Strategic Advancements in Rice Cultivation: Combating Heat Stress through Genetic Innovation and Sustainable Practices—A Review
Abstract
:1. Introduction
2. Impact of Heat Stress on Rice
2.1. Agronomic Traits
2.1.1. Heat Stress in the Seedling Stage
2.1.2. Heat Stress in the Vegetative Stage
2.1.3. Heat Stress in the Reproductive Stage
2.2. Yield Traits
Influence of Heat Stress on Grain Number and Weight
2.3. Quality Traits
2.3.1. Heat Stress and Grain Development Efficiency
2.3.2. Heat Stress and Grain Quality
3. Heat Stress Response and Adaptation in Rice
3.1. Morphological/Growth Responses
3.2. Physiological Responses
3.2.1. Photosynthesis in Rice
3.2.2. Stomatal Conductance
3.2.3. Water Status
Silicon’s Role in Water Status
Integrating Silicon in Fertilizer Programs
3.3. Biochemical Responses
3.3.1. Enzyme Activities
3.3.2. Antioxidants
4. The Impact of Thermal Stress on Rice
4.1. Impact of Thermal Stress on Genetic Stability and Enzyme Activities
4.2. Genetic Stability under Thermal Stress
4.3. Enzyme Activities under Thermal Stress
4.4. Role of Reactive Oxygen Species (ROS)
4.5. Genetic and Biochemical Adaptations
4.6. Practical Applications
5. Reactive Oxygen Species in Damaging Cells under Thermal Stress
5.1. The Mechanism and Role of Reactive Oxygen Species (ROS) in Damaging Cells under Thermal Stress
5.2. Enzymatic Antioxidants
6. Role of Different Elements in Mitigating Heat Stress
7. Genetics of Heat Stress in Rice
8. Strategies to Combat Heat Stress
8.1. Agronomic and Cultural Management
8.2. Marker-Assisted Selection
8.3. Genomic Selection for Crop Improvement
8.4. Role of Induced Mutations in Mitigating Heat Stress
9. Global Policy on Breeding for Stress Tolerance
9.1. International Research Programs
9.2. Research and Development
9.3. Adoption of Sustainable Farming Practices
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nath, D.J.; Dutta, C.; Phyllei, D. Effect of heat stress on rice and its management. Int. J. Environ. Clim. 2022, 12, 2587–2595. [Google Scholar] [CrossRef]
- Li, J.Y.; Yang, C.; Xu, J.; Lu, H.P.; Liu, J.X. The hot science in rice research: How rice plants cope with heat stress. Plant Cell Environ. 2023, 46, 1087–1103. [Google Scholar] [CrossRef]
- Cai, H.; Wang, H.; Zhou, L.; Li, B.; Zhang, S.; He, Y.; Guo, Y.; You, A.; Jiao, C.; Xu, Y. Time-series transcriptomic analysis of contrasting rice materials under heat stress reveals a faster response in the tolerant cultivar. Int. J. Mol. Sci. 2023, 24, 9408. [Google Scholar] [CrossRef]
- Taratima, W.; Chuanchumkan, C.; Maneerattanarungroj, P.; Trunjaruen, A.; Theerakulpisut, P.; Dongsansuk, A. Effect of heat stress on some physiological and anatomical characteristics of rice (Oryza sativa L.) cv. KDML105 callus and seedling. Biology 2022, 11, 1587. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Su, R.; Xiao, Y.; Deng, H.; Lu, X.; Wang, F.; Chen, G.; Tang, W.; Zhang, G. 9-Cis-epoxycarotenoid dioxygenase 1 confers heat stress tolerance in rice seedling plants. Front. Plant. Sci. 2022, 13, 1092630. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat Tolerance in Plants: An Overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Baños, Philippines, 1981. [Google Scholar]
- Prasad, P.V.V.; Pisipati, S.R.; Mutava, R.N.; Tuinstra, M.R. Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci. 2008, 48, 1911–1917. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Cairns, J.; Lafitte, R.; Wheeler, T.R.; Price, A.H.; Craufurd, P.Q. Genetic analysis of heat tolerance at anthesis in rice. Crop Sci. 2010, 50, 1633–1641. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Satake, T.; Yoshida, S. High temperature-induced sterility in indica rices at flowering. Jpn. J. Crop Sci. 1978, 47, 6–17. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric. For. Meteorol. 2006, 139, 237–251. [Google Scholar] [CrossRef]
- Rang, Z.W.; Jagadish, S.V.K.; Zhou, Q.M.; Craufurd, P.Q.; Heuer, S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environ. Exp. Bot. 2011, 70, 58–65. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Craufurd, P.Q.; Wheeler, T.R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 2007, 58, 1627–1635. [Google Scholar] [CrossRef]
- Matsui, T.; Ueda, T.; Oki, T.; Sugita, K.; Terahara, N.; Matsumoto, K. α-glucosidase inhibitory action of natural acylated anthocyanins. 1. survey of natural pigments with potent inhibitory activity. J. Agric. Food Chem. 2001, 49, 1948–1951. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Pisipati, S.R.; Momčilović, I.; Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci. 2011, 197, 430–441. [Google Scholar] [CrossRef]
