Neurotrauma Prevention Review: Improving Helmet Design and Implementation
Abstract
:1. Introduction
2. Current Sports Helmet Design
Sport Category | ASTM | AS/NZS | CSA | DOT | EN (Incl. BSI, DIN NSAI) | FIFA, FISI, IHF, IRB | NOCSAE | ISO | Snell |
---|---|---|---|---|---|---|---|---|---|
American Football | x | x | |||||||
Animal Riding | x | ||||||||
Baseball | x | x | |||||||
Cricket | x | x (BSI) | |||||||
Cycling Sports | x | x | x | x | x | ||||
Football | x | ||||||||
Ice Hockey | x | x | x | x | |||||
Lacrosse | x | ||||||||
Motorized Sports | x | x | |||||||
Mountaineering | x | x | |||||||
Pole Vaulting | x | ||||||||
Polo | x | ||||||||
Rugby | x (IRB) | ||||||||
Skateboard Sports | x | x | |||||||
Snow Sports | x | x | x | ||||||
Water Sports | x |
3. Current Military Helmet Design
4. Current Construction Helmet Design
5. Secondary Injury Prevention
6. Innovations in Helmet Design
7. Conclusions, Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruns, J., Jr.; Hauser, W.A. The epidemiology of traumatic brain injury: A review. Epilepsia 2003, 44, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Sone, J.Y.; Kondziolka, D.; Huang, J.H.; Samadani, U. Helmet efficacy against concussion and traumatic brain injury: A review. J. Neurosurg. 2017, 126, 768–781. [Google Scholar] [CrossRef] [PubMed]
- Donnan, J.; Walsh, S.; Fortin, Y.; Gaskin, J.; Sikora, L.; Morrissey, A.; Collins, K.; MacDonald, D. Factors associated with the onset and progression of neurotrauma: A systematic review of systematic reviews and meta-analyses. Neurotoxicology 2017, 61, 234–241. [Google Scholar] [CrossRef]
- Thompson, D.C.; Rivara, F.P.; Thompson, R. Helmets for preventing head and facial injuries in bicyclists. Cochrane Database Syst. Rev. 2000, 1999, Cd001855. [Google Scholar] [CrossRef]
- van den Brand, C.L.; Karger, L.B.; Nijman, S.T.M.; Valkenberg, H.; Jellema, K. Bicycle Helmets and Bicycle-Related Traumatic Brain Injury in the Netherlands. Neurotrauma Rep. 2020, 1, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.C.; Rivara, F.P.; Thompson, R.S. Effectiveness of Bicycle Safety Helmets in Preventing Head Injuries: A Case-Control Study. JAMA 1996, 276, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- Hoshizaki, T.B.; Post, A.; Oeur, R.A.; Brien, S.E. Current and Future Concepts in Helmet and Sports Injury Prevention. Neurosurgery 2014, 75, S136–S148. [Google Scholar] [CrossRef]
- Gurdjian, E.S.; Webster, J.E.; Lissner, H.R. Observations on the mechanism of brain concussion, contusion, and laceration. Surg. Gynecol. Obs. 1955, 101, 680–690. [Google Scholar]
- Cantu, R.C. Neurologic Athletic Head and Spine Injuries; W.B. Saunders: Philadelphia, PA, USA, 2000. [Google Scholar]
- Post, A.; Hoshizaki, T.B. Mechanisms of brain impact injuries and their prediction: A review. Trauma 2012, 14, 327–349. [Google Scholar] [CrossRef]
- Bain, A.C.; Meaney, D.F. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 2000, 122, 615–622. [Google Scholar] [CrossRef]
- Rueda, M.A.F.; Cui, L.; Gilchrist, M.D. Finite element modelling of equestrian helmet impacts exposes the need to address rotational kinematics in future helmet designs. Comput. Methods Biomech. Biomed. Eng. 2011, 14, 1021–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshizaki, T.; Brien, S. The Science and Design of Head Protection in Sport. Neurosurgery 2004, 55, 956–966. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.S.; Andersen, T.E.; Bahr, R.; Greenwald, R.; Kleiven, S.; Turner, M.; Varese, M.; McCrory, P. Sports helmets now and in the future. Br. J. Sports Med. 2011, 45, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Hoshizaki, T.B.; Brien, S. Head Injuries, Measurement Criteria and Helmet Design. In Routledge Handbook of Ergonomics in Sport and Exercise; Hong, Y., Ed.; Routledge Publishers: London, UK, 2012. [Google Scholar] [CrossRef]
- Bustamante, M.C.; Bruneau, D.; Barker, J.B.; Gierczycka, D.; Coralles, M.A.; Cronin, D.S. Component-Level Finite Element Model and Validation for a Modern American Football Helmet. J. Dyn. Behav. Mater. 2019, 5, 117–131. [Google Scholar] [CrossRef]
