singh, S.; Singh, V.; Kumar, A. Malondialdehyde: A key player in plant growth regulation. Plant Signal. Behav. 2019, 14, 155–164. [Google Scholar]
- Wang, Y.; Li, Z.; Wang, X. Malodialdehyde-mediated drought tolerance in plants. Plant Physiol. Biochem. 2020, 157, 110–118. [Google Scholar]
- Saxena, R.; Kumar, M.; Tomar, R.S. Plant responses and resilience towards drought and salinity stress. Plant Arch. 2019, 19, 50–58. [Google Scholar]
- Mitra, D.; Djebaili, R.; Pellegrini, M.; Mahakur, B.; Sarker, A.; Chaudhary, P.; Khoshru, B.; Del Gallo, M.; Kitouni, M.; Barik, D.P.; et al. Arbuscular mycorrhizal symbiosis: Plant growth improvement and induction of resistance under stressful conditions. J. Plant Nutr. 2021, 44, 1993–2028. [Google Scholar] [CrossRef]
- Bencherif, K.; Dalpé, Y.; Lounès Hadj-Sahraoui, A. Arbuscular mycorrhizal fungi alleviate soil salinity stress in arid and semiarid areas. In Microorganisms in Saline Environments: Strategies and Functions; Springer: Cham, Switzerland, 2019; pp. 375–400. [Google Scholar]
- Joosen, R.V.L.; Arends, D.; Li, Y.; Willems, L.A.; Keurentjes, J.J.; Ligterink, W.; Jansen, R.C.; Hilhorst, H.W. Identifying genotype-by-environment interactions in the metabolism of germinating Arabidopsis seeds using generalized genetical genomics. Plant Physiol. 2013, 162, 553–566. [Google Scholar] [CrossRef]
- Rosental, L.; Nonogaki, H.; Fait, A. Activation and regulation of primary metabolism during seed germination. Seed Sci. Res. 2014, 24, 1–15. [Google Scholar] [CrossRef]
- Weitbrecht, K.; Müller, K.; Leubner-Metzger, G. First off the mark: Early seed germination. J. Exp. Bot. 2011, 62, 289–3309. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; Lopez-Aguilar, R.; Kaya, C.; Larrinaga-Mayoral, J.; Flores-Hernandez, A. Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. J. Agron. Crop Sci. 2002, 188, 235–247. [Google Scholar] [CrossRef]
- Almansouri, M.; Kinet, J.M.; Lutts, S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 2001, 231, 243–254. [Google Scholar] [CrossRef]
- Kaya, M.D.; Okçu, G.; Atak, M.; Çıkılı, Y.; Kolsarıcı, Ö. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur. J. Agron. 2006, 24, 291–295. [Google Scholar] [CrossRef]
- Miransari, M. Stress and Mycorrhizal Plant. In Recent Advances on Mycorrhizal Fungi. Fungal Biology; Pagano, M., Ed.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Miransari, M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Plant Biol. 2010, 12, 563–569. [Google Scholar]
- Skubacz, A.; Daszkowska-Golec, A.; Szarejko, I. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk. Front. Plant 2016, 7, 1884. [Google Scholar] [CrossRef]
- Flowers, T.J.; Gaur, P.M.; Gowda, C.L.; Krishnamurthy, L.; Samineni, S.; Siddique, K.H.; Colmer, T.D. Salt sensitivity in chickpea. Plant Cell Environ. 2010, 33, 490–509. [Google Scholar] [CrossRef]
- Talaat, N.B.; Shawky, B.T. Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J. Plant Nutr. Soil Sci. 2011, 174, 283–291. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Zhang, X.; Tang, M. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis. Front. Plant Sci. 2017, 8, 1739. [Google Scholar] [CrossRef]
- Murkute, A.A.; Sharma, S.; Singh, S.K. Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci. 2006, 33, 70–76. [Google Scholar] [CrossRef]
- Trindade, A.V.; Siqueira, J.O.; Stürmer, S.L. Arbuscularmycorrhizal fungi in papaya plantations of Espirito Santo and Bahia, Brazil. Braz. J. Microbiol. 2006, 37, 283–289. [Google Scholar] [CrossRef]
