Mechanics and Energetics of Human Feet: A Contemporary Perspective for Understanding Mobility Impairments in Older Adults
Abstract
:1. Current Understanding of the Mechanics and Energetics of Older Adults
2. Transformations in the Field of Human Foot Biomechanics
3. Towards a Mechanistic Understanding of the Age-Related Decline in Foot Function
4. Interventions to Rejuvenate the Foot Mechanics and Energetics in Older Adults
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waanders, J.B.; Hortobágyi, T.; Murgia, A.; Devita, P.; Franz, J.R. Advanced Age Redistributes Positive but Not Negative Leg Joint Work during Walking. Med. Sci. Sports Exerc. 2019, 51, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, R.E.; Pieper, N.L.; Clark, W.H.; Franz, J.R. Muscle metabolic energy costs while modifying propulsive force generation during walking. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 1552–1565. [Google Scholar] [CrossRef] [PubMed]
- Zelik, K.E.; Honert, E.C. Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment. J. Biomech. 2018, 75, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Carrier, D.R.; Heglund, N.C.; Earls, K.D. Variable gearing during locomotion in the human musculoskeletal system. Science 1994, 265, 651–653. [Google Scholar] [CrossRef]
- Pol, F.; Baharlouei, H.; Taheri, A.; Menz, H.B.; Forghany, S. Foot and ankle biomechanics during walking in older adults: A systematic review and meta-analysis of observational studies. Gait Posture 2021, 89, 14–24. [Google Scholar] [CrossRef]
- Krupenevich, R.L.; Clark, W.H.; Ray, S.F.; Takahashi, K.Z.; Kashefsky, H.E.; Franz, J.R. Effects of age and locomotor demand on foot mechanics during walking. J. Biomech. 2021, 123, 110499. [Google Scholar] [CrossRef]
- da Silva, L.S.; Fukuchi, R.K.; Watanabe, R.N.; Fukuchi, C.A.; Duarte, M. Effects of age and speed on the ankle-foot system’s power during walking. Sci. Rep. 2020, 10, 14903. [Google Scholar] [CrossRef]
- Pieper, N.L.; Baudendistel, S.T.; Hass, C.J.; Diaz, G.B.; Krupenevich, R.L.; Franz, J.R. The metabolic and mechanical consequences of altered propulsive force generation in walking. J. Biomech. 2021, 122, 110447. [Google Scholar] [CrossRef]
- Unver, B.; Bek, N. Plantar sensation, plantar pressure, and postural stability alterations and effects of visual status in older adults. Somat. Mot. Res. 2022, 39, 55–61. [Google Scholar] [CrossRef]
- Takahashi, K.Z.; Worster, K.; Bruening, D.A. Energy neutral: The human foot and ankle subsections combine to produce near zero net mechanical work during walking. Sci. Rep. 2017, 7, 15404. [Google Scholar] [CrossRef] [Green Version]
- Farris, D.J.; Birch, J.; Kelly, L. Foot stiffening during the push-off phase of human walking is linked to active muscle contraction, and not the windlass mechanism. J. R. Soc. Interface 2020, 17, 20200208. [Google Scholar] [CrossRef]
- Smith, R.E.; Lichtwark, G.A.; Kelly, L.A. The energetic function of the human foot and its muscles during accelerations and decelerations. J. Exp. Biol. 2021, 224, jeb242263. [Google Scholar] [CrossRef]
- Riddick, R.; Farris, D.J.; Kelly, L.A. The foot is more than a spring: Human foot muscles perform work to adapt to the energetic requirements of locomotion. J. R. Soc. Interface 2019, 16, 20180680. [Google Scholar] [CrossRef]
- Welte, L.; Kelly, L.A.; Kessler, S.E.; Lieberman, D.E.; D’Andrea, S.E.; Lichtwark, G.A.; Rainbow, M.J. The extensibility of the plantar fascia influences the windlass mechanism during human running. Proc. Biol. Sci. 2021, 288, 20202095. [Google Scholar] [CrossRef]
