Examining the Force-Traces of Countermovement Jumps and Standing Broad Jumps for Kinematic Coordination Indicators
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. CMJ
3.2. SBJ H-K
3.3. SBJ K-A
4. Discussion
4.1. Limitations
4.2. Future Applications and Use
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 1D | One-dimensional |
| 2D | Two-dimensional |
| 3D | Three-dimensional |
| COM | Centre of mass |
| BM | Body mass |
| CMJ | Countermovement jump |
| EMG | Electromyography |
| FR | Resultant force |
| Fy | Horizontal force (anterior–posterior) |
| Fz | Vertical force |
| HIGH | Largest time interval between joint extension velocities |
| H-K | Time interval between peak hip extension velocity and peak knee extension velocity |
| K-A | Time interval between peak knee extension velocity and peak ankle extension velocity |
| LOW | Smallest time interval between joint extension velocities |
| MOD | Intermediate time interval between joint extension velocities |
| RFD | Rate of force development |
| RFT | Random field theory |
| RSIMod | Modified reactive strength index |
| SBJ | Standing broad jump |
| SJ | Squat jump |
| SPM | Statistical parametric mapping |
| SnPM | Statistical non-parametric mapping |
| vGRF | Vertical ground reaction force |
References
- Mylonas, V.; Chalitsios, C.; Nikodelis, T. Validation of a Portable Wireless Force Platform System To Measure Ground Reaction Forces During Various Tasks. Int. J. Sports Phys. Ther. 2023, 18, 1283–1289. [Google Scholar] [CrossRef]
- Tufano, J.J.; Malecek, J.; Steffl, M.; Stastny, P.; Hojka, V.; Vetrovsky, T. Field-Based and Lab-Based Assisted Jumping: Unveiling the Testing and Training Implications. Front. Physiol. 2018, 9, 1284. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The Countermovement Jump to Monitor Neuromuscular Status: A Meta-Analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Robles-Palazón, F.J.; Comfort, P.; Ripley, N.J.; Herrington, L.; Bramah, C.; McMahon, J.J. Force Plate Methodologies Applied to Injury Profiling and Rehabilitation in Sport: A Scoping Review Protocol. PLoS ONE 2023, 18, e0292487. [Google Scholar] [CrossRef]
- Harry, J.; Krzyszkowski, J.; Chowning, L.; Kipp, K. Phase-Specific Force and Time Predictors of Standing Long Jump Distance. J. Appl. Biomech. 2021, 37, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Kirby, T.J.; McBride, J.M.; Haines, T.L.; Dayne, A.M. Relative Net Vertical Impulse Determines Jumping Performance. J. Appl. Biomech. 2011, 27, 207–214. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Žitnik, J.; Smajla, D.; Šarabon, N. The Difference between Squat Jump and Countermovement Jump in 770 Male and Female Participants from Different Sports. Eur. J. Sport Sci. 2022, 22, 985–993. [Google Scholar] [CrossRef]
- McBride, J.M.; Kirby, T.J.; Haines, T.L.; Skinner, J.W.; Delalija, A. Relationship Between Impulse, Peak Force and Jump Squat Performance with Variation in Loading and Squat Depth. J. Strength Cond. Res. 2011, 25, S77–S78. [Google Scholar] [CrossRef]
