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Abstract: Neurotrauma continues to contribute to significant mortality and disability. The need for
better protective equipment is apparent. This review focuses on improved helmet design and the
necessity for continued research. We start by highlighting current innovations in helmet design
for sport and subsequent utilization in the lay community for construction. The current standards
by sport and organization are summarized. We then address current standards within the military
environment. The pathophysiology is discussed with emphasis on how helmets provide protection.
As innovative designs emerge, protection against secondary injury becomes apparent. Much research
is needed, but this focused paper is intended to serve as a catalyst for improvement in helmet design
and implementation to provide more efficient and reliable neuroprotection across broad arenas.
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1. Introduction

Neurotrauma is an important, often preventable cause of morbidity and mortality.
Between 180 and 250 traumatic brain injuries (TBIs) occur per 100,000 population per
year in the U.S. [1]. Helmets have been employed by humans for thousands of years and
have served as a crucial instrument by which we protect ourselves from and minimize
the effects of traumatic brain injury [2]. Substantial evidence from systematic reviews
and meta-analyses points toward the protective effectiveness (often >60%) of helmets in
preventing TBIs in athletes, cyclists and motorcyclists [3–6]. However, when stratifying TBI
by severity, helmets may be less effective or even ineffective in preventing milder forms of
TBI such as concussion [2]. Helmet design has been predicated on linear acceleration as a
metric corresponding to head injury [7,8]. This has served well in preventing catastrophic
injuries. However, rotational acceleration is more likely implicated in the pathophysiology
of milder brain injuries, including concussion [7].

Substantial challenges exist in research involving helmets. For example, a diversity
of helmet types based on sport and occupation limits statistical power for studies, along
with nonuniform definitions of concussion [2]. Furthermore, prospective studies involv-
ing helmets are unethical, and animal models of helmets might not be comparable to
those involving humans [2]. Material scientist, engineer, neuroscientist, neurologist, and
neurosurgeon inputs will be essential to design better helmets.

The following literature review aims to discuss helmet design in various contexts,
along with suggested steps to promote better protection against neurotrauma. A Pubmed
search was employed with key terms including “neurotrauma”, “TBI”, “concussion”,
“helmet”, and stratified by helmet context, including construction, military, and sport.
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2. Current Sports Helmet Design

The mandated use of helmets in organized sports dates back as early as the 1940’s
when the National Collegiate Athletic Association (NCAA) and National Football League
(NFL) made helmets a requirement for players to reduce head-related injuries [9]. Since
this time, multiple organizations have developed standards for testing and producing
sports helmets (Table 1). While the implementation of sports helmets has successfully
reduced catastrophic head-related injuries, including traumatic brain injuries (TBI) and
orofacial injuries, the risk of concussive injuries remains unmitigated. This discrepancy
in selective protection may be explained by how helmets are tested and certified, with
the current standard for testing helmets focusing on the use of linear acceleration, which
has demonstrated a reduction of TBI and skull fractures, but not concussive injury [10].
Research has demonstrated that the primary mechanism of injury leading to concussions in
sports is the result of rotational acceleration, which is not explicitly tested for by certifying
organizations [11,12].

Current sports helmets are designed to protect against punches, falls, projectiles,
collisions, and abrasion, and can be grossly organized into two main categories—single-
impact and multi-impact helmets [13]. However, virtually all current sports helmets have
the basic design of an inner comfort liner, an impact energy attenuating liner, a restraint
system, and an outer shell [14]. Single-impact helmets are designed to withstand high-
impact encounters only once. Examples of these include bicycle, mountaineering, and
equestrian helmets. The energy attenuating liner in these helmets is typically constructed
of lightweight expanded polystyrene (EPS) foam, which does well in dissipating energy,
but permanently deforms after impact [9]. On the other hand, multi-impact helmets are
designed to withstand multiple impacts and are used in US football, hockey, motorcross,
and rugby. The resilience to multiple impacts is accomplished by construction with either
vinyl nitrile (VN) or expanded polypropylene (EPP) foam for the energy attenuating liner.
VN and EPP can return to their original form after impact; however, VN performs better
with lower energy impacts than EPP, which performs better at higher energy impacts [9,15].
In both helmets, the outer shell functions to distribute the force of impact along the area
of the energy attenuating liner. Shells are commonly constructed of polycarbonate (PC)
or ABS plastic, but some helmets may have hard shells composed of composites, such as
fiberglass or carbon fiber [7,16].