- Abbaspour, H.; Pour, F.S.N.; Abdel-Wahhab, M.A. Arbuscular mycorrhizal symbiosis regulates the physiological responses, ion distribution and relevant gene expression to trigger salt stress tolerance in pistachio. Physiol. Mol. Biol. Plants 2021, 27, 1765–1778. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.M.; Pérez-Tornero, O.; Morte, A. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J. Plant Physiol. 2014, 171, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Bellot, M.J.; Ortuño, M.F.; Nortes, P.A.; Vicente-Sánchez, J.; Martín, F.F.; Bañón, S.; Sánchez-Blanco, M.J. Protective effects of Glomus iranicum var. tenuihypharum on soil and Viburnum tinus plants irrigated with treated wastewater under field conditions. Mycorrhiza 2015, 25, 399–409. [Google Scholar] [CrossRef]
- Borde, M.; Dudhane, M.; Kulkarni, M. Role of arbuscularmycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions. In Mycorrhiza-Eco-Physiology, Secondary Metabolites, Nanomaterials; Springer: Cham, Switzerland, 2017; pp. 71–86. [Google Scholar]
- Porcel, R.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 2004, 55, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Ghorbanli, M.; Ebrahimzadeh, H. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J. Plant Physiol. 2007, 164, 1144–1151. [Google Scholar] [CrossRef]
- Santander, C.; Ruiz, A.; García, S.; Aroca, R.; Cumming, J.; Cornejo, P. Efficiency of two arbuscular mycorrhizal fungal inocula to improve saline stress tolerance in lettuce plants by changes of antioxidant defense mechanisms. J. Sci. Food Agric. 2020, 100, 1577–1587. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Fang, L.L.; Zhao, W.N.; Yang, C.X. Effects of different arbuscular mycorrhizal fungi on physiology of Viola prionantha under salt stress. Phyton-Int. J. Exp. Bot. 2023, 92, 55–69. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Porra, R.J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 2002, 73, 149–156. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.A.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 2nd ed.; Claredon Press: Oxford, UK, 1989; 543p. [Google Scholar]
Treatments | Percentage of Mycorrhization |
---|---|
Control | 56.8% a |
100 mM NaCl | 46.3% a |
200 mM NaCl | 69.8% a |
Treatments | NM Plants | AM Plants |
---|---|---|
FFW (g) | ||
Control | 0.43 + 0.10 c | 0.82 + 0.15 a |
100 mM NaCl | 0.50 + 0.06 b | 0.63 + 0.05 a |
200 mM NaCl | 0.49 + 0.06 b | 0.65 + 0.06 a |
FDW (g) | ||
Control | 0.08 + 0.06 b | 0.15 + 0.032 a |
100 mM NaCl | 0.10 + 0.01 b | 0.14 + 0.02 a |
200 mM NaCl | 0.10 + 0.06 b | 0.14 + 0.01 a |
RFW (g) | ||
Control | 0.34 + 0.04 b | 0.97 + 0.19 a |
100 mM NaCl | 0.71 + 0.11 a | 0.73 + 0.07 a |
200 mM NaCl | 0.61 + 0.05 a | 0.72 + 0.04 a |
RDW (g) | ||
Control | 0.03 + 0.03 c | 0.096 + 0.01 b |
100 mM NaCl | 0.09 + 0.00 b | 0.083 + 0.08 b |
200 mM NaCl | 0.13 + 0.03 a | 0.107 + 0.01 a |
FL (cm) | ||
Control | 15.16 + 0.40 b | 20.00 + 1.00 a |
100 mM NaCl | 14.93 + 1.06 b | 19.33 + 2.08 a |
200 mM Na Cl | 18.07 + 1.50 a | 17.67 + 0.57 a |
RL (cm) | ||
Control | 13.67 + 1.52 a | 15.33 + 0.57 a |
100 mM NaCl | 13.00 + 1.00 a | 13.33 + 2.30 a |
200 mM NaCl | 13.67 + 0.57 a | 15.67 + 0.57 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achiary, M.; Chiroli, C.V.; Pacheco Insausti, M.C.; Gallardo, L.V.; Ponce, I.T.; Pedranzani, H.E. Arbuscular Mycorrhizae Confers Salinity Tolerance to Medicago sativa L. Stresses 2024, 4, 752-761. https://doi.org/10.3390/stresses4040049
Achiary M, Chiroli CV, Pacheco Insausti MC, Gallardo LV, Ponce IT, Pedranzani HE. Arbuscular Mycorrhizae Confers Salinity Tolerance to Medicago sativa L. Stresses. 2024; 4(4):752-761. https://doi.org/10.3390/stresses4040049
Chicago/Turabian StyleAchiary, Malena, Camila Victoria Chiroli, Maria Cecilia Pacheco Insausti, Laura Virginia Gallardo, Ivana Tamara Ponce, and Hilda Elizabeth Pedranzani. 2024. "Arbuscular Mycorrhizae Confers Salinity Tolerance to Medicago sativa L." Stresses 4, no. 4: 752-761. https://doi.org/10.3390/stresses4040049
APA StyleAchiary, M., Chiroli, C. V., Pacheco Insausti, M. C., Gallardo, L. V., Ponce, I. T., & Pedranzani, H. E. (2024). Arbuscular Mycorrhizae Confers Salinity Tolerance to Medicago sativa L. Stresses, 4(4), 752-761. https://doi.org/10.3390/stresses4040049