Rice Responses to the Stem Borer Diatraea saccharalis (Lepidoptera: Crambidae) by Infrared-Thermal Imaging: Implications for Field Management
Abstract
:1. Introduction
2. Results
2.1. Insect Damage and Plant Variables
2.2. Thermometric Measurements
3. Discussion
4. Materials and Methods
4.1. Study Site and Plant Material
4.2. Insects and Experimental Procedures of Infestation
4.3. Data Collection and Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bortoli, S.A.D.; Dória, H.O.S.; Albergaria, N.M.M.S.; Botti, M.V. Biological aspects and damage of Diatraea saccharalis (Lepidoptera: Pyralidae) in sorghum, under different doses of nitrogen and potassium. Ciência Agrotecnologia 2005, 29, 267–273. [Google Scholar] [CrossRef]
- Ferreira, E.; Barrigossi, J.A.F.; de Castro, E.D.M.; dos Santos, A.B. Yield losses by stem borer (Diatraea saccharalis Fab. 1794) (Lepidoptera: Pyralidae) in upland rice gonotypes. Pesqui. Agropecuária Trop. 2004, 34, 99–103. [Google Scholar]
- Vilela, M.; Santos, A.J.N.; Simeone, M.L.U.F.; da Costa Parrella, R.A.; Silva, D.D.; Parreira, D.F.; Okumura, F.; Schaffert, R.E.; Mendes, S.M. Influence of Diatraea saccharalis (Lepidoptera: Crambidae) infestation on sweet sorghum productivity and juice quality. Afr. J. Agric. Res. 2017, 12, 2877–2885. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Cherry, R.H. Sugarcane borer Diatraea saccharalis (F.) (Lepidoptera: Crambidae), injury and survival in energy cane versus sugarcane. Sugar Tech 2017, 20, 558–565. [Google Scholar] [CrossRef]
- Correa, F.; Silva, C.L.T.; Pelosi, A.P.; Almeida, A.C.S.; Heinrichs, E.A.; Barrigossi, J.A.F.; Jesus, F.G. Resistance in 27 rice cultivars to sugarcane borer (Lepidoptera: Crambidae). J. Econ. Entomol. 2017, 111, 422–427. [Google Scholar] [CrossRef]
- Nansen, C.; Elliot, N. Remote sensing and reflectance profiling in Entomology. Annu. Rev. Entomol. 2016, 61, 139–158. [Google Scholar] [CrossRef]
- Backoulou, G.F.; Elliott, N.C.; Giles, K.; Phoofolo, M.; Catana, V. Development of a method using multispectral imagery and spatial pattern metrics to quantify stress to wheat fields caused by Diuraphis noxia. Comput. Electron. Agric. 2011, 75, 64–70. [Google Scholar] [CrossRef]
- Iost Filho, F.H.; de Bastos Pazini, J.; de Medeiros, A.D.; Rosalen, D.L.; Yamamoto, P.T. Assessment of injury by four major pests in soybean plants using hyperspectral proximal imaging. Agronomy 2022, 12, e1516. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Xia, Q.; Dong, Y.; Ye, H.; Jiang, H.; Chen, S.; Huang, S. Remote sensing monitoring of rice diseases and pests from different data sources: A Review. Agronomy 2023, 13, e1851. [Google Scholar] [CrossRef]
- Ramírez, A.J.F.; Coelho, R.D.; Pizani, M.A.M.; da Silva, C.J. Determination of crop water stress index for tomato cherry (Lycopersicum Solanum var. cerasiforme.) using a thermal camera. Rev. Bras. Agric. Irrig. 2015, 9, 218–224. (In Portuguese) [Google Scholar] [CrossRef]
- Thapa, S.; Stewart, B.A.; Xue, Q.; Rhoades, M.B.; Angira, B.; Reznik, J. Canopy temperature, yield, and harvest index of corn as affected by planting geometry in a semi-arid environment. Field Crops Res. 2018, 227, 110–118. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Hernandez, P.; Solis, I.; Zarco-Tejada, P. Using high-resolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping. Remote Sens. 2015, 7, 13586–13605. [Google Scholar] [CrossRef]