Further variations in helmet design exist according to the dangers encountered in each
sport, as well as practicality, ease of use, and aesthetics. Sports (e.g., lacrosse, hockey, and
baseball) where the impact from a projectile is of concern may implement a face guard
(typically either a wired frame or an extension of the helmet’s shell) to protect against
orofacial injuries [17,18]. Cycling and mountaineering helmets are often engineered to be
highly aerodynamic and as light as possible to avoid hindering the user’s performance [19].
Helmets used in motorcycle-variant sports are designed with thicker protective layers that
aerodynamically encapsulate the entire head to protect against greater risks associated with
high speed [20]. A list of sports helmet types, activities, and applicable standards may be
found in Tables 1 and 2.
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Table 1. Sports helmet standards (‘x’ indicates standard) [14,21].

Sport Category ASTM AS/NZS CSA DOT EN (Incl. BSI, DIN NSAI) FIFA, FISI, IHF, IRB NOCSAE ISO Snell

American Football x x

Animal Riding x

Baseball x x

Cricket x x (BSI)

Cycling Sports x x x x x

Football x

Ice Hockey x x x x

Lacrosse x

Motorized Sports x x

Mountaineering x x

Pole Vaulting x

Polo x

Rugby x (IRB)

Skateboard Sports x x

Snow Sports x x x

Water Sports x

AS/NZS, Standards Australia/New Zealand Standards; ASTM, ASTM International; BSI, none; CSA, Canadian
Standards Association; DIN, Germany Industry Standards; DOT, Department of Transportation; FIFA, Federation
International Football Associations; FIS, International Ski Federation; IIHF, International Ice Hockey Federation;
IRB, International Rugby Board; ISO, International Standards Organization; NOCSAE, National Operating
Committee on Standards for Athletic Equipment; NSAI, National Standards Authority Ireland; Snell, Snell
Memorial Foundation.

Table 2. Sport helmets categorized by activity [14,21].

Helmet Type Activity Applicable Standards

American Football American Football NOCSAE ND002, ND006; ASTM F717
Baseball Batter’s Baseball NOCSAE ND022

Baseball Catcher’s Softball
T-Ball NOCSAE ND024

Bicycle
Bicycling

Kick Scooter Riding
Roller Skating—Recreational

ASTM F1447, F18981; Snell B-90A, B-95, N-94; CPSC

BMX BMX Cycling ASTM F2032; CPSC
Bull Riding Bull Riding ASTM 2530

Canoeing/White Water Canoeing/Kayaking EN 1385
Cricket Cricket BSI BS7928 [22]

Downhill Downhill Mountain Bike Racing ASTM F1952; CPSC
Equestrian Horseback Riding ASTM F1163; Snell E-2001

Football Football ASTM F2439-06 [23]
Hockey Ice Hockey NOCSAE ND030; ASTM F1045
Lacrosse Lacrosse NOCSAE ND041

Motorcycle Motorcycling Snell M-2005, M-2010, CMS/CMR 20073; DOT FMVSS 218
Motorcycle Power Boating Snell M-2005, M-2010, CMS/CMR 2007; DOT FMVSS 218

Motorcycle or Karting Karting/Go-Karting Snell K-98, M-2005, M-2010, CMS/CMR 2007; DOT FMVSS 218