- Morita, S.; Yonemaru, J.I.; Takanashi, J.I. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann. Bot. 2005, 95, 695–701. [Google Scholar] [CrossRef]
- Kobata, T.; Tanaka, S.; Utumi, M.; Hara, S.; Imaki, T. Sterility in rice (Oryza sativa L.) subject to drought during the booting stage occurs not because of lack of assimilate or of water deficit in the shoot but because of dehydration of the root zone. Jpn. J. Crop Sci. 1994, 63, 510–517. [Google Scholar] [CrossRef]
- Wheeler, T.R.; Craufurd, P.Q.; Ellis, R.H.; Porter, J.R.; Vara Prasad, P.V. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 2000, 82, 159–167. [Google Scholar] [CrossRef]
- Sinclair, T.R. Water and nitrogen limitations in soybean grain production I. Model development. Field Crops Res. 1986, 15, 125–141. [Google Scholar] [CrossRef]
- Wu, C.; Cui, K.; Li, Q.; Li, L.; Wang, W.; Hu, Q.; Ding, Y.; Li, G.; Fahad, S.; Huang, J.; et al. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: A 5-year case study. Sci. Rep. 2021, 11, 13604. [Google Scholar] [CrossRef]
- Ren, H.; Bao, J.; Gao, Z.; Sun, D.; Zheng, S.; Bai, J. How rice adapts to high temperatures. Front. Plant. Sci. 2023, 14, 1137923. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chu, C.; Yao, S. The impact of high-temperature stress on rice: Challenges and solutions. Crop J. 2021, 9, 963–976. [Google Scholar] [CrossRef]
- Xu, J.; Xing, Y.; Xu, Y.; Wan, J. Breeding by design for future rice: Genes and genome technologies. Crop J. 2021, 9, 491–496. [Google Scholar] [CrossRef]
- Wada, H.; Hatakeyama, Y.; Onda, Y.; Nonami, H.; Nakashima, T.; Erra-Balsells, R.; Morita, S.; Hiraoka, K.; Tanaka, F.; Nakano, H. Multiple strategies for heat adaptation to prevent chalkiness in the rice endosperm. J. Exp. Bot. 2019, 70, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.E.; Meacham-Hensold, K.; Lemonnier, P.; Slattery, R.A.; Benjamin, C.; Bernacchi, C.J.; Lawson, T.; Cavanagh, A.P. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. J. Exp. Bot. 2021, 72, 2822–2844. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant responses to heat stress: Physiology, transcription, noncoding Rnas, and epigenetics. Int. J. Mol. Sci. 2021, 22, 117. [Google Scholar] [CrossRef]
- Wahab, M.M.S.; Akkareddy, S.; Shanthi, P.; Latha, P. Identification of differentially expressed genes under heat stress conditions in rice (Oryza sativa L.). Mol. Biol. Rep. 2020, 47, 1935–1948. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Chen, W.; Dong, Y.; Zhang, G.; Deng, H.; Liu, X.; Lu, X.; Wang, F.; Chen, G.; et al. Comparative transcriptome analysis of the mechanism difference in heat stress response between indica rice cultivar “IR64” and japonica cultivar “Koshihikari” at the seedling stage. Front. Genet. 2023, 14, 1135577. [Google Scholar] [CrossRef]
- Chandarak, N.; Somjinda, P.; Phoncharoen, P.; Banterng, P.; Taratima, W.; Theerakulpisut, P.; Dongsansuk, A. Booting heat stress alters leaf photosynthesis, growth rate, phenology and yield in rice. Plant Stress 2023, 10, 100226. [Google Scholar] [CrossRef]
- Pantoja-Benavides, A.D.; Garces-Varon, G.; Restrepo-Díaz, H. Foliar growth regulator sprays induced tolerance to combined heat stress by enhancing physiological and biochemical responses in rice. Front. Plant. Sci. 2021, 12, 702892. [Google Scholar] [CrossRef]
- Piveta, L.B.; Roma-Burgos, N.; Noldin, J.A.; Viana, V.E.; de Oliveira, C.; Lamego, F.P.; de Avila, L.A. Molecular and physiological responses of rice and weedy rice to heat and drought stress. Agriculture 2021, 11, 9. [Google Scholar] [CrossRef]
- Shi, W.; Yang, J.; Kumar, R.; Zhang, X.; Impa, S.M.; Xiao, G.; Jagadish, S.V.K. Heat stress during gametogenesis irreversibly damages female reproductive organ in rice. Rice 2022, 15, 32. [Google Scholar] [CrossRef]
- Huang, Y.; Mei, G.; Cao, D.; Qin, Y.; Yang, L.; Ruan, X. Spermidine enhances heat tolerance of rice seeds during mid-filling stage and promote subsequent seed germination. Front. Plant. Sci. 2023, 14, 1230331. [Google Scholar] [CrossRef] [PubMed]
- Thuy, T.L.; Lee, C.-K.; Jeong, J.-H.; Lee, H.-S.; Yang, S.-Y.; Im, Y.-H.; Hwang, W.-H. Impact of heat stress on pollen fertility rate at the flowering stage in Korean rice (Oryza sativa L.) cultivars. Korean J. Crop Sci. 2020, 65, 22–29. [Google Scholar] [CrossRef]
