Integrated Analysis by GC/MS and 13C NMR of Moroccan Cladanthus mixtus Essential Oil; Identification of Uncommon Epoxyfarnesanes
Abstract
:1. Introduction
- -
- -
2. Materials and Methods
2.1. Plant Material and Essential Oil Isolation
2.2. GC-FID Analysis
2.3. GC/MS Analysis
2.4. Nuclear Magnetic Resonance
2.5. Identification of Individual Components
3. Results
3.1. Methods for Identification of Individual Components of Essential Oils
3.2. Chemical Composition of the Two Oil Samples
- -
- Mass spectrometry in combination with retention indices on two capillary columns (non-polar and polar phases) allowed the identification of 73 components (1–43, 48–63, 66, 69–81) from traces accounting for more than 21%;
- -
- In parallel, the identification of all the major components of both oil samples was ascertained by 13C NMR following the computerized methodology developed at the University of Corsica (2–4, 6, 8, 12, 14–18, 23, 24, 27, 29–31, 35, 40, 43, 48, 49, 53, 56, 58, 60, 61, 63, 73, and 75–77) [25,26]. Alismol 71 was identified by 13C NMR and RIs in both oil samples. Similarly, α-bisabolol 76 and epi-α-bisabolol 77 co-eluted on the non-polar column and were differentiated on the polar column. The occurrence of both epimers was confirmed by the observation of characteristic signals in the 13C NMR spectra;
- -
- Lastly, eight compounds (44–47, 64, 65, 67, and 68) that accounted for 0.2–8.3% each (percentages measured on the polar column due to overlapped GC signals on the non-polar column) remained unidentified regardless of the matching vs. MS commercial and homemade libraries at our disposal. Their retention indices were as follows: non-polar/polar column = 1451/1831, 1451/1834, 1460/1870, and 1460/1871 on the one hand, and 1600/2252, 1600/2255, 1613/2274, and 1613/2283 on the other hand. In parallel, computer alignment with the internal 13C NMR library allowed the presence of eight components in significant content. Components 44–47 were identified as 3,6,6,9-bis-epoxy-farnesa-1,7(14),10-triene (IUPAC nomenclature (2S,5S,7S)-2-methyl-9-methylene-7-(2-methylprop-1-en-1-yl)-2-vinyl-1,6-dioxaspiro [4.4]nonane, relative stereochemistry)), and its epimers, 3-epi (2R,5S,7S), 9-epi (2S,5S,7R), and 3,9-diepi (2R,5S,7R). Components 64, 65, 67, and 68 were identified as 6,9-epoxy-farnesa-1,7(14),10-trien-3-ol (IUPAC nomenclature (2S,3′R/S,5S)-(3′-hydroxy-3′-methylpent-4′-en)-3-methylene-5-isopropylidene tetrahydrofuran, relative stereochemistry)) and its epimers, 3-epi (2S, 3′R/S, 5S), 6-epi (2S, 3′R/S, 5R), and 3,6-diepi (2R, 3′R/S,5R) (Table 2, Figure 4).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellakhdar, J. Médecine Arabe Ancienne et Savoirs Populaires, la Pharmacopée Marocaine Traditionnelle; Ibis Press: Paris, France, 1997. [Google Scholar]
- Aafi, A.; Achhal, A.K.; Benabid, A.; Rouchdi, M. Richesse et diversité floristique de l’écosystème de chêne-liège de la forêt de la Mamora. Acta Bot. Malacit. 2005, 30, 127–138. [Google Scholar] [CrossRef]
- Benjilali, B.; Zrira, S. Plantes Aromatiques et Médicinales, Atouts du Secteur et Exigences Pour Une Valorisation Durable; Actes Editions Institut Agronomique et Vétérinaire Hassan-II: Rabat, Morocco, 2005. [Google Scholar]
- Haddad, P.S.; Depot, M.; Settaf, A.; Chabli, A.; Cherrah, Y. Comparative study on the medicinal plants most recommended by traditional practitioners in Morocco and Canada. J. Herbs. Spices Med. Plants 2003, 10, 25–45. [Google Scholar] [CrossRef]
- Elouaddari, A.; El Amrani, A.; Cayuela Sánchez, J.A.; Ould Bellahcen, T.; Zouiten, A.; Jamal Eddine, J. Chemical Composition and Biological Activities of the Cladanthus mixtus Essential Oil: A Review. Anal. Chem. Lett. 2019, 9, 649–663. [Google Scholar] [CrossRef]