- Tuna, E.B.; Ozel, E. Factors Affecting Sports-Related Orofacial Injuries and the Importance of Mouthguards. Sports Med. 2014, 44, 777–783. [Google Scholar] [CrossRef]
- Ranalli, D.N.; Demas, P.N. Orofacial Injuries from Sport. Sports Med. 2002, 32, 409–418. [Google Scholar] [CrossRef]
- Underwood, L.; Jermy, M.; Eloi, P.; Cornillon, G. Helmet position, ventilation holes and drag in cycling. Sports Eng. 2015, 18, 241–248. [Google Scholar] [CrossRef]
- Gibson, T.J.; Thai, K. Helmet Protection against Basilar Skull Fracture; Australian Transport Safety Bureau: Canberra, Australian, 2007. [Google Scholar]
- Which Helmet for Which Activity? Available online: https://www.cpsc.gov/safety-education/safety-guides/sports-fitness-and-recreation-bicycles/which-helmet-which-activity (accessed on 24 July 2022).
- International Cricket Council. Available online: https://www.icc-cricket.com/homepage (accessed on 24 July 2022).
- Standard Specification for Headgear Used in Soccer. Available online: https://www.astm.org/f2439-17e01.html (accessed on 24 July 2022).
- Scharine, A.A.; Binseel, M.S.; Mermagen, T.; Letowski, T.R. Sound localisation ability of soldiers wearing infantry ACH and PASGT helmets. Ergonomics 2014, 57, 1222–1243. [Google Scholar] [CrossRef]
- York, S.; Edwards, E.D.; Jesunathadas, M.; Landry, T.; Piland, S.G.; Plaisted, T.A.; Kleinberger, M.; Gould, T.E. Influence of Friction at the Head-Helmet Interface on Advanced Combat Helmet (ACH) Blunt Impact Kinematic Performance. Mil. Med. 2022, usab547. [Google Scholar] [CrossRef]
- Bradfield, C.; Vavalle, N.; DeVincentis, B.; Wong, E.; Luong, Q.; Voo, L.; Carneal, C. Combat Helmet Suspension System Stiffness Influences Linear Head Acceleration and White Matter Tissue Strains: Implications for Future Helmet Design. Mil. Med. 2018, 183, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Terpsma, R.; Carlsen, R.W.; Szalkowski, R.; Malave, S.; Fawzi, A.L.; Franck, C.; Hovey, C. Head Impact Modeling to Support a Rotational Combat Helmet Drop Test. Mil. Med. 2021, usab374. [Google Scholar] [CrossRef] [PubMed]
- Begonia, M.; Humm, J.; Shah, A.; Pintar, F.A.; Yoganandan, N. Influence of ATD versus PMHS reference sensor inputs on computational brain response in frontal impacts to advanced combat helmet (ACH). Traffic Inj. Prev. 2018, 19, S159–S161. [Google Scholar] [CrossRef] [PubMed]
- Grujicic, M.; Bell, W.C.; Pandurangan, B.; Glomski, P.S. Fluid/Structure Interaction Computational Investigation of Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet. J. Mater. Eng. Perform. 2011, 20, 877–893. [Google Scholar] [CrossRef]
- Zhang, L.; Makwana, R.; Sharma, S. Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet. Front. Neurol. 2013, 4, 88. [Google Scholar] [CrossRef]
- Nyein, M.K.; Jason, A.M.; Yu, L.; Pita, C.M.; Joannopoulos, J.D.; Moore, D.F.; Radovitzky, R.A. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc. Natl. Acad. Sci. USA 2010, 107, 20703–20708. [Google Scholar] [CrossRef]
- Ivins, B.J.; Crowley, J.S.; Johnson, J.; Warden, D.L.; Schwab, K.A. Traumatic brain injury risk while parachuting: Comparison of the personnel armor system for ground troops helmet and the advanced combat helmet. Mil. Med. 2008, 173, 1168–1172. [Google Scholar] [CrossRef]
- Tham, C.; Tan, V.; Lee, H.-P. Ballistic impact of a KEVLAR® helmet: Experiment and simulations. Int. J. Impact Eng. 2008, 35, 304–318. [Google Scholar] [CrossRef]
- Bilisik, A.K.; Turhan, Y. Multidirectional stitched layered aramid woven fabric structures and their experimental characterization of ballistic performance. Text. Res. J. 2009, 79, 1331–1343. [Google Scholar] [CrossRef]
- Waehrer, G.M.; Dong, X.S.; Millera, T.; Haile, E.; Men, Y. Costs of occupational injuries in construction in the United States. Accid. Anal. Prev. 2007, 39, 1258–1266. [Google Scholar] [CrossRef]
- U.S. Bureau of Labor Statistics. Available online: https://www.bls.gov/ (accessed on 24 July 2022).