- Wu, C.; Cui, K.; Tang, S.; Li, G.; Wang, S.; Fahad, S.; Nie, L.; Huang, J.; Peng, S.; Ding, Y. Intensified pollination and fertilization ameliorate heat injury in rice (Oryza sativa L.) during the flowering stage. Field Crops Res. 2020, 252, 107795. [Google Scholar] [CrossRef]
- Chiluwal, A.; Bheemanahalli, R.; Kanaganahalli, V.; Boyle, D.; Perumal, R.; Pokharel, M.; Oumarou, H.; Jagadish, S.V.K. Deterioration of ovary plays a key role in heat stress-induced spikelet sterility in sorghum. Plant Cell Environ. 2020, 43, 448–462. [Google Scholar] [CrossRef]
- Takai, T.; Lumanglas, P.; Simon, E.V. Genetic mechanism of heat stress tolerance at anthesis among three different rice varieties with different fertilities under heat stress. Plant Prod. Sci. 2020, 23, 529–538. [Google Scholar] [CrossRef]
- Yan, H.; Wang, C.; Liu, K.; Tian, X. Detrimental effects of heat stress on grain weight and quality in rice (Oryza sativa L.) are aggravated by decreased relative humidity. Peer J. 2021, 9, e11218. [Google Scholar] [CrossRef]
- Wu, C.; Cui, K.; Fahad, S. Heat stress decreases rice grain weight: Evidence and physiological mechanisms of heat effects prior to flowering. Int. J. Mol. Sci. 2022, 23, 10922. [Google Scholar] [CrossRef]
- Sun, T.; Hasegawa, T.; Liu, B.; Tang, L.; Liu, L.; Cao, W.; Zhu, Y. Current rice models underestimate yield losses from short-term heat stresses. Glob. Chang. Biol. 2021, 27, 402–416. [Google Scholar] [CrossRef]
- Sun, Q.; Zhao, Y.; Zhang, Y.; Chen, S.; Ying, Q.; Lv, Z.; Che, X.; Wang, D. Heat stress may cause a significant reduction of rice yield in China under future climate scenarios. Sci. Total Environ. 2022, 818, 151746. [Google Scholar] [CrossRef] [PubMed]
- Sattar, A.; Sher, A.; Ijaz, M.; Ullah, M.S.; Ahmad, N.; Umar, U.U.D. Individual and combined effect of terminal drought and heat stress on allometric growth, grain yield and quality of bread wheat. Pak. J. Bot. 2020, 52, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.I.; Bhatti, M.H.; Ghani, A.; Shehzad, A.; Hussain, A.; Shahzad, R.; Hafeez, M.A.; Abbas, M.; Khalid, M.U.; Akhter, N. Variations among maize (Zea mays L.) hybrids in response to heat stress: Hybrids selection criteria. Turk. J. Field Crops 2021, 26, 8–17. [Google Scholar] [CrossRef]
- Shirdelmoghanloo, H.; Chen, K.; Paynter, B.H.; Angessa, T.T.; Westcott, S.; Khan, H.A.; Hill, C.B.; Li, C. Grain-filling rate improves physical grain quality in barley under heat stress conditions during the grain-filling period. Front. Plant Sci. 2022, 13, 858652. [Google Scholar] [CrossRef] [PubMed]
- Zhen, F.; Zhou, J.; Mahmood, A.; Wang, W.; Chang, X.; Liu, B.; Liu, L.; Cao, W.; Zhu, Y.; Tang, L. Quantifying the effects of short-term heat stress at booting stage on nonstructural carbohydrates remobilization in rice. Crop J. 2020, 8, 194–212. [Google Scholar] [CrossRef]
- Mahmood, A.; Ali, I.; Wang, W.; Ata-Ul-Karim, S.T.; Liu, B.; Liu, L.; Zhu, Y.; Cao, W.; Tang, L. Individual and combined effects of high-temperature stress at booting and flowering stages on rice grain yield. Agronomy 2022, 12, 3092. [Google Scholar] [CrossRef]
- Stone, P. The effects of heat stress on cereal yield and quality. In Crop Responses and Adaptations to Temperature Stress: New Insights and Approaches; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Liu, W.; Yin, T.; Zhao, Y.; Wang, X.; Wang, K.; Shen, Y.; Ding, Y.; Tang, S. Effects of high temperature on rice grain development and quality formation based on proteomics comparative analysis under field warming. Front. Plant Sci. 2021, 12, 746180. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bhushan, B.; Wakchaure, G.C.; Dutta, R.; Jat, B.S.; Meena, K.K.; Rakshit, S.; Pathak, H. Unveiling the impact of heat stress on seed biochemical composition of major cereal crops: Implications for crop resilience and nutritional value. Plant Stress 2023, 9, 100183. [Google Scholar] [CrossRef]
- Ostmeyer, T.; Parker, N.; Jaenisch, B.; Alkotami, L.; Bustamante, C.; Jagadish, S.V.K. Impacts of heat, drought, and their interaction with nutrients on physiology, grain yield, and quality in field crops. Plant Physiol. Rep. 2020, 25, 549–568. [Google Scholar] [CrossRef]
- Sultana, S.; Faruque, M.; Islam, M.R. Rice grain quality parameters and determination tools: A review on the current developments and future prospects. Int. J. Food Prop. 2022, 25, 1063–1078. [Google Scholar] [CrossRef]