- Toulemonde, B.; Beauverd, D. Contribution à l’étude d’une camomille sauvage du Maroc: L’huile essentielle d’Ormenis mixta L. Parfum. Cosmétiques Arômes 1984, 68, 65–67. [Google Scholar]
- Satrani, B.; Ghanmi, M.; Farah, A.; Aafi, A.; Fougrach, H.; Bourkhiss, B.; Bousta, D.; Talbi, M. Composition chimique et activité antimicrobienne de l’huile essentielle de Cladanthus mixtus. Bull. Soc. Pharm. Bordx. 2007, 146, 85–96. [Google Scholar]
- Zrira, S.; Menut, C.; Bessiere, J.M.; Benjilalii, B. Chemical composition of the essential oils of Moroccan Ormenis mixta (L.) Dumort. ssp. Multicaulis. J. Essent. Oil Bear. Plants 2007, 10, 378–385. [Google Scholar] [CrossRef]
- Hajjaj, G.; Bahlouli, A.; Tajani, M.; Alaoui, K.; Cherrah, Y.; Zellou, A. Profil neuropharmacologique et analyse chimique d’Ormenis mixta (L.) marocain. Phytothérapie 2018, 16, S55–S64. [Google Scholar] [CrossRef]
- Zeroual, A.; Sakar, E.H.; Eloutassi, N.; Mahjoubi, F.; Chaouch, M.; Chaqroune, A. Wild Chamomile [Cladanthus mixtus (L.) Chevall.] Collected from Central-Northern Morocco: Phytochemical Profiling, Antioxidant, and Antimicrobial Activities. Biointerface Res. Appl. Chem. 2021, 11, 11440–11457. [Google Scholar]
- Chraibi, M.; Fadil, M.; Farah, A.; Lebrazi, S.; Fikri-Benbrahim, K. Antimicrobial combined action of Mentha pulegium, Ormenis mixta and Mentha piperita essential oils against S. aureus, E. coli and C. tropicalis: Application of mixture design methodology. LWT—Food Sci. Technol. 2021, 145, 111352. [Google Scholar] [CrossRef]
- Elouaddari, A.; El Amrani, A.; Jamal Eddine, J.; Correia, A.I.D.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C. Yield and chemical composition of the essential oil of Moroccan chamomile [Cladanthus mixtus (L.) Chevall.] growing wild at different sites in Morocco. Flavour Fragr. J. 2013, 28, 360–363. [Google Scholar] [CrossRef]
- Elouaddari, A.; El Amrani, A.; Jamal Eddine, J. Effect of the Parts of Plant Material (Flowers and Leaves) on Essential Oil Chemical Composition of Ormenis mixta from Morocco. J. Essent. Oil Bear. Plants 2015, 18, 398–408. [Google Scholar] [CrossRef]
- Ainane, T.; Elkouali, M.; Ainane, A.; Talbi, M. Moroccan traditional fragrance based essential oils: Preparation, composition and chemical identification. Der Pharma Chem. 2014, 26, 84–89. [Google Scholar]
- Elouaddari, A.; El Amrani, A.; Jamal Eddine, J.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C. Intraspecific variability of the essential oil of Cladanthus mixtus from Morocco. Nat. Prod. Commun. 2014, 9, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Elouaddari, A.; El Amrani, A.; Moutia, M.; Oubrim, N.; Habti, N.; Jamal Eddine, J. Chemical composition and evaluation of antioxidant, antimicrobial and cytotoxic activities of Moroccan Cladanthus mixtus essential oil and extracts. J. Essent. Oil Bear. Plants 2019, 22, 1450–1466. [Google Scholar] [CrossRef]
- Wanner, J.; Schmidt, E.; Bail, S.; Jirovetz, L.; Buchbauer, G.; Gochev, V.; Girova, T.; Atanasova, T.; Stoyanova, A. Chemical composition, olfactory evaluation and antimicrobial activity of selected essential oils and absolutes from Morocco. Nat. Prod. Commun. 2010, 5, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Ouedrhiri, W.; Balouiri, M.; Bouhdid, S.; El Harki, H.; Moja, S.; Greche, H. Antioxidant and antibacterial activities of Pelargonium asperum and Ormenis mixta essential oils and their synergistic antibacterial effect. Environ. Sci. Pollut. Res. 2018, 25, 29860–29867. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101–043147. [Google Scholar] [CrossRef]
- Terpenoids Library Website. Available online: https://massfinder.com/wiki/Terpenoids_Library_List (accessed on 14 April 2022).
