Exploring the Effect of Prolonged Ankle Plantar-Flexed Standing on Postural Control, Balance Confidence, Falls Efficacy, and Perceived Balance in Older Adults
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A-P | Anterior–posterior |
M-L | Medio-lateral |
RMS | Root mean square |
GRC | Generalised Rating of Change |
ICC | Intraclass Correlation Coefficient |
SStotal | Sum of squares total |
MDC | Minimal Detectable Change |
References
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Rietdyk, S.; Ishac, M.G. Ankle muscle stiffness in the control of balance during quiet standing. J. Neurophysiol. 2001, 85, 2630–2633. [Google Scholar] [CrossRef] [PubMed]
- Boyas, S.; Medd, E.R.; Beaulieu, S.; Boileau, A.; Lajoie, Y.; Bilodeau, M. Older and young adults adopt different postural strategies during quiet bipedal stance after ankle plantarflexor fatigue. Neurosci. Lett. 2019, 701, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Howcroft, J.; Lemaire, E.D.; Kofman, J.; McIlroy, W.E. Elderly fall risk prediction using static posturography. PLoS ONE 2017, 12, e0172398. [Google Scholar] [CrossRef]
- Merlo, A.; Zemp, D.; Zanda, E.; Rocchi, S.; Meroni, F.; Tettamanti, M.; Recchia, A.; Lucca, U.; Quadri, P. Postural stability and history of falls in cognitively able older adults: The Canton Ticino study. Gait Posture 2012, 36, 662–666. [Google Scholar] [CrossRef]
- Smith, B.A.; Stergiou, N.; Ulrich, B.D. Lyapunov exponent and surrogation analysis of patterns of variability: Profiles in new walkers with and without down syndrome. Motor Control 2010, 14, 126–142. [Google Scholar] [CrossRef]
- Kiefer, A.W.; Armitano-Lago, C.N.; Cone, B.L.; Bonnette, S.; Rhea, C.K.; Cummins-Sebree, S.; Riley, M.A. Postural control development from late childhood through young adulthood. Gait Posture 2021, 86, 169–173. [Google Scholar] [CrossRef]
- Doyle, T.L.; Newton, R.U.; Burnett, A.F. Reliability of traditional and fractal dimension measures of quiet stance center of pressure in young, healthy people. Arch. Phys. Med. Rehabil. 2005, 86, 2034–2040. [Google Scholar] [CrossRef]
- Rhea, C.K.; Silver, T.A.; Hong, S.L.; Ryu, J.H.; Studenka, B.E.; Hughes, C.M.; Haddad, J.M. Noise and complexity in human postural control: Interpreting the different estimations of entropy. PLoS ONE 2011, 6, e17696. [Google Scholar] [CrossRef]
- Lafond, D.; Corriveau, H.; Herbert, R.; Prince, F. Intrasession reliability of center of pressure measures of postural steadiness in healthy elderly people. Arch. Phys. Med. Rehabil. 2004, 85, 896–901. [Google Scholar] [CrossRef]
- Salehi, R.; Ebrahimi, T.I.; Esteki, A.; Maroufi, N.; Parnianpour, M. Test-retest reliability and minimal detectable change for center of pressure measures of postural stability in elderly subjects. Med. J. Islam. Repub. Iran 2010, 23, 224–232. [Google Scholar]
- Myers, A.M.; Fletcher, P.C.; Myers, A.H.; Sherk, W. Discriminative and evaluative properties of the activities-specific balance confidence (ABC) scale. J. Gerontol. A Biol. Sci. Med. Sci. 1998, 53, M287–M294. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and initial validation of the Falls Efficacy Scale International (FES-I). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Legters, K.; Verbus, N.B.; Kitchen, S.; Tomecsko, J.; Urban, N. Fear of falling, balance confidence and health-related quality of life in individuals with postpolio syndrome. Physiother. Theory Pract. 2006, 22, 127–135. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Brydges, C.R. Effect size guidelines, sample size calculations, and statistical power in gerontology. Innov. Aging 2019, 3, igz036. [Google Scholar] [CrossRef]