Motorcycle or Moped
Moped Riding

Motorized Bicycling
Powered Scooter Riding

Snell L-98, M-2005, M-2010, CMS/CMR 20073; DOT FMVSS 218

Motorcycle or Motocross

ATV Riding
Dirt- and Mini-Bike Riding

Motocrossing
ROV/Side by Side/UTV Riding

Snell M-2005, M-2010, CMS/CMR 2007; DOT FMVSS 218

Mountaineering Rock- and Wall-Climbing
Spelunking EN 12492; Snell N-94

Pole Vaulting Pole Vaulting ASTM F2400
Polo Polo NOCSAE ND050

Skateboard
Longboarding

Roller Skating—Trick
Skateboarding

ASTM F1492; Snell N-94

Ski
Skiing

Snowboarding
Snow Tubing

ASTM F2040; CSA Z263.1; Snell RS-98, S-98

Snowmobile Snowmobiling Snell M-2005, M-2010, CMS/CMR 2007; DOT FMVSS 218

3. Current Military Helmet Design

The current issue US military helmet for combat use is the advanced combat helmet
(ACH), and previously was the personnel armor system for ground troops (PASGT) in the
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late 1990’ and early 2000s [24]. Prior work has highlighted the blunt impact standard limi-
tation to linear head acceleration [25], with the need to focus on rotational head motion, the
likely mechanism contributing to diffuse axonal injury (DAI) [25–28]. Military specification
(mil-spec) requires a blunt impact acceleration limit testing for pass/fail criteria of the ACH,
but does not require rotational component testing [27]. Blast-induced TBI (BTBI) is also a
mechanism of combat-induced diffuse axonal injury where blast waves cause rotational
forces on the brain to induce DAI.

The ACH is equipped with high-strength Kevlar 129 fibers, housed in a 7.8 mm
thick composite shell [2,29]. Previous literature has highlighted the efficacy of the ACH
head protection in reduced likelihood of blast-induced mild TBI (mTBI), where levels
of protection increase with peak blast exposure [27], as well as protection against blast-
induced intracranial pressure (ICP) increases and brain strains [30,31]. Although there is
increased overall protection against blast exposures, helmet design still has limitations. For
example, Zhang et al. [30] demonstrated that blast waves could directly penetrate through
the gap between the forehead and the helmet, causing further deformation of padding.

Warfighters who engage in parachute combat rather than ground combat are twice as
likely to sustain any form of TBI [32] and are three times more likely to sustain a mild form
of a TBI wearing the PASGT combat helmet compared to the ACH [32]. This is likely due
to the higher velocity impacts sustained in parachute jumping and a suspension system
that is not as advanced as the ACH. The current ACH uses a suspension padding system
that offers protection against axonal shearing, but the preclinical models are still limited
regarding how effective these padding systems are in humans [26].

Thus, slight modifications to the ACH and/or future helmet design mil-spec testing
may reduce the incidence of DAI and the prevalence of military-related TBI for warfighters.
Preclinical animal models may provide further adequate preliminary evidence of the need
to address diffuse rotational injury associated with warfighters.

Table 3 describes the two military helmets mentioned in this section.

Table 3. Military Helmets.

Standard Issue Helmet Material Efficacy

Advanced Combat Helmet (ACH) ballistic fabrics (Kevlar®) k129, composite
shell, suspension system

Evidence of reduced ICP brain
stain/limited research on diffuse TBI

efficacy [27]

Personnel Armor System for Ground
Troops (PASGT)

ballistic fabrics (Kevlar®) K29,
suspension system

Penetration protection against 0.22 caliber
and lower tolerance to blast compared to

k129 fibers [33,34]