- König, W.A.; Hochmuth, D.H.; Joulain, D. Terpenoids and Related Constituents of Essential Oils; Library of MassFinder 2.1; Institute of Organic Chemistry: Hamburg, Germany, 2001. [Google Scholar]
- National Institute of Standards and Technology. PC Version of the Mass Spectral Library; Norwalk: Connecticut, CT, USA, 2014. [Google Scholar]
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured: Carol Stream, IL, USA, 2007; p. 455. [Google Scholar]
- Tomi, F.; Bradesi, P.; Bighelli, A.; Casanova, J. Computer-aided identification of individual components of essential oil using carbon-13 NMR spectroscopy. J. Magn. Reson. Anal. 1995, 1, 25–34. [Google Scholar]
- Tomi, F.; Casanova, J. 13C-NMR as a tool for identification of individual components of essential oils from Labiatae—A review. Acta Hortic. 2006, 723, 185–192. [Google Scholar] [CrossRef]
- Ouattara, Z.A.; Boti, J.B.; Ahibo, A.C.; Sutour, S.; Casanova, J.; Tomi, F.; Bighelli, A. The key role of 13C NMR analysis in the identification of individual components of Polyalthia longifolia leaf oil. Flavour Fragr. J. 2014, 29, 371–379. [Google Scholar] [CrossRef]
- Bazzali, O.; Tran Huy, T.; Tran Minh, H.; Nguyen Sinh, K.; Nguyen Thi, H.; Casanova, J.; Bighelli, A.; Tomi, F. Wood oil from Xanthocyparis vietnamensis Farjon et Hiep. Integrated analysis by chromatographic and spectroscopic techniques. Molecules 2016, 21, 840. [Google Scholar] [CrossRef] [PubMed]
- Tomi, F.; Casanova, J. Contribution de la RMN du carbone-13 à l’analyse des huiles essentielles. Ann. Fals. Exp. Chim. 2000, 952, 313–330. [Google Scholar]
- Cavalli, J.F.; Tomi, F.; Bernardini, A.F.; Casanova, J. Composition and chemical variability of the bark oil of Cedrelopsis grevei H. Baillon from Madagascar. Flavour Fragr. J. 2003, 18, 532–538. [Google Scholar] [CrossRef]
- Binder, R.G.; Turner, C.E.; Flath, R.A. Comparison of yellow star thistle volatiles from different plant parts. J. Agric. Food Chem. 1990, 38, 764–767. [Google Scholar] [CrossRef]
- El Hafidi, S.; Bakhy, K.; Ouhssine, M.; Casanova, J.; Tomi, F.; Paoli, M. Essential oil composition of Cladanthus eriolepis (Coss. ex Maire) Oberpr. & Vogt, an endemic species to Morocco. J. Essent. Oil Res. 2021, 33, 369–375. [Google Scholar] [CrossRef]
- Blanc, M.-C.; Muselli, A.; Bradesi, P.; Casanova, J. Chemical composition and variability of the essential oil of Inula graveolens from Corsica. Flavour Fragr. J. 2004, 19, 314–319. [Google Scholar] [CrossRef]
- Binder, R.G.; Flath, R.A. Volatile components of pineapple guava. J. Agric. Food Chem. 1989, 37, 734–736. [Google Scholar] [CrossRef]
