Assessing the Contribution of Arm Swing to Countermovement Jump Height Using Three Different Measurement Methods in Physically Active Men
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIabs | Absolute arm contribution index (difference in CMJ height between CMJAS and CMJNAS) |
AIrel | Relative arm contribution index (percentage change in CMJAS height relative to CMJNAS) |
CI | Confidence interval |
CMJ | Countermovement jump |
CMJAS | Countermovement jump with arm swing |
CMJNAS | Countermovement jump without arm swing |
CV | Coefficient of variation |
FPimp | Impulse–momentum method using force platforms |
FPtime | Flight time method using force platforms |
GRFv | Vertical ground reaction force |
ICC | Intraclass correlation coefficient |
IMU | Inertial measurement unit |
LoA | Limits of agreement |
PUSH2 | PUSH Band 2.0 |
Tflight | Flight time |
Vto | Vertical velocity at take-off |
ηₚ2 | Partial eta-squared |
References
- Yamashita, D.; Asakura, M.; Ito, Y.; Yamada, S.; Yamada, Y. Physical Characteristics and Performance of Japanese Top-Level American Football Players. J. Strength Cond. Res. 2017, 31, 2455–2461. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, M.; Cross, C.L.; Rieger, R.H.; Maak, T.G.; Willick, S.E. Predictive Validity of National Basketball Association Draft Combine on Future Performance. J. Strength Cond. Res. 2018, 32, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.; Spiteri, T.; Piggott, B.; Bonhotal, J.; Haff, G.G.; Joyce, C. Monitoring and Managing Fatigue in Basketball. Sports 2018, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cronin, J.; Mezencio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrao, J.C. The Countermovement Jump to Monitor Neuromuscular Status: A Meta-Analysis. J. Sci. Med. Sport 2016, 20, 397–402. [Google Scholar] [CrossRef]
- Sanders, G.J.; Boos, B.; Rhodes, J.; Kollock, R.O.; Peacock, C.A.; Scheadler, C.M. Factors Associated with Minimal Changes in Countermovement Jump Performance Throughout a Competitive Division I Collegiate Basketball Season. J. Sports Sci. 2019, 37, 2236–2242. [Google Scholar] [CrossRef]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.S.; Frantz, B.A.; Bemben, M.G. Countermovement Jump Reliability Performed with and without an Arm Swing in Ncaa Division 1 Intercollegiate Basketball Players. J. Strength Cond. Res. 2020, 34, 546–558. [Google Scholar] [CrossRef]
- Borràs, X.; Balius, X.; Drobnic, F.; Galilea, P. Vertical Jump Assessment on Volleyball: A Follow-Up of Three Seasons of a High-Level Volleyball Team. J. Strength Cond. Res. 2011, 25, 1686–1694. [Google Scholar] [CrossRef]
- Gonçalves, C.A.; Lopes, T.J.D.; Nunes, C.; Marinho, D.A.; Neiva, H.P. Neuromuscular Jumping Performance and Upper-Body Horizontal Power of Volleyball Players. J. Strength Cond. Res. 2021, 35, 2236–2241. [Google Scholar] [CrossRef]
- Wen, N.; Dalbo, V.J.; Burgos, B.; Pyne, D.B.; Scanlan, A.T. Power Testing in Basketball: Current Practice and Future Recommendations. J. Strength Cond. Res. 2018, 32, 2677–2691. [Google Scholar] [CrossRef]