- Rischbeck, P.; Cardellach, P.; Mistele, B.; Schmidhalter, U. Thermal phenotyping of stomatal sensitivity in spring barley. J. Agron. Crop Sci. 2017, 203, 483–493. [Google Scholar] [CrossRef]
- Biju, S.; Fuentes, S.; Gupta, D. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. Plant Physiol. Biochem. 2018, 127, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Elarab, M.; Ticlavilca, A.M.; Torres-Rua, A.F.; Maslova, I.; McKee, M. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 32–42. [Google Scholar] [CrossRef]
- Berdugo, C.A.; Zito, R.; Paulus, S.; Mahlein, A.K. Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol. 2014, 63, 1344–1356. [Google Scholar] [CrossRef]
- Mahlein, A.-K. Plant disease detection by imaging sensors—Parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef]
- Ortiz-Bustos, C.M.; María, L.; Pérez-Bueno, M.L.; Barón, M.; Molinero-Ruiz, L. Use of blue-green fluorescence and thermal imaging in the early detection of sunflower infection by the root parasitic weed Orobanche cumana Wallr. Front. Plant Sci. 2017, 8, e833. [Google Scholar] [CrossRef]
- Hatton, N.; Sharda, A.; Schapaugh, W.; Van der Merwe, D. Remote thermal infrared imaging for rapid screening of sudden death syndrome in soybean. In Proceedings of the ASABE Annual International Meeting, Detroid, MI, USA, 29 July–1 August 2018; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 29 July. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Camino, C.; Beck, P.S.A.; Calderon, R.; Hornero, A.; Hernández-Clemente, R.; Kattenborn, T.; Montes-Borrego, M.; Susca, L.; Morelli, M.; et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 2018, 4, 432–439. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, H.; Ciechanowska, I.; Spaner, D. Application of infrared thermal imaging for the rapid diagnosis of crop disease. IFAC-PapersOnLine 2018, 51, 424–430. [Google Scholar] [CrossRef]
- Hasan, A.; Mutaqin, K.H.; Taufik, M.; Hidayat, S.H. The potential of a low-cost thermal camera for early detection of temperature changes in virus-infected chili plants. J. ICT Res. Appl. 2022, 17, 17–28. [Google Scholar] [CrossRef]
- Chelladurai, V.; Kaliramesh, S.; Jayas, D.S. Detection of Callosobruchus maculatus (F.) infestation in mung bean (Vigna radiata) using thermal imaging technique. In Proceedings of the NABEC-CSBE/SCGAB 2012 Joint Meeting and Technical Conference, Orillia, ON, Canada, 15–18 July 2012; pp. 15–18. [Google Scholar]
- Golomb, O.; Alchanatis, V.; Cohen, Y.; Levin, N.; Cohen, Y.; Soroker, V. Detection of red palm weevil infected trees using thermal imaging. In Precision Agriculture; Stafford, J.V., Ed.; Wageningen Academic: Wageningen, The Netherlands, 2015; Volume 15, pp. 643–650. [Google Scholar]
- Yones, M.S.; Arafat, S.; Abou, H.A.F.; Abd Elrahman, H.A.; Dah, H.F. Determination of the best timing for control application against cotton leaf worm using remote sensing and geographical information techniques. Egypt. J. Remote Sens. Space Sci. 2012, 15, 151–160. [Google Scholar] [CrossRef]
- Prabhakar, M.; Prasad, Y.G.; Rao, M.N. Remote sensing of biotic stress in crop plants and its applications for pest management. In Crop Stress and Its Management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A.K., Shanker, C., Maheswari, M., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 517–545. [Google Scholar]