- Duan, H.; Tong, H.; Zhu, A.; Zhang, H.; Liu, L. Effects of heat, drought and their combined effects on morphological structure and physicochemical properties of rice (Oryza sativa L.) starch. J. Cereal Sci. 2020, 95, 103059. [Google Scholar] [CrossRef]
- Yavas, I.; Jamal, M.A.; Din, K.U.; Ali, S.; Hussain, S.; Farooq, M. Drought-induced changes in leaf morphology and anatomy: Overview, implications and perspectives. Pol. J. Environ. Stud. 2024, 33, 1517–1530. [Google Scholar] [CrossRef]
- Latif, A.; Ying, S.; Cuixia, P.; Ali, N. Rice curled its leaves either adaxially or abaxially to combat drought stress. Rice Sci. 2023, 30, 405–416. [Google Scholar] [CrossRef]
- Ul Hassan, M.; Rasool, T.; Iqbal, C.; Arshad, A.; Abrar, M.; Abrar, M.M.; Habib-ur-Rahman, M.; Noor, M.A.; Sher, A.; Fahad, S. Linking plants functioning to adaptive responses under heat stress conditions: A mechanistic review. J. Plant Growth. Regul. 2022, 41, 2596–2613. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Lone, J.K.; Pandey, R.; Mondal, N.; Dhandapani, R.; Meena, S.K.; Khan, S. Gayacharan Insights into morphological and physio-biochemical adaptive responses in mungbean (Vigna radiata L.) under heat stress. Front. Genet. 2023, 14, 1206451. [Google Scholar] [CrossRef]
- Iqbal, A.; Fahad, S.; Iqbal, M.; Alamzeb, M.; Ahmad, A.; Anwar, S.; Khan, A.A.; Amanullah; Arif, M.; Inamullah; et al. Special adaptive features of plant species in response to drought. In Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants; Hasanuzzaman, M., Tanveer, M., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Gautam, H.; Fatma, M.; Sehar, Z.; Iqbal, N.; Albaqami, M.; Khan, N.A. Exogenously-sourced ethylene positively modulates photosynthesis, carbohydrate metabolism, and antioxidant defense to enhance heat tolerance in rice. Int. J. Mol. Sci. 2022, 23, 1031. [Google Scholar] [CrossRef]
- Jiang, X.; Hua, M.; Yang, X.; Hu, N.; Qiu, R.; Yang, S. Impacts of mist spray on rice field micrometeorology and rice yield under heat stress condition. Sci. Rep. 2020, 10, 1579. [Google Scholar] [CrossRef] [PubMed]
- Zahra, N.; Hafeez, M.B.; Ghaffar, A.; Kausar, A.; Al Zeidi, M.; Siddique, K.H.M.; Farooq, M. Plant photosynthesis under heat stress: Effects and management. Environ. Exp. Bot. 2023, 206, 105178. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, M.; Wang, K.; Qu, A.; Hu, S.; Jiang, Q.; Yi, K.; Wang, F.; Cai, C.; Zhu, C.; et al. Rice DST Transcription Factor Negatively Regulates Heat Tolerance through ROS-Mediated Stomatal Movement and Heat-Responsive Gene Expression. Front. Plant Sci. 2023, 14, 1068296. [Google Scholar] [CrossRef]
- Phunthong, C.; Pitaloka, M.K.; Chutteang, C.; Ruengphayak, S.; Arikit, S.; Vanavichit, A. Rice mutants, selected under severe drought stress, show reduced stomatal density and improved water use efficiency under restricted water conditions. Front. Plant Sci. 2024, 15, 1307653. [Google Scholar] [CrossRef] [PubMed]
- Faralli, M.; Bontempo, L.; Bianchedi, P.L.; Moser, C.; Bertamini, M.; Lawson, T.; Camin, F.; Stefanini, M.; Varotto, C. Natural variation in stomatal dynamics drives divergence in heat stress tolerance and contributes to seasonal intrinsic water-use efficiency in Vitis vinifera (Subsp. sativa and sylvestris). J. Exp. Bot. 2022, 73, 3238–3250. [Google Scholar] [CrossRef] [PubMed]
- Pignon, C.P.; Fernandes, S.B.; Valluru, R.; Bandillo, N.; Lozano, R.; Buckler, E.; Gore, M.A.; Long, S.P.; Brown, P.J.; Leakey, A.D.B. Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes. Plant Physiol. 2021, 187, 2544–2562. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Fleisher, D.H.; Wang, Z.; Barnaby, J.; Timlin, D.; Reddy, V.R. Application of a coupled model of photosynthesis, stomatal conductance and transpiration for rice leaves and canopy. Comput. Electron Agric. 2021, 182, 106047. [Google Scholar] [CrossRef]
- Wang, W.; Cui, K.; Hu, Q.; Wu, C.; Li, G.; Huang, J.; Peng, S. Response of spikelet water status to high temperature and its relationship with heat tolerance in rice. Crop J. 2021, 9, 1344–1356. [Google Scholar] [CrossRef]
- Hossain, M.; Sikder, S.; Husna, A.; Sultana, S.; Akhter, S.; Alim, A.; Joardar, J. Influence of water stress on morphology, physiology and yield contributing characteristics of rice. SAARC J. Agric. 2020, 18, 61–71. [Google Scholar] [CrossRef]