- Chiu, L.Z.F.; Bryanton, M.A.; Moolyk, A.N. Proximal-to-Distal Sequencing in Vertical Jumping With and Without Arm Swing. J. Strength Cond. Res. 2014, 28, 1195–1202. [Google Scholar] [CrossRef]
- Vaverka, F.; Jandačka, D.; Zahradník, D.; Uchytil, J.; Farana, R.; Supej, M.; Vodičar, J. Effect of an Arm Swing on Countermovement Vertical Jump Performance in Elite Volleyball Players: FINAL. J. Hum. Kin. 2016, 53, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Gerodimos, V.; Zafeiridis, A.; Perkos, S.; Dipla, K.; Manou, V.; Kellis, S. The Contribution of Stretch-Shortening Cycle and Arm-Swing to Vertical Jumping Performance in Children, Adolescents, and Adult Basketball Players. Pediatr. Exerc. Sci. 2008, 20, 379–389. [Google Scholar] [CrossRef]
- Lake, J.P.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef]
- Yamashita, D.; Murata, M.; Inaba, Y. Effect of Landing Posture on Jump Height Calculated from Flight Time. Appl. Sci. 2020, 10, 776. [Google Scholar] [CrossRef]
- Rago, V.; Brito, J.; Figueiredo, P.; Carvalho, T.; Fernandes, T.; Fonseca, P.; Rebelo, A. Countermovement Jump Analysis Using Different Portable Devices: Implications for Field Testing. Sports 2018, 6, 91. [Google Scholar] [CrossRef]
- Aragón, L.F. Evaluation of Four Vertical Jump Tests: Methodology, Reliability, Validity, and Accuracy. Meas. Phys. Edu. Exer. Sci. 2000, 4, 215–228. [Google Scholar] [CrossRef]
- Willy, R.W. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Phys. Ther. Sport 2018, 29, 26–33. [Google Scholar] [CrossRef]
- Windt, J.; MacDonald, K.; Taylor, D.; Zumbo, B.D.; Sporer, B.C.; Martin, D.T. “To Tech or Not to Tech?” A Critical Decision-Making Framework for Implementing Technology in Sport. J. Athl. Train. 2020, 55, 902–910. [Google Scholar] [CrossRef]
- McMaster, D.T.; Tavares, F.; O’Donnell, S.; Driller, M. Validity of Vertical Jump Measurement Systems. Meas. Phys. Edu. Exer. Sci. 2021, 25, 95–100. [Google Scholar] [CrossRef]
- Watkins, C.M.; Maunder, E.; Tillaar, R.V.D.; Oranchuk, D.J. Concurrent Validity and Reliability of Three Ultra-Portable Vertical Jump Assessment Technologies. Sensors 2020, 20, 7240. [Google Scholar] [CrossRef]
- Montalvo, S.; Gonzalez, M.P.; Dietze-Hermosa, M.S.; Eggleston, J.D.; Dorgo, S. Common Vertical Jump and Reactive Strength Index Measuring Devices: A Validity and Reliability Analysis. J. Strength Cond. Res. 2021, 35, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Abingdon, UK, 1988. [Google Scholar] [CrossRef]
- Iglesias-Caamaño, M.; Álvarez-Yates, T.; Carballo-López, J.; Cuba-Dorado, A.; García-García, O. Interday Reliability of a Testing Battery to Assess Lateral Symmetry and Performance in Well-Trained Volleyball Players. J. Strength Cond. Res. 2022, 36, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L.A. Reliability of Measures Obtained During Single and Repeated Countermovement Jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Dobbin, N.; Hunwicks, R.; Highton, J.; Twist, C. A Reliable Testing Battery for Assessing Physical Qualities of Elite Academy Rugby League Players. J. Strength Cond. Res. 2018, 32, 3232–3238. [Google Scholar] [CrossRef]