- Lenz, A.L.; Nichols, J.A.; Roach, K.E.; Foreman, K.B.; Barg, A.; Saltzman, C.L.; Anderson, A.E. Compensatory Motion of the Subtalar Joint Following Tibiotalar Arthrodesis: An in Vivo Dual-Fluoroscopy Imaging Study. J. Bone Joint Surg. Am. 2020, 102, 600–608. [Google Scholar] [CrossRef]
- Ray, S.F.; Takahashi, K.Z. Gearing Up the Human Ankle-Foot System to Reduce Energy Cost of Fast Walking. Sci. Rep. 2020, 10, 8793. [Google Scholar] [CrossRef]
- Venkadesan, M.; Yawar, A.; Eng, C.M.; Dias, M.A.; Singh, D.K.; Tommasini, S.M.; Haims, A.H.; Bandi, M.M.; Mandre, S. Stiffness of the human foot and evolution of the transverse arch. Nature 2020, 579, 97–100. [Google Scholar] [CrossRef]
- Menz, H.B. Biomechanics of the ageing foot and ankle: A mini-review. Gerontology 2015, 61, 381–388. [Google Scholar] [CrossRef]
- Pękala, P.A.; Drzymała, A.; Kaythampillai, L.; Skinningsrud, B.; Mizia, E.; Rok, T.; Wojciechowski, W.; Tomaszewski, K.A. The influence of aging on the insertion of the Achilles tendon: A magnetic resonance study. Clin. Anat 2020, 33, 545–551. [Google Scholar] [CrossRef]
- Peters, R.M.; McKeown, M.D.; Carpenter, M.G.; Inglis, J.T. Losing touch: Age-related changes in plantar skin sensitivity, lower limb cutaneous reflex strength, and postural stability in older adults. J. Neurophysiol. 2016, 116, 1848–1858. [Google Scholar] [CrossRef] [Green Version]
- Hoogkamer, W.; Kipp, S.; Kram, R. The Biomechanics of Competitive Male Runners in Three Marathon Racing Shoes: A Randomized Crossover Study. Sports Med. 2019, 49, 133–143. [Google Scholar] [CrossRef]
- Mickle, K.J.; Angin, S.; Crofts, G.; Nester, C.J. Effects of Age on Strength and Morphology of Toe Flexor Muscles. J. Orthop. Sports Phys. Ther. 2016, 46, 1065–1070. [Google Scholar] [CrossRef]
- Sharma, T.; Peters, R.M.; Bent, L.R. Subthreshold Electrical Noise Applied to the Plantar Foot Enhances Lower-Limb Cutaneous Reflex Generation. Front. Hum. Neurosci. 2020, 14, 351. [Google Scholar] [CrossRef]
- Matijevich, E.S.; Honert, E.C.; Fan, Y.; Lam, G.; Nigg, B.M. A foot and footwear mechanical power theoretical framework: Towards understanding energy storage and return in running footwear. J. Biomech. 2022, 141, 111217. [Google Scholar] [CrossRef]
- Renganathan, G.; Kurita, Y.; Ćuković, S.; Das, S. Foot Biomechanics with Emphasis on the Plantar Pressure Sensing: A Review. Revolut. Prod. Des. Healthc. 2022, 115–141. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, K.Z.; Krupenevich, R.L.; Lenz, A.L.; Kelly, L.A.; Rainbow, M.J.; Franz, J.R. Mechanics and Energetics of Human Feet: A Contemporary Perspective for Understanding Mobility Impairments in Older Adults. Biomechanics 2022, 2, 494-499. https://doi.org/10.3390/biomechanics2040038
Takahashi KZ, Krupenevich RL, Lenz AL, Kelly LA, Rainbow MJ, Franz JR. Mechanics and Energetics of Human Feet: A Contemporary Perspective for Understanding Mobility Impairments in Older Adults. Biomechanics. 2022; 2(4):494-499. https://doi.org/10.3390/biomechanics2040038
Chicago/Turabian StyleTakahashi, Kota Z., Rebecca L. Krupenevich, Amy L. Lenz, Luke A. Kelly, Michael J. Rainbow, and Jason R. Franz. 2022. "Mechanics and Energetics of Human Feet: A Contemporary Perspective for Understanding Mobility Impairments in Older Adults" Biomechanics 2, no. 4: 494-499. https://doi.org/10.3390/biomechanics2040038
APA StyleTakahashi, K. Z., Krupenevich, R. L., Lenz, A. L., Kelly, L. A., Rainbow, M. J., & Franz, J. R. (2022). Mechanics and Energetics of Human Feet: A Contemporary Perspective for Understanding Mobility Impairments in Older Adults. Biomechanics, 2(4), 494-499. https://doi.org/10.3390/biomechanics2040038