- Peng, X.; Li, J.; Sun, L.; Gao, Y.; Cao, M.; Luo, J. Impacts of water deficit and post-drought irrigation on transpiration rate, root activity, and biomass yield of Festuca arundinacea during phytoextraction. Chemosphere 2022, 294, 133842. [Google Scholar] [CrossRef] [PubMed]
- Dongsansuk, A.; Paethaisong, W.; Theerakulpisut, P. Membrane stability and antioxidant enzyme activity of rice seedlings in response to short-term high temperature sreatments. Chil. J. Agric. Res. 2021, 81, 607–617. [Google Scholar] [CrossRef]
- Singha, D.L.; Maharana, J.; Panda, D.; Dehury, B.; Modi, M.K.; Singh, S. Understanding the thermal response of rice eukaryotic transcription factor EIF4A1 towards dynamic temperature stress: Insights from expression profiling and molecular synamics simulation. J. Biomol. Struct. Dyn. 2021, 39, 2575–2584. [Google Scholar] [CrossRef]
- Mahreen, N.; Yasmin, S.; Asif, M.; Yousaf, S.; Yahya, M.; Ejaz, K.; Shahid Hussain, H.; Sajjid, Z.I.; Arif, M. Integrated analysis of osmotic stress and infrared thermal imaging for the selection of resilient rice under water scarcity. Front. Plant Sci. 2022, 13, 834520. [Google Scholar] [CrossRef] [PubMed]
- Kuhla, J.; Pausch, J.; Schaller, J. Effect on soil water availability, rather than silicon uptake by plants, explains the beneficial effect of silicon on rice during drought. Plant Cell Environ. 2021, 44, 3336–3346. [Google Scholar] [CrossRef]
- Nahar, L.; Aycan, M.; Hanamata, S.; Baslam, M.; Mitsui, T. Impact of single and combined salinity and high-temperature stresses on agro-physiological, biochemical, and transcriptional responses in rice and stress-release. Plants 2022, 11, 501. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Rolly, N.K.; Al Azzawi, T.N.I.; Imran, M.; Mun, B.G.; Lee, I.J.; Yun, B.W. Lead (Pb)-induced oxidative stress alters the morphological and physio-biochemical properties of rice (Oryza sativa L.). Agronomy 2021, 11, 409. [Google Scholar] [CrossRef]
- Frukh, A.; Siddiqi, T.O.; Khan, M.I.R.; Ahmad, A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol. Biochem. 2020, 146, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Nareshkumar, A.; Subbarao, S.; Vennapusa, A.R.; Ashwin, V.; Banarjee, R.; Kulkarni, M.J.; Ramu, V.S.; Udayakumar, M. Enzymatic and non-enzymatic detoxification of reactive carbonyl compounds improves the oxidative stress tolerance in cucumber, tobacco and rice seedlings. J. Plant Growth Regul. 2020, 39, 1359–1372. [Google Scholar] [CrossRef]
- Jiang, Y.; Yi, X.-T.; Liu, M.-Y.; Liu, B.-B.; Zhou, H.; Zeng, P.; Liao, B.H.; Gu, J.F. Dynamic responses of soil enzymes at key growth stages in rice after the in Situ remediation of paddy soil contaminated with cadmium and Arsenic. Sci. Total Environ. 2022, 830, 154633. [Google Scholar] [CrossRef] [PubMed]
- Sathee, L.; Jha, S.K.; Rajput, O.S.; Singh, D.; Kumar, S.; Kumar, A. Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. Plant Physiol. Biochem. 2021, 165, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Al-Zahrani, H.S.; Alharby, H.F.; Fahad, S. Antioxidative defense system, hormones, and metabolite accumulation in different plant parts of two contrasting rice cultivars as influenced by plant growth regulators under heat stress. Front. Plant Sci. 2022, 13, 911846. [Google Scholar] [CrossRef] [PubMed]
- Buttar, Z.A.; Wu, S.N.; Arnao, M.B.; Wang, C.; Ullah, I.; Wang, C. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 2020, 9, 809. [Google Scholar] [CrossRef]
- Calderón-Páez, S.E.; Cueto-Niño, Y.A.; Sánchez-Reinoso, A.D.; Garces-Varon, G.; Chávez-Arias, C.C.; Restrepo-Díaz, H. Foliar boron compounds applications mitigate heat stress caused by high daytime temperatures in rice (Oryza sativa L.) boron mitigates heat stress in rice. J. Plant Nutr. 2021, 44, 2514–2527. [Google Scholar] [CrossRef]
- Lakaew, K.; Akeprathumchai, S.; Thiravetyan, P. Foliar spraying of calcium acetate alleviates yield loss in rice (Oryza sativa L.) by induced anti-oxidative defence System under ozone and heat stresses. Ann. Appl. Biol. 2021, 178, 414–426. [Google Scholar] [CrossRef]
- Vijayalakshmi, D.; Srividhya, S.; Vivitha, P.; Keerthi, M.M. Enhanced oxidative stress tolerance in rice plants is associated with membrane stability, pigment composition and scavenging of reactive oxygen species. ORYZA—Int. J. Rice 2017, 54, 407–413. [Google Scholar] [CrossRef]
- Hussain, S.; Zhang, R.; Liu, S.; Li, R.; Wang, Y.; Chen, Y.; Hou, H.; Dai, Q. Methyl jasmonate alleviates the deleterious effects of salinity stress by augmenting antioxidant enzyme activity and ion homeostasis in rice (Oryza sativa L.). Agronomy 2022, 12, 2343. [Google Scholar] [CrossRef]