4. Current Construction Helmet Design

In the United States, the construction industry is responsible for the largest portion of
industrial injuries and induces an estimated healthcare and economic burden of $11.5 billion
in direct medical costs and lost wages, as last investigated in 2002 [35]. The United States
Bureau of Labor Statistics reports that falls in the construction industry account for 62.9%
of all fatal falls [36]. Industrial workers 65 years of age and older are at the greatest risk for
more severe outcomes after TBI, including death. In addition, this age group has a higher
incidence of falls, and within the construction industry, these workers have the highest (57%)
frequency of fall-related injuries, including TBIs. This increased risk for injury demonstrates
the importance of proper personal protective equipment (PPE), such as helmets. PPE is
defined as a control measure used in hazardous situations where the hazard cannot be
eliminated or controlled to an acceptable level through engineering design or administrative
actions [37]. According to Occupational Safety and Health Administration (OSHA) and the
United States Army Corps of Engineers (USACE) regulations, all employees and visitors to
a construction site must wear a provided hard hat [37]. These industrial safety helmets are
required in conditions where objects might fall from above and strike workers on the head,
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workers may bump their heads against objects, or there is possible contact with electrical
hazards. The American National Standards Institute (ANSI) regulates hard hats by setting
performance and requirement testing standards. Type I and II helmets reduce force to the
top of the head, while type III classified helmets can reduce impact to the top and sides of
the head. Industrial safety helmets have a suspension design that is intended to reduce the
force of impact and penetrations of small objects. Furthermore, a study was performed to
assess their effectiveness against larger objects and found these helmets were capable of
reducing the force and linear acceleration for vertical impact [36–38]. They also reduced
the likelihood of skull fracture and severe injury, further supporting the importance of
industrial safety helmets.

Construction-related injuries to the head can result in skull fractures and localized
underlying brain injury, closed head injuries, neck injuries, and rotational injuries leading
to diffuse axonal injury [39]. A study was performed to assess the impact of hard hats
during varied neck movements utilizing surface electromyography sensors on the upper
trapezius muscles of volunteer subjects [40]. The researchers demonstrated that muscle
activity and fatigue were not increased while wearing an industrial hard hat, suggesting
that this protective equipment is not causing further detriment to workers’ neck strain [40].
Vertical impact occurs in 36% of falling object cases, yet most injuries include a rotational
injury [39]. Though industrial safety helmets are required PPE in the construction industry,
these helmets have suspension designs that primarily protect against vertical impact. This
design may be beneficial for many types of possible injury at a construction site, but it does
not protect the wearer during a fall or when faced with a rotational injury (Figure 1).

Finite element analysis is a numerical analysis technique utilized to assess the engi-
neering and design of helmets by mathematically modeling physical contributions such as
force. This mathematical modeling utilizes a scoring system such as the head injury criteria
(HIC) score, incorporating acceleration and time, where a score of 1000 is considered a safe
limit [41]. This widely used score has been utilized to improve and test different helmet
materials such as Carbon Fiber and Polyethylene [42]. In addition, finite element analysis
can be utilized to assess diffuse axonal injury computationally via von Mises stress [38]. A
study evaluating simulation-based impact on construction helmets indicated that a 2 kg
cylinder vertical impact has a 50% chance of causing mild diffuse axonal injury, which in-
creases in severity as impact speed increases. However, this study was limited by the lack of
modeling any elements of rotational acceleration [38]. This testing provides classifications
for helmets for one-time impact, yet industrial helmets regularly endure multiple impacts.
One study evaluated the damage and vulnerability induced by repeated impacts on the
helmets’ shock absorption performance [43]. An endurance limit was determined for the
helmet, where cumulative damage from multiple impacts degraded the shock absorption
performance when the impacts were greater than the endurance limit. For example, a type
I industrial helmet’s endurance limit was found to be a drop height of 1.22 m [43].

The largest challenge with construction-related safety is workers wearing the indus-
trial safety helmet. Industrial safety helmets have been accused of being too heavy and
uncomfortable to wear while working; thus, many workers often choose not to wear
helmets when possible. One initiative for promoting wearing helmets on construction
sites has been artificial intelligence technology for safety helmet recognition [44]. While
improvements in industrial helmet design are needed for comfort and protection against
rotational injury, the use of these safety helmets is still effective in protecting the wearer
from injury. An analysis of work-related injuries demonstrated that safety helmets meeting
current OSHA and ANSI requirements more effectively prevented intracranial injury in
comparison to no helmet at all [45].