- 1926.100—Head Protection. Occupational Safety and Health Administration. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1926/1926.100 (accessed on 24 July 2022).
- Long, J.; Yang, J.; Lei, Z.; Liang, D. Simulation-based assessment for construction helmets. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 24–37. [Google Scholar] [CrossRef]
- Hume, A.; Mills, N.J.; Gilchrist, A. Industrial Head Injuries and the Performance of the Helmets. 1995. Available online: https://www.semanticscholar.org/paper/Industrial-head-injuries-and-the-performance-of-Hulme-Mills/03bf8f6afc4729f9529ce630daed14473b11ecb8 (accessed on 24 July 2022).
- Magnuson, S.; Autenrieth, D.A.A.; Stack, T.; Risser, S.; Gilkey, D. Are hard hats a risk factor for WRMSD in the cervical-thoracic region? Work Read. Mass. 2020, 66, 437–443. [Google Scholar] [CrossRef]
- Wu, J.Z.; Pan, C.S.; Wimer, B.M.; Rosen, C.L. Finite element simulations of the head-brain responses to the top impacts of a construction helmet: Effects of the neck and body mass. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2017, 231, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Naresh, P.; Krishnudu, D.M.; Babu, A.H.; Hussain, P. Design And Analysis of Industrial Helmet. Int. J. Mech. Eng. Res. 2015, 5, 81–95. [Google Scholar]
- Wu, J.Z.; Pan, C.S.; Wimer, B.M. Evaluation of the shock absorption performance of construction helmets under repeated top impacts | Elsevier Enhanced Reader. Eng. Fail. Anal. 2019, 96, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Cheng, M.; Feng, M.; Lijuan, Z. Research on Recognition of Safety Helmet Wearing of Electric Power Construction Personnel Based on Artificial Intelligence Technology. IOP Sci. 2020, 1684, 012013. [Google Scholar] [CrossRef]
- Kim, S.C.; Ro, Y.S.; Shin, S.D.; Kim, J.Y. Preventive Effects of Safety Helmets on Traumatic Brain Injury after Work-Related Falls. Int. J. Environ. Res. Public Health 2016, 13, 1063. [Google Scholar] [CrossRef] [PubMed]
- Tierney, G. Concussion biomechanics, head acceleration exposure and brain injury criteria in sport: A review. Sports Biomech. 2021, 1–29. [Google Scholar] [CrossRef]
- Kleiven, S. Why Most Traumatic Brain Injuries are Not Caused by Linear Acceleration but Skull Fractures are. Front. Bioeng. Biotechnol. 2013, 1, 15. [Google Scholar] [CrossRef]
- Rowson, S.; Bland, M.L.; Campolettano, E.T.; Press, J.N.; Rowson, B.; Smith, J.A.; Sproule, D.W.; Tyson, A.M.; Duma, S.M. Biomechanical Perspectives on Concussion in Sport. Sports Med. Arthrosc. Rev. 2016, 24, 100–107. [Google Scholar] [CrossRef]
- Trotta, A.; Annaidh, A.N.; Burek, R.O.; Pelgrims, B.; Ivens, J. Evaluation of the head-helmet sliding properties in an impact test. J. Biomech. 2018, 75, 28–34. [Google Scholar] [CrossRef]
- Neice, R.; Plaisted, T. Evaluation of a Combat Helmet Under Combined Translational and Rotational Impact Loading. 2020. Available online: https://apps.dtic.mil/sti/citations/AD1120852 (accessed on 24 July 2022).