- Cai, L.; Dang, M.; Yang, Y.; Mei, R.; Li, F.; Tao, X.; Palukaitis, P.; Beckett, R.; Miller, W.A.; Gray, S.M.; et al. Naturally occurring substitution of an amino acid in a plant virus gene-silencing suppressor enhances viral adaptation to increasing thermal stress. PLoS Pathog. 2023, 19, e1011301. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhou, L.; Liu, J.; Cao, Z.; Du, X.; Huang, F.; Pan, G.; Cheng, F. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility. Plant Cell Rep. 2018, 37, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Sailaja, B.; Subrahmanyam, D.; Neelamraju, S.; Vishnukiran, T.; Rao, Y.V.; Vijayalakshmi, P.; Voleti, S.R.; Bhadana, V.P.; Mangrauthia, S.K. Integrated physiological, biochemical, and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature. Front. Plant Sci. 2015, 6, 1044. [Google Scholar] [CrossRef] [PubMed]
- Bahuguna, R.N.; Jha, J.; Pal, M.; Shah, D.; Lawas, L.M.; Khetarpal, S.; Jagadish, K.S.V. Physiological and biochemical characterization of NERICA-L-44: A novel source of heat tolerance at the vegetative and reproductive stages in rice. Physiol. Plant. 2015, 154, 543–559. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Li, X.; Redoña, E.; Ishimaru, T.; Jagadish, K. Genetics and breeding of heat tolerance in rice. In Rice Improvement; Ali, J., Wani, S.H., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Hu, C.; Jiang, J.; Li, Y.; Song, S.; Zou, Y.; Jing, C.; Zhang, Y.; Wang, D.; He, Q.; Dang, X. QTL mapping and identification of candidate genes using a genome-wide association study for heat tolerance at anthesis in rice (Oryza sativa L.). Front. Genet. 2022, 13, 983525. [Google Scholar] [CrossRef] [PubMed]
- Ravikiran, K.T.; Gopala Krishnan, S.; Vinod, K.K.; Dhawan, G.; Dwivedi, P.; Kumar, P.; Bansal, V.P.; Nagarajan, M.; Bhowmick, P.K.; Ellur, R.K.; et al. A Trait specific QTL survey identifies NL44, a NERICA cultivar as a novel source for reproductive stage heat stress tolerance in rice. Plant Physiol. Rep. 2020, 25, 664–676. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Q.; Tang, M.; Zhang, X.; Pan, Y.; Yang, X.; Gao, G.; Lv, R.; Tao, W.; Jiang, L.; et al. QTL mapping and identification of candidate genes for heat tolerance at the flowering stage in rice. Front. Genet. 2021, 11, 621871. [Google Scholar] [CrossRef]
- Jha, U.C.; Nayyar, H.; Palakurthi, R.; Jha, R.; Valluri, V.; Bajaj, P.; Chitikineni, A.; Singh, N.P.; Varshney, R.K.; Thudi, M. Major QTLs and potential candidate genes for heat stress tolerance identified in chickpea (Cicer arietinum L.). Front. Plant Sci. 2021, 12, 655103. [Google Scholar] [CrossRef]
- Waghmare, S.G.; Sindhumole, P.; Mathew, D.; Shylaja, M.R.; Francies, R.M.; Abida, P.S.; Narayanankutty, M.C. Identification of QTL linked to heat tolerance in rice (Oryza sativa L.) using SSR markers through bulked Segregant Analysis. Electron. J. Plant Breed. 2021, 12, 46–53. [Google Scholar] [CrossRef]
- Lopes Hornai, E.M.L.; Aycan, M.; Mitsui, T. The promising B−type response regulator hst1 gene provides multiple high temperature and drought stress tolerance in rice. Int. J. Mol. Sci. 2024, 25, 2385. [Google Scholar] [CrossRef]
- Kannan, K.; Kundu, D.; Singh, R.; Thakur, A.; Chaudhari, S. Productivity and water use efficiency of aerobic rice under different moisture regimes in eastern India. Ind. J. Soil Cons. 2015, 43, 170–174. [Google Scholar]
- Chandrika, M.; Devi, M.U.; Ramulu, V.; Ramana, M.V. Evaluation of different varieties of aerobic rice (Oryza sativa L.) under different fertigation levels on growth and yield parameters. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2793–2801. [Google Scholar] [CrossRef]
- Sagarika, B.; Ashoka Reddy, Y.; Sumathi, V. Organics and micronutrient management practices on soil available nutrient and yield of aerobic rice. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 759–763. [Google Scholar] [CrossRef]
- Vinarao, R.; Proud, C.; Snell, P.; Fukai, S.; Mitchell, J. Qtl validation and development of snp-based high throughput molecular markers targeting a genomic region conferring narrow root cone angle in aerobic rice production systems. Plants 2021, 10, 2099. [Google Scholar] [CrossRef]