- Godfrey, L.D.; Holtzer, T.O.; Norman, J.M. Effects of European corn borer (Lepidoptera: Pyralidae) tunneling and drought stress on field corn gas exchange parameters. J. Econ. Entomol. 1991, 84, 1370–1380. [Google Scholar] [CrossRef]
- Soroker, V.; Suma, P.; Pergola, A.; Cohen, Y.; Alchanatis, V.; Golomb, O.; Goldshtein, E.; Hetzroni, A.; Galazan, L.; Kontodimas, D.; et al. Early detection and monitoring of red palm weevil: Approaches and challenges. In Proceedings of the Palm Pest Mediterranean Conference, Nice, France, 16–18 January 2013; Association Française de Protection des Plantes: Alfortville, France, 2013; pp. 16–18. [Google Scholar]
- Chaerle, L.; Van Der Straeten, D. Imaging techniques and the early detection of plant stress. Trends Plant Sci. 2000, 5, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Takács, S.; Bottomley, H.; Andreller, I.; Zaradnik, T.; Schwarz, J.; Bennett, R.; Strong, W.; Gerhard, G. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects. Biol. Sci. 2009, 276, 649–655. [Google Scholar] [CrossRef]
- Hoffmann, N.; Schröder, T.; Schlüter, F.; Meinlschmidt, P. Potential of infrared thermography to detect insect stages and defects in young trees. J. Kult. 2013, 65, 337–346. [Google Scholar] [CrossRef]
- Painter, R.H. Insect Resistance in Crop Plants; The Macmillan Co: New York, NY, USA, 1951. [Google Scholar]
- Eigenbrode, S.D.; Trumble, J.T. Host plant resistance to insects in integrated pest management in vegetable crops. J. Agric. Entomol. 1994, 11, 201–224. [Google Scholar]
- Kerchev, P.I.; Fenton, B.; Foyer, C.H.; Hancock, R.D. Plant responses to insect herbivory: Interactions between photosynthesis, reactive oxygen species and hormonal signalling pathway. Plant Cell Environ. 2012, 35, 441–453. [Google Scholar] [CrossRef]
- Khush, G.S.; Virk, P.S. IR Varieties and Their Impact. International Rice Research Institute: Los Baños, CA, USA, 2005. [Google Scholar]
- Pedroso, B.A. BR-IRGA-409: A new cultivar of irrigated rice. Lavoura Arrozeira 1979, 32, 18–23. [Google Scholar]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape (with discussion). J. R. Stat. Soc. Ser. C Appl. Stat. 2005, 54, 507–554. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, R.d.A.; dos Santos, P.V.; Pazini, J.d.B.; Almeida, A.C.d.S.; Silva, A.R.d. Rice Responses to the Stem Borer Diatraea saccharalis (Lepidoptera: Crambidae) by Infrared-Thermal Imaging: Implications for Field Management. Stresses 2024, 4, 744-751. https://doi.org/10.3390/stresses4040048
Rocha RdA, dos Santos PV, Pazini JdB, Almeida ACdS, Silva ARd. Rice Responses to the Stem Borer Diatraea saccharalis (Lepidoptera: Crambidae) by Infrared-Thermal Imaging: Implications for Field Management. Stresses. 2024; 4(4):744-751. https://doi.org/10.3390/stresses4040048
Chicago/Turabian StyleRocha, Rodrigo de Almeida, Pedro Valasco dos Santos, Juliano de Bastos Pazini, André Cirilo de Sousa Almeida, and Anderson Rodrigo da Silva. 2024. "Rice Responses to the Stem Borer Diatraea saccharalis (Lepidoptera: Crambidae) by Infrared-Thermal Imaging: Implications for Field Management" Stresses 4, no. 4: 744-751. https://doi.org/10.3390/stresses4040048
APA StyleRocha, R. d. A., dos Santos, P. V., Pazini, J. d. B., Almeida, A. C. d. S., & Silva, A. R. d. (2024). Rice Responses to the Stem Borer Diatraea saccharalis (Lepidoptera: Crambidae) by Infrared-Thermal Imaging: Implications for Field Management. Stresses, 4(4), 744-751. https://doi.org/10.3390/stresses4040048