- Ashes, J.R.; Haken, J.K. Gas chromatography of homologous esters. IX. Structure-retention increments of unsaturated esters. J. Chromatogr. 1975, 111, 171–187. [Google Scholar] [CrossRef]
- Fröhlich, O.; Duque, C.; Schreier, P. Volatile constituents of curuba (Passiflora mollissima) fruit. J. Agric. Food Chem. 1989, 37, 421–425. [Google Scholar] [CrossRef]
- Paolini, J.; Muselli, A.; Bernardini, A.-F.; Bighelli, A.; Casanova, J.; Costa, J. Thymol derivatives from essential oil of Doronicum corsicum L. Flavour Fragr. J. 2007, 22, 479–487. [Google Scholar] [CrossRef]
- Paolini, J.; Costa, J.; Bernardini, A.F. Analysis of the essential oil from aerial parts of Eupatorium cannabinum subsp. corsicum (L.) by gas chromatography with electron impact and chemical ionization mass spectrometry. J. Chromatogr. A 2005, 1076, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Blanc, M.C.; Bradesi, P.; Gonçalves, M.J.; Salgueiro, L.; Casanova, J. Essential oil of Dittrichia viscosa ssp. viscosa: Analysis by 13C-NMR and antimicrobial activity. Flavour Fragr. J. 2006, 21, 324–332. [Google Scholar] [CrossRef]
- Ferrari, B.; Tomi, F.; Casanova, J. Composition and chemical variability of Ferula communis essential oil from Corsica. Flavour Fragr. J. 2005, 20, 180–185. [Google Scholar] [CrossRef]
- Lesueur, D.; Ninh Khac, B.; Bighelli, A.; Muselli, A.; Casanova, J. Analysis of the root oil of Fokienia hodginsii (Dunn) Henry et Thomas (Cupressaceae) by GC, GC–MS and 13C-NMR. Flavour Fragr. J. 2006, 21, 171–174. [Google Scholar] [CrossRef]
- Garcia, G.; Garcia, A.; Gibernau, M.; Bighelli, A.; Tomi, F. Chemical compositions of essential oils of five introduced conifers in Corsica. Nat. Prod. Res. 2017, 31, 1697–1703. [Google Scholar] [CrossRef]
- Pino, J.A.; Marbot, R.; Vázquez, C. Characterization of volatile in Costa Rican Guava [Psidium friedrichsthalianum (Berg) Niedenzu] fruit. J. Agric. Food Chem. 2002, 50, 6023–6026. [Google Scholar] [CrossRef]
- Werka, J.S.; Boehme, A.K.; Setzer, W.N. Biological activities of essential oils from Monteverde, Costa Rica. Nat. Prod. Commun. 2007, 2, 1215–1219. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Demirci, B.; Kirimer, N.; Satil, F.; Tumen, G. The essential oils of Thymus migricus and T. fedtschenkoi var. handelii from Turkey. Flavour Fragr. J. 2002, 17, 41–45. [Google Scholar] [CrossRef]
- Bicchi, C.; Fresia, M.; Rubiolo, P.; Monti, D.; Franz, C.; Goehler, I. Constituents of Tagetes lucida Cav. ssp. lucida essential oil. Flavour Fragr. J. 1997, 12, 47–52. [Google Scholar] [CrossRef]