- Shinchi, K.; Yamashita, D.; Yamagishi, T.; Aoki, K.; Miyamoto, N. Relationship between Jump Height and Lower Limb Joint Kinetics and Kinematics during Countermovement Jump in Elite Male Athletes. Sports Biomech. 2024, 23, 3454–3465. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.C. Generalized N-Dimensional Biomechanical Field Analysis Using Statistical Parametric Mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Gheller, R.G.; Dal Pupo, J.; Ache-Dias, J.; Detanico, D.; Padulo, J.; dos Santos, S.G. Effect of Different Knee Starting Angles on Intersegmental Coordination and Performance in Vertical Jumps. Hum. Mov. Sci. 2015, 42, 71–80. [Google Scholar] [CrossRef]
- McBride, J.M.; Kirby, T.J.; Haines, T.L.; Skinner, J. Relationship Between Relative Net Vertical Impulse and Jump Height in Jump Squats Performed to Various Squat Depths and With Various Loads. Int. J. Sports Physiol. Perform. 2010, 5, 484–496. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Rojas, F.J.; Gómez-Martínez, F.; García-Ramos, A. Vertical Jump Performance Is Affected by the Velocity and Depth of the Countermovement. Sports Biomech. 2021, 20, 1015–1030. [Google Scholar] [CrossRef] [PubMed]
- Dowling, J.J.; Vamos, L. Identification of Kinetic and Temporal Factors Related to Vertical Jump Performance. J. Appl. Biomech. 1993, 9, 95–110. [Google Scholar] [CrossRef]
- Bobbert, M.F.; van Soest, A.J. Why Do People Jump the Way They Do? Exerc. Sport Sci. Rev. 2001, 29, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F.; van Ingen Schenau, G.J. Coordination in Vertical Jumping. J. Biomech. 1988, 21, 249–262. [Google Scholar] [CrossRef]
- Atwater, A.E. Biomechanics of Overarm Throwing Movements and of Throwing Injuries. Exerc. Sport Sci. Rev. 1979, 7, 43–85. [Google Scholar] [CrossRef]
- Cushion, E.J.; Warmenhoven, J.; North, J.S.; Cleather, D.J. Principal Component Analysis Reveals the Proximal to Distal Pattern in Vertical Jumping Is Governed by Two Functional Degrees of Freedom. Front. Bioeng. Biotechnol. 2019, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Hirashima, M.; Yamane, K.; Nakamura, Y.; Ohtsuki, T. Kinetic Chain of Overarm Throwing in Terms of Joint Rotations Revealed by Induced Acceleration Analysis. J. Biomech. 2008, 41, 2874–2883. [Google Scholar] [CrossRef]
- Putnam, C.A. Sequential Motions of Body Segments in Striking and Throwing Skills: Descriptions and Explanations. J. Biomech. 1993, 26 (Suppl. S1), 125–135. [Google Scholar] [CrossRef]
- Putnam, C.A. A Segment Interaction Analysis of Proximal-to-Distal Sequential Segment Motion Patterns. Med. Sci. Sports Exerc. 1991, 23, 130–144. [Google Scholar] [CrossRef]
- Jo, I.; Lee, H.-D. Joint Coordination and Muscle-Tendon Interaction Differ Depending on The Level of Jumping Performance. J. Sports Sci. Med. 2023, 22, 189–195. [Google Scholar] [CrossRef]
- Fukashiro, S.; Besier, T.F.; Barrett, R.; Cochrane, J.; Nagano, A.; Lloyd, D.G. Direction Control in Standing Horizontal and Vertical Jumps. Int. J. Sport Health Sci. 2005, 3, 272–279. [Google Scholar] [CrossRef]
- Schache, A.G.; Blanch, P.D.; Dorn, T.W.; Brown, N.A.T.; Rosemond, D.; Pandy, M.G. Effect of Running Speed on Lower Limb Joint Kinetics. Med. Sci. Sports Exerc. 2011, 43, 1260–1271. [Google Scholar] [CrossRef]