- Akshatha, M.K. Characterization of Biochar, Nutrient Release and Its Effect on Growth and Yield of Aerobic Rice. Master’s (Agri) Thesis, University of Agricultural Sciences Bengaluru, Karnataka, India, 2015. [Google Scholar]
- Irshad, M.; Wahid, M.A.; Farrukh Saleem, M.; Khan, S.; Irshad, S.; Matloob, A.; Sarwar, M.; Ali, M.; Hasnain, Z.; Akhtar Cheema, M. Zinc coated urea enhanced the growth and quality of rice cultivated under aerobic and anaerobic culture. J. Plant Nutr. 2022, 45, 1198–1213. [Google Scholar] [CrossRef]
- Preethi, S.; Gurusamy, A.; Subramanian, E.; Indirani, R. Screening of rice cultures and mitigation of iron deficiency in aerobic rice. Int. J. Chem. Stud. 2020, 8, 2272–2274. [Google Scholar] [CrossRef]
- Baadu, R.; Shamsiah, A.; Joseph, H. Evaluation of arbuscular mycorrhiza inoculation potential for sustainable production of aerobic rice var. MR1A. IJARGE. 2020, 16, 63–73. [Google Scholar] [CrossRef]
- Porwal, M.; Verma, B. Agronomic interventions for the mitigation of climate change. Emerg. Trends Clim. Chang. 2023, 2, 27–39. [Google Scholar]
- Bhuiyan, M.; Islam, A.; Sarkar, M.; Mamun, M.; Salam, M.; Kabir, M. Agronomic management and interventions to increase rice yield in Bangladesh. Bangladesh Rice J. 2021, 24, 161–181. [Google Scholar] [CrossRef]
- Khairul Alam, M.; Bell, R.W.; Hasanuzzaman, M.; Salahin, N.; Rashid, M.H.; Akter, N.; Akhter, S.; Islam, M.S.; Islam, S.; Naznin, S.; et al. Rice (Oryza sativa L.) establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy 2020, 10, 888. [Google Scholar] [CrossRef]
- Mylonas, I.; Stavrakoudis, D.; Katsantonis, D.; Korpetis, E. Chapter 1—Better farming practices to combat climate change. In Climate Change and Food Security with Emphasis on Wheat, 1st ed.; Ozturk, M., Gul, A., Eds.; Academic Press: Cambridge, UK, 2020; pp. 1–29. [Google Scholar]
- Riaz, F.; Riaz, M.; Arif, M.S.; Yasmeen, T.; Ashraf, M.A.; Adil, M.; Ali, S.; Mahmood, R.; Rizwan, M.; Hussain, Q.; et al. Alternative and Non-conventional Soil and Crop Management Strategies for Increasing Water Use Efficiency. In Environment, Climate, Plant and Vegetation Growth; Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Khan, I.A., Adnan, M., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Sabaghnia, N. Strategies to alleviate the unusual effects of climate change on crop production: A thirsty and warm future, low crop quality. A review. Biologija 2023, 69, 121–133. [Google Scholar] [CrossRef]
- Bellundagi, A.; Ramya, K.T.; Krishna, H.; Jain, N.; Shashikumara, P.; Singh, P.K.; Singh, G.P.; Prabhu, K.V. Marker-assisted backcross breeding for heat tolerance in bread wheat (Triticum aestivum L.). Front. Genet. 2022, 13, 1056783. [Google Scholar] [CrossRef]
- Dixit, S.; Singh, U.M.; Singh, A.K.; Alam, S.; Venkateshwarlu, C.; Nachimuthu, V.V.; Yadav, S.; Abbai, R.; Selvaraj, R.; Devi, M.N.; et al. Marker Assisted forward breeding to combine multiple biotic-abiotic stress resistance/tolerance in rice. Rice 2020, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Withanawasam, D.M.; Kommana, M.; Pulindala, S.; Eragam, A.; Moode, V.N.; Kolimigundla, A.; Puram, R.V.; Palagiri, S.; Balam, R.; Vemireddy, L.R. Improvement of grain yield under moisture and heat stress conditions through marker-assisted pedigree breeding in rice (Oryza sativa L.). Crop Pasture Sci. 2022, 73, 356–369. [Google Scholar] [CrossRef]
- Vanitha, J.; Mahendran, R.; Raveendran, M.; Jegadeeswaran, M. Marker assisted backcross analysis for high temperature tolerance in rice. Vegetos 2023, 37, 731–737. [Google Scholar] [CrossRef]
- Rao, S.C.; Srinivas, T.; Rao, R.; Rao, S.N.; Vinayagam, S.S.; Krishnan, P. Accelerated Crop Breeding towards Development of Climate Resilient Varieties; ICAR-NAARM: Hyderabad, India, 2020. [Google Scholar]
- Saini, D.K.; Kumar, S.; Kaur, R. Applying Genomics Resources to Accelerate the Development of Climate Resilient Crops. In Adapting to Climate Change in Agriculture-Theories and Practices; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Sinha, D.; Maurya, A.K.; Abdi, G.; Majeed, M.; Agarwal, R.; Mukherjee, R.; Ganguly, S.; Aziz, R.; Bhatia, M.; Majgaonkar, A.; et al. Integrated genomic selection for accelerating breeding programs of climate-smart cereals. Genes 2023, 14, 1484. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Das, S.; Patra, B. Advances in Rice Breeding: Stress Tolerance, Climate Resilience, Quality & High Yield; ICAR-National Rice Research Institute: Cuttack, India, 2021. [Google Scholar]