While helmets can effectively dissipate and reduce impact and acceleration-deceleration
forces, they do not entirely prevent energy transfer and the risk of concussion. The patho-
physiological consequences of single or repeated concussions while wearing a helmet are
needed but present challenges when adapting experiments to translational TBI models.
Helmets are designed for human heads and impact based on bipedal kinematics, where



Biomechanics 2022, 2 505

common TBI animal models introduce varied head and brain shapes and quadrupedal
movement that can change the fundamental dynamics of applied forces, where the tem-
poral and spatial profile of physiological alterations, diffuse axonal injury, and secondary
injury sequelae can be influenced.

In conclusion, industrial safety helmets are beneficial for preventing head injury,
but there is a large gap in work-related injury research. Mechanistic understanding and
appropriate injury models, including rotational acceleration, are required to develop more
protective helmets for work-related traumatic brain injuries.
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These helmets are not designed to prevent injury from side or rotational impacts that would increase
injury severity and diffuse axonal injury.

5. Secondary Injury Prevention

While there are likely a plethora of factors that influence TBI, linear and rotational
acceleration are two of the most significant. Linear acceleration is believed to produce focal
trauma at both coup and contrecoup locations within the brain [46]. Examples of focal injuries
include epidural hematomas, skull fractures, and cerebral contusions [46,47]. Conversely,
rotational acceleration produces more diffuse trauma within the brain through shearing
forces [46,48]. For years, reducing linear acceleration has been one of the primary goals of
helmet design. However, it was not until 2018 that the National Operating Committee for
Standards in Athletic Equipment updated the criteria to include rotational acceleration in the
design of new helmets [49]. In a 2020 evaluation of combat helmets released by the US Army
Combat Capabilities Development Command, they demonstrated that while, on average, the
Army Advanced Combat Helmet (ACH) produced a statistically significant reduction in linear
acceleration compared to no helmet. However, it failed to produce a statistically significant
average reduction in rotational acceleration and even increased rotational acceleration at
higher force impacts [50]. Consequently, helmet designs in sports and combat have historically
neglected to consider rotational acceleration and the resultant more mild traumatic brain
injuries (mTBI) such as concussion and subconcusion [7,51].

Rotational acceleration produces axonal shearing, obstructing axonal function, and caus-
ing an accumulation of amyloid-beta precursor protein that peaks after 24–48 h [52–54]. In
addition, shearing and mechanical forces produce plasma membrane instability resulting in
potassium leakage and neuronal depolarization [55,56]. As a result, the excitatory neurotrans-
mitter glutamate is released and binds NMDA receptors, generating a cycle of potentially
neurotoxic hyperexcitation [54,57–59]. This drastically elevates intercellular calcium and
sodium concentrations and destabilizes mitochondrial function as a vital calcium buffer
system within the cell [60–62]. As a result, calcium-dependent proteases and lipases are
activated and reactive oxygen species production increases, causing oxidative stress within
the cell [63,64]. Elevated oxidative stress within the cell is believed to promote perturbation
within the endoplasmic reticulum (ER) and a subsequent accumulation of unfolded proteins.
The unfolded protein response (UPR) initially functions to resolve ER stress through inhibition
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of protein synthesis and proteolysis of misfolded or unfolded proteins [65,66]. With a failure
of ER stress resolution over time, the ER UPR pathway ultimately upregulates caspases and
pro-apoptotic pathways, promoting cell death [65,67–69]. These functions can be exacerbated
with repeated injury, and may be targeted for helmet innovation.

6. Innovations in Helmet Design

While the outward appearance of many helmets may not change with safety innova-
tions, the internal design continues to dramatically transform with each new development.
The NFL launched its Helmet Challenge in November 2019, with the top-performing pro-
totypes being announced in 2021 [70]. The NFL awarded grants to Kollide, Xenith, and
Impressio based on prototype NFL lab performance testing that surpassed the current
NFL top-performing helmet [70]. Kollide used a 3D printed helmet containing a 95 pad
mesh liner [71]. The 3D printed design allowed for unique customization of the shape of
each player’s head [72,73]. Xenith combined a 3D printed polymer lattice with fitted foam
inserts [70]. Impressio’s helmet prototype contains liquid crystal elastomers housed within
3D printed columns [71,74]. Liquid crystal elastomers combine the self-organization of
the liquid crystalline phase with the elasticity of an elastomer, offering an innovative and
potentially superior approach to absorbing impact energy [75–77]. All three companies
incorporated 3D printing into their design with an increased focus on the customization of
helmet fit for each individual. Experimental evaluation is ongoing.