- van Soest, A.J.; Schwab, A.L.; Bobbert, M.F.; van Ingen Schenau, G.J. The Influence of the Biarticularity of the Gastrocnemius Muscle on Vertical-Jumping Achievement. J. Biomech. 1993, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.; Bobbert, M.F.; van Ingen Schenau, G.J. Mechanical Output from Individual Muscles during Explosive Leg Extensions: The Role of Biarticular Muscles. J. Biomech. 1996, 29, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Prilutsky, B.I.; Zatsiorsky, V.M. Tendon Action of Two-Joint Muscles: Transfer of Mechanical Energy between Joints during Jumping, Landing, and Running. J. Biomech. 1994, 27, 25–34. [Google Scholar] [CrossRef]
- Cushion, E.J.; North, J.S.; Cleather, D.J. Differences in Motor Control Strategies of Jumping Tasks, as Revealed by Group and Individual Analysis. J. Mot. Behav. 2022, 54, 44–56. [Google Scholar] [CrossRef]
- Hunter, S.K.; Angadi, S.S.; Bhargava, A.; Harper, J.; Hirschberg, A.L.; Levine, B.D.; Moreau, K.L.; Nokoff, N.J.; Stachenfeld, N.S.; Bermon, S. The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med. Sci. Sports Exerc. 2023, 55, 2328–2360. [Google Scholar] [CrossRef]
- Honert, E.C.; Pataky, T.C. Timing of Gait Events Affects Whole Trajectory Analyses: A Statistical Parametric Mapping Sensitivity Analysis of Lower Limb Biomechanics. J. Biomech. 2021, 119, 110329. [Google Scholar] [CrossRef]
- Hughes, S.; Warmenhoven, J.; Haff, G.G.; Chapman, D.W.; Nimphius, S. Countermovement Jump and Squat Jump Force-Time Curve Analysis in Control and Fatigue Conditions. J. Strength Cond. Res. 2022, 36, 2752–2761. [Google Scholar] [CrossRef]
- James, L.P.; Connick, M.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. The Countermovement Jump Mechanics of Mixed Martial Arts Competitors. J. Strength Cond. Res. 2020, 34, 982–987. [Google Scholar] [CrossRef]
- Warmenhoven, J.; Harrison, A.; Robinson, M.A.; Vanrenterghem, J.; Bargary, N.; Smith, R.; Cobley, S.; Draper, C.; Donnelly, C.; Pataky, T. A Force Profile Analysis Comparison between Functional Data Analysis, Statistical Parametric Mapping and Statistical Non-Parametric Mapping in on-Water Single Sculling. J. Sci. Med. Sport 2018, 21, 1100–1105. [Google Scholar] [CrossRef]
- Guess, T.M.; Gray, A.D.; Willis, B.W.; Guess, M.M.; Sherman, S.L.; Chapman, D.W.; Mann, J.B. Force-Time Waveform Shape Reveals Countermovement Jump Strategies of Collegiate Athletes. Sports 2020, 8, 159. [Google Scholar] [CrossRef]
- Kennedy, R.A.; Drake, D. Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance? Sports 2018, 6, 36. [Google Scholar] [CrossRef]
- Kozinc, Ž. Is the Shape of the Force-Time Curve Related to Performance in Countermovement Jump? A Review. Crit. Rev. Biomed. Eng. 2022, 50, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.P.; McMahon, J.J. Within-Subject Consistency of Unimodal and Bimodal Force Application during the Countermovement Jump. Sports 2018, 6, 143. [Google Scholar] [CrossRef]
- Eng, J.J.; Winter, D.A. Kinetic Analysis of the Lower Limbs during Walking: What Information Can Be Gained from a Three-Dimensional Model? J. Biomech. 1995, 28, 753–758. [Google Scholar] [CrossRef]