- Heishman, A.D.; Curtis, M.A.; Saliba, E.N.; Hornett, R.J.; Malin, S.K.; Weltman, A.L. Comparing Performance During Morning vs. Afternoon Training Sessions in Intercollegiate Basketball Players. J. Strength Cond. Res. 2017, 31, 1557–1562. [Google Scholar] [CrossRef]
- Street, G.; McMillan, S.; Board, W.; Rasmussen, M.; Heneghan, J.M. Sources of Error in Determining Countermovement Jump Height with the Impulse Method. J. Appl. Biomech. 2001, 17, 43–54. [Google Scholar] [CrossRef]
- Sado, N.; Yoshioka, S.; Fukashiro, S. Free-leg side elevation of pelvis in single-leg jump is a substantial advantage over double-leg jump for jumping height generation. J. Biomech. 2020, 104, 109751. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical Methods for Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Applying the Right Statistics: Analyses of Measurement Studies. Ultrasound Obstet. Gynecol. 2003, 22, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Agreement between methods of measurement with multiple observations per individual. J. Biopharm. Stat. 2007, 17, 571–582. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Pérez-Castilla, A.; Martín, F. Reliability and Concurrent Validity of the Velowin Optoelectronic System to Measure Movement Velocity During the Free-Weight Back Squat. Int. J. Sports Sci. Coach. 2018, 13, 737–742. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics: A New View of Statistics. Sportscience 2002, 502, 411. [Google Scholar]
- Lake, J.P.; Augustus, S.; Austin, K.; Mundy, P.; McMahon, J.J.; Comfort, P.; Haff, G.G. The Validity of the Push Band 2.0 During Vertical Jump Performance. Sports 2018, 6, 140. [Google Scholar] [CrossRef]
- Lajimi, S.A.M.; McPhee, J. A comprehensive filter to reduce drift from Euler angles, velocity, and position using an IMU. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–6. [Google Scholar]
- Hara, M.; Shibayama, A.; Takeshita, D.; Fukashiro, S. The Effect of Arm Swing on Lower Extremities in Vertical Jumping. J. Biomech. 2006, 39, 2503–2511. [Google Scholar] [CrossRef]
- Feltner, M.E.; Fraschetti, D.J.; Crisp, R.J. Upper Extremity Augmentation of Lower Extremity Kinetics during Countermovement Vertical Jumps. J. Sports Sci. 1999, 17, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Shrier, I.; Jordan, M. Ratio Data: Understanding Pitfalls and Knowing When to Standardise. Symmetry 2023, 15, 318. [Google Scholar] [CrossRef]
- Comyns, T.M.; Murphy, J.; O’Leary, D. Reliability, Usefulness, and Validity of Field-Based Vertical Jump Measuring Devices. J. Strength Cond. Res. 2023, 37, 1594–1599. [Google Scholar] [CrossRef]
Day 1 | Day 2 | ||||
---|---|---|---|---|---|
Mean CV (95% CI) | ICC2,1 (95% CI) | Mean CV (95% CI) | ICC2,1 (95% CI) | ||
CMJNAS | FPimp | 1.89 (1.26, 2.52) | 0.98 (0.96, 0.99) | 2.21 (1.45, 2.98) | 0.97 (0.93, 0.99) |
FPtime | 1.91 (1.31, 2.52) | 0.97 (0.94, 0.99) | 2.48 (1.63, 3.33) | 0.95 (0.89, 0.98) | |
PUSH2 | 1.98 (1.40, 2.57) | 0.98 (0.95, 0.99) | 2.37 (1.38, 3.35) | 0.93 (0.86, 0.97) | |
CMJAS | FPimp | 1.68 (1.15, 2.21) | 0.97 (0.94, 0.99) | 1.56 (0.97, 2.15) | 0.98 (0.95, 0.99) |