- Vuillerme, N.; Forestier, N.; Nougier, V. Attentional demands and postural sway: The effect of the calf muscles fatigue. Med. Sci. Sports Exerc. 2002, 34, 1907–1912. [Google Scholar] [CrossRef]
- Quijoux, F.; Nicolaï, A.; Chairi, I.; Bargiotas, I.; Ricard, D.; Yelnik, A.; Oudre, L.; Bertin-Hugault, F.; Vidal, P.P.; Vayatis, N.; et al. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol. Rep. 2021, 9, e15067. [Google Scholar] [CrossRef]
- Doyle, T.L.; Dugan, E.L.; Humphries, B.; Newton, R.U. Discriminating between elderly and young using a fractal dimension analysis of centre of pressure. Int. J. Med. Sci. 2004, 1, 11–20. [Google Scholar] [CrossRef]
- Hauer, K.A.; Kempen, G.I.; Schwenk, M.; Yardley, L.; Beyer, N.; Todd, C.; Oster, P.; Zijlstra, G.A. Validity and sensitivity to change of the Falls Efficacy Scales International to assess fear of falling in older adults with and without cognitive impairment. Gerontology 2011, 57, 462–472. [Google Scholar] [CrossRef]
- McColl, L.; McMeekin, P.; Poole, M.; Parry, S.W. Is fear of falling key to identifying gait and balance abnormalities in community-dwelling older adults? Protocol of a mixed-methods approach. BMJ Open 2022, 12, e067040. [Google Scholar] [CrossRef]
- Delbaere, K.; Close, J.C.; Mikolaizak, A.S.; Sachdev, P.S.; Brodaty, H.; Lord, S.R. The Falls Efficacy Scale International (FES-I). A comprehensive longitudinal validation study. Age Ageing 2010, 39, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Schepens, S.; Goldberg, A.; Wallace, M. The short version of the Activities-specific Balance Confidence (ABC) scale: Its validity, reliability, and relationship to balance impairment and falls in older adults. Arch. Gerontol. Geriatr. 2010, 51, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Peretz, C.; Herman, T.; Hausdorff, J.M.; Giladi, N. Assessing fear of falling: Can a short version of the Activities-specific Balance Confidence scale be useful? Mov. Disord. 2006, 21, 2101–2105. [Google Scholar] [CrossRef]
- Wright, A.A.; Abbott, J.H.; Baxter, D.; Cook, C. The ability of a sustained within-session finding of pain reduction during traction to dictate improved outcomes from a manual therapy approach on patients with osteoarthritis of the hip. J. Man. Manip. Ther. 2010, 18, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Kamper, S.J.; Maher, C.G.; Mackay, G. Global rating of change scales: A review of strengths and weaknesses and considerations for design. J. Man. Manip. Ther. 2009, 17, 163–170. [Google Scholar] [CrossRef]
- Low, D.C.; Walsh, G.S. The minimal important change for measures of balance and postural control in older adults: A systematic review. Age Ageing 2022, 51, afac284. [Google Scholar] [CrossRef]
- Rafał, S.; Janusz, M.; Wiesław, O.; Robert, S. Test-retest reliability of measurements of the center of pressure displacement in quiet standing and during maximal voluntary body leaning among healthy elderly men. J. Hum. Kinet. 2011, 28, 15–23. [Google Scholar] [CrossRef]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength. Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Freitas, S.M.; Wieczorek, S.A.; Marchetti, P.H.; Duarte, M. Age-related changes in human postural control of prolonged standing. Gait Posture 2005, 22, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, S.; Ghai, S.; Schieppati, M. Incongruity of geometric and spectral markers in the assessment of body sway. Front. Neurol. 2022, 13, 929132. [Google Scholar] [CrossRef] [PubMed]