- McKeithan, L.; Hibshman, N.; Yengo-Kahn, A.M.; Solomon, G.S.; Zuckerman, S.L. Sport-Related Concussion: Evaluation, Treatment, and Future Directions. Med. Sci. 2019, 7, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamjoom, A.A.B.; Rhodes, J.; Andrews, P.J.D.; Grant, S.G.N. The synapse in traumatic brain injury. Brain 2020, 144, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, D.; Pekic, S.; Stojanovic, M.; Popovic, V. Traumatic brain injury: Neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary 2019, 22, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Romeu-Mejia, R.; Giza, C.C.; Goldman, J.T. Concussion Pathophysiology and Injury Biomechanics. Curr. Rev. Musculoskelet. Med. 2019, 12, 105–116. [Google Scholar] [CrossRef]
- Keating, C.E.; Cullen, D.K. Mechanosensation in traumatic brain injury. Neurobiol. Dis. 2021, 148, 105210. [Google Scholar] [CrossRef]
- Wofford, K.L.; Grovola, M.R.; Adewole, D.O.; Browne, K.D.; Putt, M.E.; O’Donnell, J.C.; Cullen, D.K. Relationships between injury kinematics, neurological recovery, and pathology following concussion. Brain Commun. 2021, 3, fcab268. [Google Scholar] [CrossRef]
- Tehse, J.; Taghibiglou, C. The overlooked aspect of excitotoxicity: Glutamate-independent excitotoxicity in traumatic brain injuries. Eur. J. Neurosci. 2019, 49, 1157–1170. [Google Scholar] [CrossRef]
- Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA Imbalance Following Traumatic Brain Injury. Curr. Neurol. Neurosci. Rep. 2015, 15, 27. [Google Scholar] [CrossRef]
- Wofford, K.L.; Loane, D.J.; Cullen, D.K. Acute drivers of neuroinflammation in traumatic brain injury. Neural Regen. Res. 2019, 14, 1481–1489. [Google Scholar] [CrossRef]
- Hubbard, W.B.; Joseph, B.; Spry, M.; Vekaria, H.J.; Saatman, K.E.; Sullivan, P.G. Acute Mitochondrial Impairment Underlies Prolonged Cellular Dysfunction after Repeated Mild Traumatic Brain Injuries. J. Neurotrauma 2019, 36, 1252–1263. [Google Scholar] [CrossRef]
- Cheng, G.; Kong, R.-H.; Zhang, L.-M.; Zhang, J.-N. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br. J. Pharmacol. 2012, 167, 699–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verweij, B.H.; Muizelaar, J.P.; Vinas, F.C.; Peterson, P.L.; Xiong, Y.; Lee, C.P. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J. Neurosurg. 2000, 93, 815–820. [Google Scholar] [CrossRef]
- Ismail, H.; Shakkour, Z.; Tabet, M.; Abdelhady, S.; Kobaisi, A.; Abedi, R.; Nasrallah, L.; Pintus, G.; Al-Dhaheri, Y.; Mondello, S.; et al. Traumatic Brain Injury: Oxidative Stress and Novel Anti-Oxidants Such as Mitoquinone and Edaravone. Antioxidants 2020, 9, 943. [Google Scholar] [CrossRef] [PubMed]
- Sahel, D.K.; Kaira, M.; Raj, K.; Sharma, S.; Singh, S. Mitochondrial dysfunctioning and neuroinflammation: Recent highlights on the possible mechanisms involved in Traumatic Brain Injury. Neurosci. Lett. 2019, 710, 134347. [Google Scholar] [CrossRef]
- Brady, R.D.; Bird, S.; Sun, M.; Yamakawa, G.R.; Major, B.P.; Mychasiuk, R.; O’Brien, T.J.; McDonald, S.J.; Shultz, S.R. Activation of the Protein Kinase R–Like Endoplasmic Reticulum Kinase (PERK) Pathway of the Unfolded Protein Response after Experimental Traumatic Brain Injury and Treatment with a PERK Inhibitor. Neurotrauma Rep. 2021, 2, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Scheper, W.; Hoozemans, J.J.M. The unfolded protein response in neurodegenerative diseases: A neuropathological perspective. Acta Neuropathol. 2015, 130, 315–331. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Laskowitz, D.T. Cellular and Molecular Mechanisms of Secondary Neuronal Injury. In Translational Research in Traumatic Brain Injury; Laskowitz, D., Grant, G., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- Hetz, C.; Axten, J.M.; Patterson, J.B. Pharmacological targeting of the unfolded protein response for disease intervention. Nat. Chem. Biol. 2019, 15, 764–775. [Google Scholar] [CrossRef]
- Kim, I.; Xu, W.; Reed, J.C. Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 2008, 7, 1013–1030. [Google Scholar] [CrossRef]
- NFL Helmet Challenge Raises the Bar for Helmet Technology and Performance, Awards $1.55 Million in Grant Funding to Help New Models Get on Field Faster. Available online: https://www.nfl.com/playerhealthandsafety/equipment-and-innovation/innovation-challenges/nfl-helmet-challenge-raises-the-bar-for-helmet-technology-and-performance-awards (accessed on 24 July 2022).