- Weyerstahl, P.; Marshall, H.; Thefeld, K.; Rustaiyan, A. Constituents of the essential oil of Tanacetum (syn. Chrysanthemum) fruticulosum Ledeb. from Iran. Flavour Fragr. J. 1999, 14, 112–120. [Google Scholar] [CrossRef]
Oil Sample | Location of Harvest | Elevation (m) | Longitude/Latitude | Date of Harvest |
---|---|---|---|---|
SH | Souk Had | 14 | N: 34°51′13.81″ | 6 April 2022 |
W: 6°39′04.82″ | ||||
SS | Ain Chkef forest | 451 | N: 33°98′57.60″ | 12 April 2022 |
Sidi Slimane | W: 5°01′84.39″ |
N° | Components a | RIa Lit b | RIp Lit b | RIa | RIp | SH% | SS% | Identification Mode |
---|---|---|---|---|---|---|---|---|
1 | 3-Methyl-1-pentanol | 825 c | 1327 c | 829 | 1326 | - | 0.1 | RI, MS |
2 | Isobutyl isobutyrate | 899 | 1095 | 901 | 1096 | 0.9 | 0.1 | RI, MS, 13C NMR |
3 | α-Thujene | 932 | 1025 | 924 | 1019 | 0.7 | 0.8 | RI, MS, 13C NMR |
4 | α-Pinene | 936 | 1026 | 932 | 1019 | 16.1 | 4.6 | RI, MS, 13C NMR |
5 | Camphene | 947 | 1068 | 945 | 1066 | 0.2 | 0.2 | RI, MS |
6 | Sabinene | 973 | 1122 | 967 | 1126 | 3.2 | 1.0 | RI, MS, 13C NMR |
7 | β-Pinene | 978 | 1110 | 972 | 1115 | 0.5 | 0.1 | RI, MS |
8 | Myrcene | 987 | 1161 | 982 | 1164 | 1.1 | 1.3 | RI, MS, 13C NMR |
9 | Isobutyl 2-methylbutyrate | 990 d | 1183 d | 990 | 1183 | 0.2 | - | RI, MS |
10 | Isobutyl isovalerate | 992 d | 1179 d | 992 | 1179 | 0.1 | - | RI, MS |
11 | Isopentyl isobutyrate | 996 d | 1195 d | 999 | 1195 | 0.1 | 0.1 | RI, MS |
12 | 2-Methylbutyl isobutyrate | 1003 d | 1201 d | 1003 | 1201 | 1.1 | - | RI, MS, 13C NMR |
13 | α-Terpinene | 1011 | 1178 | 1010 | 1183 | - | 0.1 | RI, MS |
14 | p-Cymene | 1015 | 1270 | 1013 | 1276 | 2.2 | 0.2 | RI, MS, 13C NMR |
15 | Limonene | 1025 | 1198 | 1022 | 1205 | 3.6 * | 1.0 * | RI, MS, 13C NMR |
16 | 1,8-Cineole | 1025 | 1211 | 1022 | 1215 | 20.8 * | 3.9 * | RI, MS, 13C NMR |
17 | Santolina alcohol | 1019 e | 1391 e | 1022 | 1404 | - | 3.4 * | RI, MS, 13C NMR |
18 | Isobutyl angelate | 1036 d | 1293 d | 1035 | 1293 | 1.5 | - | RI, MS, 13C NMR |
19 | γ-Terpinene | 1051 | 1245 | 1050 | 1249 | 0.3 | 0.2 | RI, MS |
20 | Artemisia alcohol | 1071 | 1510 | 1070 | 1507 | - | 0.2 | RI, MS |
21 | Nonanal | 1084 | 1391 | 1083 | 1389 | - | 0.1 | RI, MS |
22 | Linalool | 1086 | 1544 | 1084 | 1550 | 0.6 | 0.1 | RI, MS |
23 | Hotrienol | 1088 | 1602 | 1086 | 1611 | - | 0.6 | RI, MS, 13C NMR |
24 | 2-Methylbutyl 2-methyl butyrate | 1089 f | 1279 f | 1090 | 1283 | 0.5 | - | RI, MS, 13C NMR |