- Waters, T.R.; Dick, R.B. Evidence of health risks associated with prolonged standing at work and intervention effectiveness. Rehabil. Nurs. 2015, 40, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal muscle fatigue: Cellular mechanisms. Physiol. Rev. 2008, 88, 287–332. [Google Scholar] [CrossRef]
- Hody, S.; Croisier, J.L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric Muscle Contractions: Risks and Benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef]
- Acaster, S.; Dickerhoof, R.; DeBusk, K.; Bernard, K.; Strauss, W.; Allen, L.F. Qualitative and quantitative validation of the FACIT-fatigue scale in iron deficiency anemia. Health Qual. Life Outcomes 2015, 13, 60. [Google Scholar] [CrossRef]
- Hepple, R.T. The Role of O2 Supply in Muscle Fatigue. Can. J. Appl. Physiol. 2002, 27, 56–69. [Google Scholar] [CrossRef]
- Nocella, M.; Colombini, B.; Benelli, G.; Cecchi, G.; Bagni, M.A.; Bruton, J. Force decline during fatigue is due to both a decrease in the force per individual cross-bridge and the number of cross-bridges. J. Physiol. 2011, 589, 3371–3381. [Google Scholar] [CrossRef]
- Penedo, T.; Polastri, P.F.; Rodrigues, S.T.; Santinelli, F.B.; Costa, E.C.; Imaizumi, L.F.I.; Barbieri, R.A.; Barbieri, F.A. Motor strategy during postural control is not muscle fatigue joint-dependent, but muscle fatigue increases postural asymmetry. PLoS ONE 2021, 16, e0247395. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, J.S. The Correlation between Proprioception and Postural Control in Healthy Adults. Iran. J. Public Health 2022, 51, 2360–2361. [Google Scholar] [CrossRef]
- Adkin, A.; Frank, J.S.; Jog, M.S. Fear of falling and postural control in Parkinson’s disease. Mov. Disord. 2003, 18, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Bisson, E.J.; Remaud, A.; Boyas, S.; Lajoie, Y.; Bilodeau, M. Effects of fatiguing isometric and isokinetic ankle exercises on postural control while standing on firm and compliant surfaces. J. Neuroeng. Rehabil. 2012, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Doherty, C.; Bleakley, C.; Hertel, J.; Caulfield, B.; Ryan, J.; Delahunt, E. Postural control strategies during single limb stance following acute lateral ankle sprain. Clin. Biomech. 2014, 29, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Boyas, S.; Hajj, M.; Bilodeau, M. Influence of ankle plantarflexor fatigue on postural sway, lower limb articular angles, and postural strategies during unipedal quiet standing. Gait Posture 2013, 37, 547–551. [Google Scholar] [CrossRef]
- Horak, F.B.; Shupert, C.L.; Mirka, A. Components of postural dyscontrol in the elderly: A review. Neurobiol. Aging 1989, 10, 727–738. [Google Scholar] [CrossRef]
- Terwee, C.B.; Peipert, J.D.; Chapman, R.; Lai, J.S.; Terluin, B.; Cella, D.; Griffiths, P.; Mokkink, L.B. Minimal important change (MIC): A conceptual clarification and systematic review of MIC estimates of PROMIS measures. Quality Life Res. 2021, 30, 2729–2754. [Google Scholar] [CrossRef]
- Lin, D.; Seol, H.; Nussbaum, M.A.; Madigan, M.L. Reliability of COP-based postural sway measures and age-related differences. Gait Posture 2008, 28, 337–342. [Google Scholar] [CrossRef]