The overall benefit of impact sensors (accelerometer and gyroscope) in helmets has
been widely debated, as numerous studies have highlighted the significant error in data
measurement and consequently limited clinical utility [78,79]. The 2017 Berlin Concussion
in Sport Group concluded that head impact sensors did not offer any beneficial information
in diagnosing a concussion [80]. More recent research into developing more accurate
impact sensors in helmet and mouthpieces have offered some insight into the duration,
direction, magnitude of head motion, and impact [81]. One study examining the use of fiber
optics sensors coupled with a machine learning model could accurately predict (R2∼0.90)
blunt-force trauma magnitude and direction from novel impacts not yet experienced by
the system [82]. When examining angular acceleration and velocity, using a sensor patch
placed against the neck has shown some promise in the prediction of head rotational
kinematics (R2 > 0.9) [83]. Such a device could be used in conjunction with a helmet sensor
to reduce measurement error. Unfortunately, many helmets and patch impact sensors
tend to overpredict linear and rotational acceleration with false positive high acceleration
impacts [84]. Without visual confirmation of the motion to support the recorded data,
this high false positive rate limits the benefit of current impact sensors in practice. As
technology advances in the field of impact sensors and analysis of kinetic data, helmet,
patch, and mouthpiece sensors may offer valuable information to future clinicians.

For military paratroopers and civilian parachute enthusiasts, parachute opening shock
has been associated with the incidence of neck and back injuries [85]. Wing loading,
referring to the ratio of weight carried by the individual to the area of the parachute
canopy, is believed to affect head acceleration responsible for these injuries [85]. NASA
has worked to reduce water landing neck injuries by developing an Orion helmet support
assembly (HSA) to mitigate dynamic loading on the neck [86,87]. Their preliminary design
was composed of a rigid HSA secured to the helmet with a metal bar braced behind the
shoulders [86]. The metal bar was fixed in place by shoulder straps [86]. With dynamic
impact testing, this rigid HSA design demonstrated overall increased upper neck loading
with an elevated neck injury metric [86]. This data led to the development of a flexible
HSA consisting of steel wires attached to both the front and back of the helmet [86]. These
interconnected steel wires were bent to fit the chest and back of the wearer, with a shoulder
harness attached to the helmet [86]. Overall, NASA’s flexible HSA design demonstrated
reduced neck loading and neck injury metrics with testing across various body types [86].
This data suggests that a helmet neck support system may reduce neck injuries in astronauts
and potentially paratroopers, while an overly rigid HSA could induce further injury. While
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protection typically comes with a trade-off of lost mobility, this study indicates that limited
mobility may provide some benefit in the reduction of injury.

7. Conclusions, Future Directions

Considering the effectiveness of helmets in preventing catastrophic TBIs, efforts can
be made to promote greater helmet usage and awareness. For example, in India, which has
a large number of TBIs related to road accidents, public efforts to promote helmet usage
and improved prehospital EMS care resulted in plateauing in road traffic deaths [88]. A
systematic review of helmet laws found helmet laws to increase compliance and decrease
road traffic-related head injuries and fatalities [89]. This is an important consideration
in low-income nations, where many people, including pediatric populations, rely on
motorcycles, scooters, and bicycles [89]. Certain sports, such as equestrian-related sports,
feature low helmet usage and high rates of TBI, so increasing awareness and promotion
of helmet use and mandatory helmet laws could also prevent TBIs by up to 50% [90,91].
Other efforts include educating people about replacing helmets within 5–10 years of use,
especially when there are signs of cracking and shell/liner damage [92].