- Dar, M.H.; Bano, D.A.; Waza, S.A.; Zaidi, N.W.; Majid, A.; Shikari, A.B.; Ahangar, M.A.; Hossain, M.; Kumar, A.; Singh, U.S. Abiotic stress tolerance-progress and pathways of sustainable rice production. Sustainability 2021, 13, 2078. [Google Scholar] [CrossRef]
- Qin, H.; Li, Y.; Huang, R. Advances and challenges in the breeding of salt-tolerant rice. Int. J. Mol. Sci. 2020, 21, 8385. [Google Scholar] [CrossRef]
- Bin Rahman, A.N.M.R.; Zhang, J. Trends in rice research: 2030 and beyond. Food Energy Secur. 2023, 12, e390. [Google Scholar] [CrossRef]
- Da Costa, M.V.J.; Ramegowda, Y.; Ramegowda, V.; Karaba, N.N.; Sreeman, S.M.; Udayakumar, M. Combined drought and heat stress in rice: Responses, phenotyping and strategies to improve tolerance. Rice Sci. 2021, 28, 233–242. [Google Scholar] [CrossRef]
- Senguttuvel, P.; Jaldhani, V.; Raju, N.S.; Balakrishnan, D.; Beulah, P.; Bhadana, V.P.; Mangrauthia, S.K.; Neeraja, C.N.; Subrahmanyam, D.; Rao, P.R.; et al. Breeding rice for heat tolerance and climate change scenario; possibilities and way forward. A review. Arch. Agron. Soil Sci. 2022, 68, 115–132. [Google Scholar] [CrossRef]
- Connor, M.; de Guia, A.H.; Pustika, A.B.; Sudarmaji; Kobarsih, M.; Hellin, J. Rice farming in central java, indonesia—Adoption of sustainable farming practices, impacts and implications. Agronomy 2021, 11, 881. [Google Scholar] [CrossRef]
- Aryal, J.P.; Rahut, D.B.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A. Climate change mitigation options among farmers in South Asia. Environ. Dev. Sustain. 2020, 22, 3267–3289. [Google Scholar] [CrossRef]
- Hussain, S.; Huang, J.; Huang, J.; Ahmad, S.; Nanda, S.; Anwar, S.; Shakoor, A.; Zhu, C.; Zhu, L.; Cao, X.; et al. Rice Production Under Climate Change: Adaptations and Mitigating Strategies. In Environment, Climate, Plant and Vegetation Growth; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Ramborun, V.; Facknath, S.; Lalljee, B. Moving toward sustainable agriculture through a better understanding of farmer perceptions and attitudes to cope with climate change. J. Agric. Educ. Ext. 2020, 26, 37–57. [Google Scholar] [CrossRef]
Growth Stage | Temperature (°C) | Effects on Growth and Yield | Physiological Changes | References |
---|---|---|---|---|
Seedling | >35 | Reduced plant height, leaf wilting, poor establishment, reduced leaf area, reduced root development | Increased water loss, impaired root growth, reduced chlorophyll content, decreased nutrient uptake | [6,7,8] |
Vegetative | >40 | Reduced tiller number, stunted growth, leaf scorching, reduced biomass accumulation | Decreased photosynthetic efficiency, increased respiration, impaired nutrient uptake, oxidative stress | [6,9,10] |
Early reproductive | >33 | Reduced panicle initiation, delayed heading, reduced spikelet number | Impaired pollen development, reduced spikelet fertility, hormonal imbalance | [11,12,13] |
Anthesis | >33 | Spikelet sterility, reduced grain setting, reduced pollen viability | Pollen sterility, impaired ovule development, reduced pollen tube growth | [14,15,16] |
Grain filling | >33 | Reduced grain size, poor grain filling, chalkiness, reduced grain weight | Impaired starch synthesis, increased grain chalkiness, accelerated grain maturation | [7,17,18] |
Maturity | >33 | Reduced yield, poor grain quality, increased grain breakage | Accelerated senescence, decreased grain filling duration, reduced grain density | [16,19,20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mthiyane, P.; Aycan, M.; Mitsui, T. Strategic Advancements in Rice Cultivation: Combating Heat Stress through Genetic Innovation and Sustainable Practices—A Review. Stresses 2024, 4, 452-480. https://doi.org/10.3390/stresses4030030
Mthiyane P, Aycan M, Mitsui T. Strategic Advancements in Rice Cultivation: Combating Heat Stress through Genetic Innovation and Sustainable Practices—A Review. Stresses. 2024; 4(3):452-480. https://doi.org/10.3390/stresses4030030
Chicago/Turabian StyleMthiyane, Pretty, Murat Aycan, and Toshiaki Mitsui. 2024. "Strategic Advancements in Rice Cultivation: Combating Heat Stress through Genetic Innovation and Sustainable Practices—A Review" Stresses 4, no. 3: 452-480. https://doi.org/10.3390/stresses4030030
APA StyleMthiyane, P., Aycan, M., & Mitsui, T. (2024). Strategic Advancements in Rice Cultivation: Combating Heat Stress through Genetic Innovation and Sustainable Practices—A Review. Stresses, 4(3), 452-480. https://doi.org/10.3390/stresses4030030