- McClay, I.; Manal, K. Three-Dimensional Kinetic Analysis of Running: Significance of Secondary Planes of Motion. Med. Sci. Sports Exerc. 1999, 31, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Dietze-Hermosa, M.; Montalvo, S.; Gonzalez, M.; Rodriguez, S.; Cubillos, N.; Dorgo, S. Association and Predictive Ability of Jump Performance with Sprint Profile of Collegiate Track and Field Athletes. Sports Biomech. 2021, 23, 2137–2156. [Google Scholar] [CrossRef] [PubMed]
- Hudgins, B.; Scharfenberg, J.; Triplett, N.T.; McBride, J.M. Relationship Between Jumping Ability and Running Performance in Events of Varying Distance. J. Strength Cond. Res. 2013, 27, 563–567. [Google Scholar] [CrossRef]
- Junge, N.; Jørgensen, T.B.; Nybo, L. Performance Implications of Force-Vector-Specific Resistance and Plyometric Training: A Systematic Review with Meta-Analysis. Sports Med. 2023, 53, 2447–2461. [Google Scholar] [CrossRef]
- Bayne, H.; Cockcroft, J.; Robyn, A.; Louw, Q. Objective Classification of Countermovement Jump Force-Time Curve Modality: Within Athlete-Consistency and Associations with Jump Performance. Sports Biomech. 2021, 23, 2053–2064. [Google Scholar] [CrossRef]
- Mcbride, J.M.; Snyder, J.G. Mechanical Efficiency and Force-Time Curve Variation during Repetitive Jumping in Trained and Untrained Jumpers. Eur. J. Appl. Physiol. 2012, 112, 3469–3477. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; Ridder, H. International Standards for Anthropometric Assessment, 3rd ed.; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011; ISBN 978-0-620-36207-8. [Google Scholar]
- Lorimer, A.V.; Keogh, J.W.L.; Hume, P.A. Using Stiffness to Assess Injury Risk: Comparison of Methods for Quantifying Stiffness and Their Reliability in Triathletes. PeerJ 2018, 6, e5845. [Google Scholar] [CrossRef] [PubMed]
- Erer, K.S. Adaptive Usage of the Butterworth Digital Filter. J. Biomech. 2007, 40, 2934–2943. [Google Scholar] [CrossRef]
- Krzyszkowski, J.; Chowning, L.D.; Harry, J.R. Phase-Specific Verbal Cue Effects on Countermovement Jump Performance. J. Strength Cond. Res. 2022, 36, 3352–3358. [Google Scholar] [CrossRef]
- Chavda, S.; Bromley, T.; Jarvis, P.; Williams, S.; Bishop, C.; Turner, A.; Lake, J.; Mundy, P. Force-Time Characteristics of the Countermovement Jump: Analyzing the Curve in Excel. Strength Cond. J. 2018, 40, 67–77. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stone, J.D.; Galster, S.M.; Hagen, J.A. Analyzing Force-Time Curves: Comparison of Commercially Available Automated Software and Custom MATLAB Analyses. J. Strength Cond. Res. 2022, 36, 2387–2402. [Google Scholar] [CrossRef]
- Chiu, L.; Bryanton, M.; Moolyk, A. Proximal-to-Distal Sequencing in Vertical Jumping With and Without Arm Swing. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2014, 28, 1195–1202. [Google Scholar] [CrossRef]
- SMITH, J.C.; LAMONT, H.S.; BAREFOOT, M. Comparison of Different Take-off Thresholds When Assessing Vertical Jump Performance. Int. J. Exerc. Sci. 2024, 17, 660–668. [Google Scholar] [CrossRef]
- Pataky, T.C. Rft1d: Smooth One-Dimensional Random Field Upcrossing Probabilities in Python. J. Stat. Softw. 2016, 71, 1–22. [Google Scholar] [CrossRef]