- Video: Meet the Awardees of the NFL Helmet Challenge. Available online: https://www.nfl.com/playerhealthandsafety/equipment-and-innovation/innovation-challenges/video-meet-the-awardees-of-the-nfl-helmet-challenge (accessed on 24 July 2022).
- 3 Ingenious innovations from the NFL’s Helmet Challenge. Available online: https://epicapplications.com/3-ingenious-innovations-from-the-nfls-helmet-challenge/ (accessed on 12 February 2022).
- KOLLIDE. Kollide: A 3D Revolution Is Coming. Available online: https://www.kollide.ca/ (accessed on 24 July 2022).
- Chatham, L. Protection & Testing Impressio Tech. Available online: https://www.impressio.tech/human-protection (accessed on 24 July 2022).
- Hussain, M.; Jull, E.I.L.; Mandle, R.J.; Raistrick, T.; Hine, P.J.; Gleeson, H.F. Liquid Crystal Elastomers for Biological Applications. Nanomaterials 2021, 11, 813. [Google Scholar] [CrossRef]
- Luo, C.; Chung, C.; Traugutt, N.A.; Yakacki, C.M.; Long, K.N.; Yu, K. 3D Printing of Liquid Crystal Elastomer Foams for Enhanced Energy Dissipation Under Mechanical Insult. ACS Appl. Mater. Interfaces 2021, 13, 12698–12708. [Google Scholar] [CrossRef]
- Jeon, S.-Y.; Shen, B.; Traugutt, N.A.; Zhu, Z.; Fang, L.; Yakacki, C.M.; Nguyen, T.D.; Kang, S.H. Synergistic Energy Absorption Mechanisms of Architected Liquid Crystal Elastomers. Adv. Mater. 2022, 34, e2200272. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, K.L.; Rowson, S.; Duma, S.M.; Broglio, S.P. Head-Impact-Measurement Devices: A Systematic Review. J. Athl. Train. 2017, 52, 206–227. [Google Scholar] [CrossRef] [PubMed]
- Cummiskey, B.; Schiffmiller, D.; Talavage, T.M.; Leverenz, L.; Meyer, J.J.; Adams, D.; Nauman, E.A. Reliability and accuracy of helmet-mounted and head-mounted devices used to measure head accelerations. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2017, 231, 144–153. [Google Scholar] [CrossRef]
- Wu, L. Sports concussions: Can head impact sensors help biomedical engineers to design better headgear? Br. J. Sports Med. 2020, 54, 370–371. [Google Scholar] [CrossRef] [PubMed]
- Gabler, L.F.; Dau, N.Z.; Park, G.; Miles, A.; Arbogast, K.B.; Crandall, J.R. Development of a Low-Power Instrumented Mouthpiece for Directly Measuring Head Acceleration in American Football. Ann. Biomed. Eng. 2021, 49, 2760–2776. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yang, Q.; Han, T.; O’Malley, R.; Kumar, A.; Gerald, R.E.; Huang, J. Fiber optic sensor embedded smart helmet for real-time impact sensing and analysis through machine learning. J. Neurosci. Methods 2021, 351, 109073. [Google Scholar] [CrossRef]
- Dsouza, H.; Pastrana, J.; Figueroa, J.; Gonzalez-Afanador, I.; Davila-Montero, B.M.; Sepúlveda, N. Flexible, self-powered sensors for estimating human head kinematics relevant to concussions. Sci. Rep. 2022, 12, 8567. [Google Scholar] [CrossRef]
- Eitzen, I.; Renberg, J.; Færevik, H. The Use of Wearable Sensor Technology to Detect Shock Impacts in Sports and Occupational Settings: A Scoping Review. Sensors 2021, 21, 4962. [Google Scholar] [CrossRef]
- Rooks, T.F.M.S.; Novotny, B.L.M.S.; McGovern, S.M.B.S.; Winegar, A.; Shivers, B.L.P.; Brozoski, F.T.M.S. Evaluation of Head and Body Kinematics Experienced During Parachute Opening Shock. Mil. Med. 2021, 186, e1149–e1156. [Google Scholar] [CrossRef]