Nonetheless, as described in this review, current helmets may not be effective in pre-
venting concussions or mild TBIs [2,7]. This has promoted the development of various new
helmets incorporating rotational acceleration testing and rotational damping technology
that may decrease concussion incidence or magnitude [93–96]. For example, Hoshizaki
et al. [93] employed drops onto a 45◦ anvil to simulate the rotational dynamics of head
impacts, showing that two helmets (WAVECEL and MIPS) fitted with rotational damp-
ing technologies better mitigated rotational acceleration compared to a standard helmet.
DiGiacomo et al. [94] similarly used drops onto a 45◦ anvil to show that rotational damping-
based snow helmets significantly reduce rotational acceleration and concussion probability
compared to standard helmets. The WAVECEL bicycle helmet uses a compressible cellular
structure to provide rotational suspension and has demonstrated significant mitigation
of rotational acceleration in 45◦ anvil drops [95]. It is an extension of prior research by
Hansen et al. on an Angular Impact Mitigation (AIM) system consisting of an aluminum
honeycomb liner elastically suspended between an inner liner and outer shell, which was
shown to reduce linear and angular acceleration, neck loading, and concussion and DAI
risk [96]. Similarly, the Multi-Directional Impact Protection System (MIPS) is a slip liner
(compared to the standard expanded polystyrene foam bicycle helmet liner) that covers the
inside of a helmet to allow for head-helmet sliding during collisions, and also demonstrates
significant rotational acceleration mitigation [95]. Another helmet technology involves
airbag expansion based on impact sensors, and also demonstrates promising brain injury
mitigation results [97,98]. MIPS, WAVECEL, and airbag (Hövding) helmets also reduce
brain strain in important regions, according to computational analysis [95,99]. However,
these rotational damping technologies do not appear to effectively prevent brain injuries
with industrial helmets [100]. More testing of the different rotational damping helmets
is necessary to see which provides the most effective protection against concussions in
different settings and at different impact locations. Further examination of impact location
can inform optimization of padding placement to minimize rotational angular acceleration
in more vulnerable locations [99,101]. For example, Fanton et al. [101] found mandibular
impacts to be the most significant. Other important metrics to continue to evaluate in
helmet testing include the effect of helmet liners in simulating head sliding during im-
pacts, along with cadaveric testing of scalp friction to design better headforms for future
studies [49]. Models for assessing helmet design often utilize crash dummies with a rigid
spine and do not allow for realistic evaluations of vertical impact on neck injury. Improve-
ments in performance testing have resulted from the use of flexible neck dummies that can
better emulate neck compression and rotational impact [39]. These measures should be
considered in the development of new safety helmets [39].

Work done at Virginia Tech has focused on rating helmets to help consumers select
the safest helmets, which will likely lead manufacturers to continue improving helmet
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design, better preventing TBIs and concussions [102–104]. The STAR evaluation system
incorporates a variety of rotational and linear head acceleration testing into helmet ratings,
and weighs results by frequency of particular impacts in the given activity, including
football, hockey, and cycling [102–104]. Extending STAR based systems to evaluate helmets
in other sports and activities, including construction and military, will likely result in
further development of safer helmets.

Now that rotational acceleration is becoming a vital consideration of helmet testing,
further testing and models to correlate head kinematics (particularly rotational acceleration)
with brain strain will be important [105–107]. For example, Ghazi et al. [108] developed a
convolutional neural network that approximates brain strain and demonstrated significant
variations in brain strains between 23 football helmet models, suggesting continued room
for improvement in helmet design. Future helmets might use such data to initiate warnings
in helmets when concussion is probable [7]. Other efforts to reduce concussions and im-
prove helmets include standardizing definitions of concussion by using protocols involving
eye-tracking assessments and/or serum biomarkers (such as total tau, STAT3 pathway
proteins, and glial fibrillary acid protein) to better analyze and differentiate data in future
helmet studies [2,109,110]. Perhaps helmet selection will evolve to increased selection
based on multiple contexts and sports-related risks due to technological innovations and
assessment of impact kinematics. Nonetheless, more helmet research considering rotational
acceleration will likely advance the field.
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