- Papi, E.; Bull, A.M.J.; McGregor, A.H. Alteration of Movement Patterns in Low Back Pain Assessed by Statistical Parametric Mapping. J. Biomech. 2020, 100, 109597. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.C.; Vanrenterghem, J.; Robinson, M.A. Zero- vs. One-Dimensional, Parametric vs. Non-Parametric, and Confidence Interval vs. Hypothesis Testing Procedures in One-Dimensional Biomechanical Trajectory Analysis. J. Biomech. 2015, 48, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Johnston, L.A.; Butler, R.J.; Sparling, T.L.; Queen, R.M. A Single Set of Biomechanical Variables Cannot Predict Jump Performance Across Various Jumping Tasks. J. Strength Cond. Res. 2015, 29, 396–407. [Google Scholar] [CrossRef]
- Anderson, F.C.; Pandy, M.G. Storage and Utilization of Elastic Strain Energy during Jumping. J. Biomech. 1993, 26, 1413–1427. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Gerritsen, K.G.; Litjens, M.C.; Van Soest, A.J. Why Is Countermovement Jump Height Greater than Squat Jump Height? Med. Sci. Sports Exerc. 1996, 28, 1402–1412. [Google Scholar] [CrossRef]
- Van Hooren, B.; Zolotarjova, J. The Difference Between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms With Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef]
- Barker, L.; Harry, J.; Mercer, J. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time. J. Strength Cond. Res. 2018, 32, 248–254. [Google Scholar] [CrossRef]
- Roberts, T.J. Contribution of Elastic Tissues to the Mechanics and Energetics of Muscle Function during Movement. J. Exp. Biol. 2016, 219, 266–275. [Google Scholar] [CrossRef]
- de Graaf, J.B.; Bobbert, M.F.; Tetteroo, W.E.; van Ingen Schenau, G.J. Mechanical Output about the Ankle in Countermovement Jumps and Jumps with Extended Knee. Hum. Mov. Sci. 1987, 6, 333–347. [Google Scholar] [CrossRef][Green Version]
- Bobbert, M.F.; Huijing, P.A.; van Ingen Schenau, G.J. A Model of the Human Triceps Surae Muscle-Tendon Complex Applied to Jumping. J. Biomech. 1986, 19, 887–898. [Google Scholar] [CrossRef]
- Van Ingen Schenau, G.J. From Rotation to Translation: Constraints on Multi-Joint Movements and the Unique Action of Bi-Articular Muscles. Hum. Mov. Sci. 1989, 8, 301–337. [Google Scholar] [CrossRef]
- Peng, H.-T.; Song, C.-Y.; Chen, Z.-R.; Wang, I.-L.; Gu, C.-Y.; Wang, L.-I. Differences Between Bimodal and Unimodal Force-Time Curves During Countermovement Jump. Int. J. Sports Med. 2019, 40, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F.; Casius, L.J.R. Is the Effect of a Countermovement on Jump Height Due to Active State Development? Med. Sci. Sports Exerc. 2005, 37, 440–446. [Google Scholar] [CrossRef]
- Domire, Z.J.; Challis, J.H. The Influence of Squat Depth on Maximal Vertical Jump Performance. J. Sports Sci. 2007, 25, 193–200. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Casius, L.J.R.; Sijpkens, I.W.T.; Jaspers, R.T. Humans Adjust Control to Initial Squat Depth in Vertical Squat Jumping. J. Appl. Physiol. 2008, 105, 1428–1440. [Google Scholar] [CrossRef]
- McBride, J.M. Muscle Actuators, Not Springs, Drive Maximal Effort Human Locomotor Performance. J. Sports Sci. Med. 2021, 20, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Nagano, A.; Komura, T.; Fukashiro, S. Optimal Coordination of Maximal-Effort Horizontal and Vertical Jump Motions—A Computer Simulation Study. Biomed. Eng. OnLine 2007, 6, 20. [Google Scholar] [CrossRef]