- Suhey, J.; Gohmert, D.; Jacobs, S.; Baldwin, M.A. Development of a Novel Helmet Support Assembly for NASA Orion Crew Survival Suit. In Proceedings of the International Conference on Environmental Systems, Boston, MA, USA, 7 July 2019. [Google Scholar]
- Jacobs, S.; Tufts, D.; Gohmert, D. Space Suit Development for Orion. In Proceedings of the 48th International Conference on Environmental Systems, Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- Veerappan, V.R.; Nagendra, B.; Thalluri, P.; Manda, V.S.; Rao, R.N.; Pattisapu, J.V. Reducing the Neurotrauma Burden in India—A National Mobilization. World Neurosurg. 2022, 165, 106–113. [Google Scholar] [CrossRef]
- Du, R.Y.; LoPresti, M.A.; García, R.M.; Lam, S. Primary prevention of road traffic accident–related traumatic brain injuries in younger populations: A systematic review of helmet legislation. J. Neurosurg. Pediatr. PED 2020, 25, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.A.; Yue, J.K.; Burke, J.F.; Chan, A.K.; Dhall, S.S.; Berger, M.S.; Manley, G.T.; Tarapore, P.E. Adult sports-related traumatic brain injury in United States trauma centers. Neurosurg. Focus FOC 2016, 40, E4. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, S.L.; Morgan, C.D.; Burks, S.; Forbes, J.A.; Chambless, L.B.; Solomon, G.S.; Sills, A.K. Functional and Structural Traumatic Brain Injury in Equestrian Sports: A Review of the Literature. World Neurosurg. 2015, 83, 1098–1113. [Google Scholar] [CrossRef] [PubMed]
- Commission, C.P.S. Which Helmet for Which Activity? Available online: https://www.cpsc.gov/s3fs-public/349-WhichHelmetBrochure_5-13-22_WEB_508_0.pdf?VersionId=ugCUjMcQ5AAwOtgdO2UkkC8nCfGRRMwW (accessed on 24 July 2022).
- Hoshizaki, T.; Post, A.M.; Zerpa, C.E.; Legace, E.; Hoshizaki, T.B.; Gilchrist, M.D. Evaluation of two rotational helmet technologies to decrease peak rotational acceleration in cycling helmets. Sci. Rep. 2022, 12, 7735. [Google Scholar] [CrossRef] [PubMed]
- DiGiacomo, G.; Tsai, S.; Bottlang, M. Impact Performance Comparison of Advanced Snow Sport Helmets with Dedicated Rotation-Damping Systems. Ann. Biomed. Eng. 2021, 49, 2805–2813. [Google Scholar] [CrossRef]
- Bliven, E.; Rouhier, A.; Tsai, S.; Willinger, R.; Bourdet, N.; Deck, C.; Madey, S.M.; Bottlang, M. Evaluation of a novel bicycle helmet concept in oblique impact testing. Accid. Anal. Prev. 2019, 124, 58–65. [Google Scholar] [CrossRef]
- Hansen, K.; Dau, N.; Feist, F.; Deck, C.; Willinger, R.; Madey, S.M.; Bottlang, M. Angular Impact Mitigation system for bicycle helmets to reduce head acceleration and risk of traumatic brain injury. Accid. Anal. Prev. 2013, 59, 109–117. [Google Scholar] [CrossRef]
- Kurt, M.; Laksari, K.; Kuo, C.; Grant, G.A.; Camarillo, D.B. Modeling and Optimization of Airbag Helmets for Preventing Head Injuries in Bicycling. Ann. Biomed. Eng. 2017, 45, 1148–1160. [Google Scholar] [CrossRef]
- Tse, K.M.; Holder, D. A Biomechanical Evaluation of a Novel Airbag Bicycle Helmet Concept for Traumatic Brain Injury Mitigation. Bioengineering 2021, 8, 173. [Google Scholar] [CrossRef]