- Swanenburg, J.; de Bruin, E.D.; Favero, K.; Uebelhart, D.; Mulder, T. The reliability of postural balance measures in single and dual tasking in elderly fallers and non-fallers. BMC Musculoskelet. Disord. 2008, 9, 162. [Google Scholar] [CrossRef]
- Ku, P.X.; Abu Osman, N.A.; Yusof, A.; Wan Abas, W.A. Biomechanical evaluation of the relationship between postural control and body mass index. J. Biomech. 2012, 45, 1638–1642. [Google Scholar] [CrossRef]
- Jo, D.; Bilodeau, M. Rating of perceived exertion (RPE) in studies of fatigue-induced postural control alterations in healthy adults: Scoping review of quantitative evidence. Gait Posture 2021, 90, 167–178. [Google Scholar] [CrossRef]
- Kallenberg, L.A.C.; Schulte, E.; Disselhorst-Klug, C.; Hermens, H.J. Myoelectric manifestations of fatigue at low contraction levels in subjects with and without chronic pain. J. Electromyogr. Kinesiol. 2007, 17, 264–274. [Google Scholar] [CrossRef]
Pre-Mean (SD) | Post-Mean (SD) | Cohen’s d | |
---|---|---|---|
RMS A-P (m) * | 0.049 (±0.0009) | 0.058 (±0.0021) | 5.6 |
RMS M-L (m) | 0.059 (±0.0009) | 0.035 (±0.0012) | 0.9 |
RMS radius (m) * | 0.009 (±0.0124) | 0.011 (±0.0141) | 0.2 |
95% ellipse area (m2) | 0.0003 (±0.0001) | 0.0004 (±0.0002) | 0.6 |
Fractal dimension | 1.72 (0.08) | 1.73 (0.09) | 0.1 |
A-P Sway Length | M-L Sway Length | Total Sway Length | RMS A-P | RMS M-L | RMS Radius | Sway Area | Fractal Dimension | ||
---|---|---|---|---|---|---|---|---|---|
GRC | R | 0.59 | 0.25 | 0.61 | 0.42 | 0.28 | 0.35 | 0.32 | −0.13 |
P | <0.01 * | 0.25 | <0.01 * | 0.04 * | 0.19 | 0.10 | 0.12 | 0.55 | |
FES-I | R | 0.02 | 0.18 | 0.07 | −0.07 | −0.08 | −0.15 | −0.02 | 0.05 |
P | 0.92 | 0.41 | 0.77 | 0.76 | 0.73 | 0.50 | 0.93 | 0.82 | |
ABC | R | −0.31 | −0.15 | −0.32 | 0.14 | −0.06 | 0.19 | 0.002 | −0.16 |
P | 0.15 | 0.48 | 0.13 | 0.51 | 0.79 | 0.36 | 0.99 | 0.47 |
ICC2,5 | SSTotal | SD | SEM | MDC95 | %MDC95 | Participants Exceeding MDC95 (n) | |
---|---|---|---|---|---|---|---|
A-P sway path length | 0.92 * | 0.516 | 0.07 | 0.2 | 0.05 | 19.3% | 9 |
M-L sway path length | 0.98 * | 0.685 | 0.08 | 0.1 | 0.03 | 10.6% | 2 |
Total sway path length | 0.96 * | 1.265 | 0.10 | 0.2 | 0.06 | 14.0% | 9 |
A-P RMS | 0.27 | 0.0004 | 0.002 | 0.002 | 0.004 | 8.2% | 9 |
M-L RMS | 0.68 * | 0.0002 | 0.001 | 0.0008 | 0.002 | 5.9% | 10 |
RMS radius | 0.95 * | 0.21 | 0.013 | 0.003 | 0.008 | 88.9% | 10 |
Sway area | 0.69 * | 0.000005 | 0.0002 | 0.0001 | 0.0003 | 100% | 0 |
Fractal dimension | 0.80 * | 1.29 | 0.10 | 0.05 | 0.13 | 7.6% | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Low, D.C. Exploring the Effect of Prolonged Ankle Plantar-Flexed Standing on Postural Control, Balance Confidence, Falls Efficacy, and Perceived Balance in Older Adults. Biomechanics 2025, 5, 19. https://doi.org/10.3390/biomechanics5020019
Low DC. Exploring the Effect of Prolonged Ankle Plantar-Flexed Standing on Postural Control, Balance Confidence, Falls Efficacy, and Perceived Balance in Older Adults. Biomechanics. 2025; 5(2):19. https://doi.org/10.3390/biomechanics5020019
Chicago/Turabian StyleLow, Daniel Craig. 2025. "Exploring the Effect of Prolonged Ankle Plantar-Flexed Standing on Postural Control, Balance Confidence, Falls Efficacy, and Perceived Balance in Older Adults" Biomechanics 5, no. 2: 19. https://doi.org/10.3390/biomechanics5020019
APA StyleLow, D. C. (2025). Exploring the Effect of Prolonged Ankle Plantar-Flexed Standing on Postural Control, Balance Confidence, Falls Efficacy, and Perceived Balance in Older Adults. Biomechanics, 5(2), 19. https://doi.org/10.3390/biomechanics5020019