- Wakai, M.; Linthorne, N.P. Optimum Take-off Angle in the Standing Long Jump. Hum. Mov. Sci. 2005, 24, 81–96. [Google Scholar] [CrossRef]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-Time, Force-Time, and Velocity-Time Curve Analysis of the Countermovement Jump: Impact of Training. J. Strength Cond. Res. 2009, 23, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Nüesch, C.; Roos, E.; Egloff, C.; Pagenstert, G.; Mündermann, A. The Effect of Different Running Shoes on Treadmill Running Mechanics and Muscle Activity Assessed Using Statistical Parametric Mapping (SPM). Gait Posture 2019, 69, 1–7. [Google Scholar] [CrossRef] [PubMed]





| Group | n | Height (cm) | Mass (kg) | Interval (s) | Interval Mean Difference [Effect Size (95% CI)] as HIGH-MOD or MOD-LOW | Normalised JH or JD (m/height) | Peak Relative Force N/BW Fz | |
|---|---|---|---|---|---|---|---|---|
| CMJ H-K | HIGH | 9 (f = 4) | 174.67 ± 8.14 | 72.49 ± 14.52 | 0.04 ± 0.02 | 0.23 ± 0.04 | 2.22 ± 0.26 | |
| MOD | 5 (f = 4) | 170.62 ± 5.43 | 64.65 ± 11.13 | 0.02 ± 0.01 | −0.02 [−1.83 (−1.84, −1.83)] | 0.19 ± 0.03 | 2.03 ± 0.10 | |
| LOW | 7 (f = 3) | 176.71 ± 6.33 | 69.96 ± 10.53 | 0.01 ± 0.01 | −0.01 [−1.89 (−1.89, −1.88)] | 0.25 ± 0.06 | 2.36 ± 0.29 | |
| CMJ K-A | HIGH | 6 (f = 4) | 169.00 ± 4.77 | 63.65 ± 6.66 | 0.03 ± 0.01 | 0.20 ± 0.03 | 2.17 ± 0.16, | |
| MOD | 6 (f = 5) | 167.03 ± 4.41 | 60.68 ± 6.39 | 0.01 ± 0.01 | −0.03 [−4.89 (−4.89, −4.89)] | 0.20 ± 0.02 | 2.12 ± 0.33 | |
| LOW | 7 (f = 7) | 176.54 ± 4.32 | 68.31 ± 8.81 | −0.01 ± 0.00 | −0.01 [−2.60 (−2.60, −2.60)] | 0.26 ± 0.05 | 2.35 ± 0.18 | |
| SBJ H-K | HIGH | 6 (f = 3) | 172.12 ± 8.46 | 63.88 ± 12.34 | 0.04 ± 0.03 | 1.12 ± 0.16 | 2.19 ± 0.29 | |
| MOD | 6 (f = 4) | 171.33 ± 7.09 | 65.92 ± 9.69 | 0.02 ± 0.00 | −0.02 [−1.16 (−1.18, −1.15)] | 1.05 ± 0.22 | 2.07 ± 0.15 | |
| LOW | 6 (f = 2) | 175.00 ± 6.37 | 68.87 ± 9.90 | 0.00 ± 0.00 | −0.02 [−4.24 (−4.25, −4.24)] | 1.18 ± 0.14 | 1.96 ± 0.19 | |
| SBJ K-A | HIGH | 8 (f = 5) | 167.77 ± 5.31 | 62.85 ± 8.38 | 0.05 ± 0.03 | 1.11 ± 0.09 | 1.96 ± 0.26 | |
| MOD | 6 (f = 2) | 178.82 ± 7.00 | 72.23 ± 11.27 | 0.03 ± 0.00 | −0.02 [−0.90 (−0.91, −0.89)] | 1.11 ± 0.22 | 2.19 ± 0.28 | |
| LOW | 5 (f = 2) | 174.36 ± 9.86 | 68.84 ± 9.52 | 0.01 ± 0.00 | −0.02 [−6.33 (−6.34, −6.33)] | 1.25 ± 0.10 | 2.30 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, H.; Coffey, V.; Lorimer, A. Examining the Force-Traces of Countermovement Jumps and Standing Broad Jumps for Kinematic Coordination Indicators. Biomechanics 2025, 5, 95. https://doi.org/10.3390/biomechanics5040095
Schmidt H, Coffey V, Lorimer A. Examining the Force-Traces of Countermovement Jumps and Standing Broad Jumps for Kinematic Coordination Indicators. Biomechanics. 2025; 5(4):95. https://doi.org/10.3390/biomechanics5040095
Chicago/Turabian StyleSchmidt, Hannah, Vernon Coffey, and Anna Lorimer. 2025. "Examining the Force-Traces of Countermovement Jumps and Standing Broad Jumps for Kinematic Coordination Indicators" Biomechanics 5, no. 4: 95. https://doi.org/10.3390/biomechanics5040095
APA StyleSchmidt, H., Coffey, V., & Lorimer, A. (2025). Examining the Force-Traces of Countermovement Jumps and Standing Broad Jumps for Kinematic Coordination Indicators. Biomechanics, 5(4), 95. https://doi.org/10.3390/biomechanics5040095