- Abayazid, F.; Ding, K.; Zimmerman, K.; Stigson, H.; Ghajari, M. A New Assessment of Bicycle Helmets: The Brain Injury Mitigation Effects of New Technologies in Oblique Impacts. Ann. Biomed. Eng. 2021, 49, 2716–2733. [Google Scholar] [CrossRef]
- Bottlang, M.; DiGiacomo, G.; Tsai, S.; Madey, S. Effect of helmet design on impact performance of industrial safety helmets. Heliyon 2022, 8, e09962. [Google Scholar] [CrossRef] [PubMed]
- Fanton, M.G.; Sganga, J.A.; Camarillo, D. Vulnerable locations on the head to brain injury and implications for helmet design. J. Biomech. Eng. 2019, 141, 121002. [Google Scholar] [CrossRef] [PubMed]
- Rowson, S.; Duma, S.M. Development of the STAR evaluation system for football helmets: Integrating player head impact exposure and risk of concussion. Ann. Biomed. Eng. 2011, 39, 2130–2140. [Google Scholar] [CrossRef]
- Rowson, B.; Rowson, S.; Duma, S.M. Hockey STAR: A Methodology for Assessing the Biomechanical Performance of Hockey Helmets. Ann. Biomed. Eng. 2015, 43, 2429–2443. [Google Scholar] [CrossRef] [PubMed]
- Bland, M.L.; McNally, C.; Zuby, D.S.; Mueller, B.C.; Rowson, S. Development of the STAR Evaluation System for Assessing Bicycle Helmet Protective Performance. Ann. Biomed. Eng. 2020, 48, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Bian, K.; Mao, H. Mechanisms and variances of rotation-induced brain injury: A parametric investigation between head kinematics and brain strain. Biomech. Model. Mechanobiol. 2020, 19, 2323–2341. [Google Scholar] [CrossRef] [PubMed]
- Gabler, L.F.; Crandall, J.R.; Panzer, M.B. Development of a Second-Order System for Rapid Estimation of Maximum Brain Strain. Ann. Biomed. Eng. 2019, 47, 1971–1981. [Google Scholar] [CrossRef]
- Miller, L.E.; Urban, J.E.; Espeland, M.A.; Walkup, M.P.; Holcomb, J.M.; Davenport, E.M.; Powers, A.K.; Whitlow, C.T.; Maldjian, J.A.; Stitzel, J.D. Cumulative strain-based metrics for predicting subconcussive head impact exposure-related imaging changes in a cohort of American youth football players. J. Neurosurg. Pediatr. 2022, 29, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, K.; Begonia, M.; Rowson, S.; Ji, S. American Football Helmet Effectiveness Against a Strain-Based Concussion Mechanism. Ann. Biomed. Eng. 2022. [Google Scholar] [CrossRef]
- Giza, C.C.; McCrea, M.; Huber, D.; Cameron, K.L.; Houston, M.N.; Jackson, J.C.; McGinty, G.; Pasquina, P.; Broglio, S.P.; Brooks, A.; et al. Assessment of Blood Biomarker Profile After Acute Concussion During Combative Training Among US Military Cadets: A Prospective Study From the NCAA and US Department of Defense CARE Consortium. JAMA Netw. Open 2021, 4, e2037731. [Google Scholar] [CrossRef]
- Vorn, R.; Mithani, S.; Devoto, C.; Meier, T.B.; Lai, C.; Yun, S.; Broglio, S.P.; McAllister, T.W.; Giza, C.C.; Kim, H.S.; et al. Proteomic Profiling of Plasma Biomarkers Associated With Return to Sport Following Concussion: Findings From the NCAA and Department of Defense CARE Consortium. Front. Neurol. 2022, 13, 901238. [Google Scholar] [CrossRef] [PubMed]
Helmet Type | Activity | Applicable Standards |
---|---|---|
American Football | American Football | NOCSAE ND002, ND006; ASTM F717 |
Baseball Batter’s | Baseball Softball T-Ball | NOCSAE ND022 |