FPtime | 1.99 (1.33, 2.65) | 0.96 (0.92, 0.99) | 2.06 (1.29, 2.83) | 0.96 (0.90, 0.98) | |
PUSH2 | 1.60 (1.21, 2.84) | 0.96 (0.91, 0.98) | 1.69 (1.22, 2.17) | 0.96 (0.91, 0.98) |
Mean ± SD (Day 1) | Mean ± SD (Day 2) | ICC2,1 (95% CI) | |
---|---|---|---|
CMJNAS (cm) | |||
FPimp | 40.04 ± 6.36 | 39.86 ± 6.19 | 0.97 (0.93, 0.99) |
FPtime | 42.27 ± 6.26 † | 41.86 ± 5.87 † | 0.96 (0.90, 0.99) |
PUSH2 | 44.03 ± 6.46 † ‡ | 43.24 ± 5.41 † ‡ | 0.96 (0.89, 0.98) |
CMJAS (cm) | |||
FPimp | 44.90 ± 6.07 * | 44.41 ±6.18 * | 0.96 (0.91, 0.99) |
FPtime | 46.67 ± 5.55 † * | 45.92 ± 6.17 † * | 0.95 (0.86, 0.98) |
PUSH2 | 50.68 ± 7.72 † ‡ * | 49.42 ± 6.87 † ‡ * | 0.94 (0.81, 0.98) |
AIabs (cm) | |||
FPimp | 4.86 ± 2.18 | 4.54 ± 2.16 | 0.77 (0.48, 0.91) |
FPtime | 4.40 ± 2.68 | 4.05 ± 2.13 | 0.65 (0.28, 0.85) |
PUSH2 | 6.65 ± 3.50 † ‡ | 6.18 ± 2.86 † ‡ | 0.81 (0.57, 0.93) |
AIrel (%) | |||
FPimp | 12.72 ± 6.26 ‡ | 11.77 ± 5.81 | 0.74 (0.44, 0.89) |
FPtime | 10.75 ± 6.37 | 9.91 ± 5.50 | 0.62 (0.23, 0.84) |
PUSH2 | 15.39 ± 8.29 ‡ | 14.37 ± 6.54 ‡ | 0.78 (0.50, 0.91) |
Day 1 | Day 2 | |||||
---|---|---|---|---|---|---|
Systematic Bias (cm) (95% LoA) | R2 | ICC3,1 (95% CI) | Systematic Bias (cm) (95% LoA) | R2 | ICC3,1 (95% CI) | |
CMJNAS | ||||||
FPtime vs. FPimp | 2.23 (−1.83, 6.29) | <0.01 | 0.95 (0.87, 0.98) | 2.00 (−2.24, 6.24) | 0.02 | 0.95 (0.86, 0.98) |
PUSH2 vs. FPimp | 3.99 (−0.73, 8.72) | <0.01 | 0.94 (0.84, 0.98) | 3.38 (−0.97, 7.73) | 0.17 | 0.94 (0.84, 0.98) |
PUSH2 vs. FPtime | 1.76 (−1.89, 5.42) | <0.01 | 0.96 (0.90, 0.99) | 1.38 (−3.69, 6.46) | 0.12 | 0.96 (0.89, 0.98) |
CMJAS | ||||||
FPtime vs. FPimp | 1.77 (−3.16, 6.70) | 0.04 | 0.93 (0.83, 0.98) | 1.51 (−3.31, 6.33) | <0.01 | 0.93 (0.84, 0.98) |
PUSH2 vs. FPimp | 5.78 (−0.16, 11.82) | 0.15 | 0.91 (0.77, 0.97) | 5.01 (−1.47, 11.50) | <0.01 | 0.88 (0.70, 0.95) |
PUSH2 vs. FPtime | 4.01 (−1.27, 9.29) | 0.06 | 0.93 (0.83, 0.97) | 3.50 (−1.03, 8.04) | <0.01 | 0.94 (0.86, 0.98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashita, D.; Henderson, F.J.; Ishida, Y. Assessing the Contribution of Arm Swing to Countermovement Jump Height Using Three Different Measurement Methods in Physically Active Men. Biomechanics 2025, 5, 45. https://doi.org/10.3390/biomechanics5030045
Yamashita D, Henderson FJ, Ishida Y. Assessing the Contribution of Arm Swing to Countermovement Jump Height Using Three Different Measurement Methods in Physically Active Men. Biomechanics. 2025; 5(3):45. https://doi.org/10.3390/biomechanics5030045
Chicago/Turabian StyleYamashita, Daichi, Frederick James Henderson, and Yuko Ishida. 2025. "Assessing the Contribution of Arm Swing to Countermovement Jump Height Using Three Different Measurement Methods in Physically Active Men" Biomechanics 5, no. 3: 45. https://doi.org/10.3390/biomechanics5030045
APA StyleYamashita, D., Henderson, F. J., & Ishida, Y. (2025). Assessing the Contribution of Arm Swing to Countermovement Jump Height Using Three Different Measurement Methods in Physically Active Men. Biomechanics, 5(3), 45. https://doi.org/10.3390/biomechanics5030045