Baseball Catcher’s | NOCSAE ND024 | |
Bicycle | Bicycling Kick Scooter Riding Roller Skating—Recreational | ASTM F1447, F18981; Snell B-90A, B-95, N-94; CPSC |
BMX | BMX Cycling | ASTM F2032; CPSC |
Bull Riding | Bull Riding | ASTM 2530 |
Canoeing/White Water | Canoeing/Kayaking | EN 1385 |
Cricket | Cricket | BSI BS7928 [22] |
Downhill | Downhill Mountain Bike Racing | ASTM F1952; CPSC |
Equestrian | Horseback Riding | ASTM F1163; Snell E-2001 |
Football | Football | ASTM F2439-06 [23] |
Hockey | Ice Hockey | NOCSAE ND030; ASTM F1045 |
Lacrosse | Lacrosse | NOCSAE ND041 |
Motorcycle | Motorcycling | Snell M-2005, M-2010, CMS/CMR 20073; DOT FMVSS 218 |
Motorcycle | Power Boating | Snell M-2005, M-2010, CMS/CMR 2007; DOT FMVSS 218 |
Motorcycle or Karting | Karting/Go-Karting | Snell K-98, M-2005, M-2010, CMS/CMR 2007; DOT FMVSS 218 |
Motorcycle or Moped | Moped Riding Motorized Bicycling Powered Scooter Riding | Snell L-98, M-2005, M-2010, CMS/CMR 20073; DOT FMVSS 218 |
Motorcycle or Motocross | ATV Riding Dirt- and Mini-Bike Riding Motocrossing ROV/Side by Side/UTV Riding | Snell M-2005, M-2010, CMS/CMR 2007; DOT FMVSS 218 |
Mountaineering | Rock- and Wall-Climbing Spelunking | EN 12492; Snell N-94 |
Pole Vaulting | Pole Vaulting | ASTM F2400 |
Polo | Polo | NOCSAE ND050 |
Skateboard | Longboarding Roller Skating—Trick Skateboarding | ASTM F1492; Snell N-94 |
Ski | Skiing Snowboarding Snow Tubing | ASTM F2040; CSA Z263.1; Snell RS-98, S-98 |
Snowmobile | Snowmobiling | Snell M-2005, M-2010, CMS/CMR 2007; DOT FMVSS 218 |
Standard Issue Helmet | Material | Efficacy |
---|---|---|
Advanced Combat Helmet (ACH) | ballistic fabrics (Kevlar®) k129, composite shell, suspension system | Evidence of reduced ICP brain stain/limited research on diffuse TBI efficacy [27] |
Personnel Armor System for Ground Troops (PASGT) | ballistic fabrics (Kevlar®) K29, suspension system | Penetration protection against 0.22 caliber and lower tolerance to blast compared to k129 fibers [33,34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goutnik, M.; Goeckeritz, J.; Sabetta, Z.; Curry, T.; Willman, M.; Willman, J.; Currier Thomas, T.; Lucke-Wold, B. Neurotrauma Prevention Review: Improving Helmet Design and Implementation. Biomechanics 2022, 2, 500-512. https://doi.org/10.3390/biomechanics2040039
Goutnik M, Goeckeritz J, Sabetta Z, Curry T, Willman M, Willman J, Currier Thomas T, Lucke-Wold B. Neurotrauma Prevention Review: Improving Helmet Design and Implementation. Biomechanics. 2022; 2(4):500-512. https://doi.org/10.3390/biomechanics2040039
Chicago/Turabian StyleGoutnik, Michael, Joel Goeckeritz, Zackary Sabetta, Tala Curry, Matthew Willman, Jonathan Willman, Theresa Currier Thomas, and Brandon Lucke-Wold. 2022. "Neurotrauma Prevention Review: Improving Helmet Design and Implementation" Biomechanics 2, no. 4: 500-512. https://doi.org/10.3390/biomechanics2040039
APA StyleGoutnik, M., Goeckeritz, J., Sabetta, Z., Curry, T., Willman, M., Willman, J., Currier Thomas, T., & Lucke-Wold, B. (2022). Neurotrauma Prevention Review: Improving Helmet Design and Implementation. Biomechanics, 2(4), 500-512. https://doi.org/10.3390/biomechanics2040039