25 | 3-Methylpentyl isobutyrate | 1095 g | nd | 1103 | nd | 0.8 | 0.2 | RI, MS |
26 | α-Campholenal | 1107 | 1496 | 1107 | 1486 | - | 0.1 | RI, MS |
27 | trans-Pinocarveol | 1126 | 1661 | 1125 | 1655 | 0.7 | 0.4 | RI, MS, 13C NMR |
28 | Pinocarvone | 1140 | 1575 | 1142 | 1569 | 0.2 | 0.5 | RI, MS |
29 | Borneol | 1153 | 1700 | 1152 | 1703 | 1.8 | 1.2 | RI, MS, 13C NMR |
30 | Terpinen-4-ol | 1164 | 1601 | 1164 | 1605 | 3.5 | 0.5 | RI, MS, 13C NMR |
31 | α-Terpineol | 1176 | 1694 | 1175 | 1699 | 2.1 | 0.3 | RI, MS, 13C NMR |
32 | Myrtenol | 1182 | 1790 | 1180 | 1790 | - | 0.4 | RI, MS |
33 | Bornyl acetate | 1270 | 1580 | 1271 | 1583 | - | 0.1 | RI, MS |
34 | (Z)-2-Hexenyl hexanoate | 1333 h | 1653 i | 1327 | 1655 | - | 0.1 | RI, MS |
35 | δ-Elemene | 1340 | 1469 | 1335 | 1470 | - | 0.5 | RI, MS, 13C NMR |
36 | 7α-Silphiperfol-5-ene | 1348 j | 1454 j | 1347 | 1452 | 0.4 | tr | RI, MS |
37 | Geranyl acetate | 1362 | 1752 | 1360 | 1742 | - | 0.1 | RI, MS |
38 | Cyclocopacamphene | 1368 | 1483 | 1362 | 1483 | 0.4 | 0.6 | RI, MS |
39 | α-Copaene | 1375 | 1491 | 1375 | 1491 | - | 0.3 | RI, MS |
40 | β-Elemene | 1388 | 1591 | 1389 | 1591 | 0.4 | 0.9 | RI, MS, 13C NMR |
41 | Bornyl isobutyrate | 1402 k | 1641 k | 1402 | 1643 | - | 0.1 | RI, MS |
42 | (E)-β-Caryophyllene | 1419 | 1598 | 1416 | 1595 | - | 0.9 | RI, MS |
43 | (E)-β-Farnesene | 1446 | 1664 | 1446 | 1667 | 0.8 | 2.2 | RI, MS, 13C NMR |
44 | 3,6,6,9-bis-epoxy-Farnesa-1,7(14), 10-triene | 1450 l | 1831 l | 1449 | 1828 | 4.3 * | 5.8 * | RI, 13C NMR |
45 | 9-epi-3,6,6,9-bis-epoxy Farnesa-1,7(14), 10-triene | 1450 l | 1834 l | 1449 | 1831 | 0.9 * | 0.9 * | RI, 13C NMR |
46 | 3,9-di-epi-3,6,6,9-bis-epoxy-Farnesa-1,7(14),10-triene | 1458 l | 1865 l | 1457 | 1867 | 0.9 * | 1.9 * | RI, 13C NMR |
47 | 3 epi-3,6,6,9-bis-epoxy-Farnesa-1,7(14), 10-triene | 1458 l | 1870 l | 1457 | 1868 | 2.2 * | 1.1 * | RI, 13C NMR |
48 | Selina-4,11-diene | 1474 m | 1670 m | 1470 | 1674 | - | 0.7 | RI, MS, 13C NMR |
49 | Germacrene D | 1476 | 1708 | 1478 | 1709 | 0.3 | 4.0 | RI, MS, 13C NMR |
50 | β-Selinene | 1481 | 1717 | 1481 | 1716 | - | 0.4 | RI, MS |
51 | (Z,E)-α-Farnesene | 1481 | 1728 | 1486 | 1714 | - | 0.2 | RI, MS |
52 | Bicyclogermacrene | 1490 | 1734 | 1490 | 1726 | - | 0.2 | RI, MS |
53 | α-Muurolene | 1491 | 1723 | 1492 | 1724 | 0.7 | 0.5 | RI, MS, 13C NMR |
54 | (E,E)-α-Farnesene | 1496 | 1744 | 1495 | 1749 | - | 0.2 | RI, MS |
55 | γ-Cadinene | 1506 | 1763 | 1505 | 1755 | - | 0.2 | RI, MS |
56 | δ-Cadinene | 1520 | 1756 | 1516 | 1757 | 0.2 | 0.6 | RI, MS, 13C NMR |
57 | β-Elemol | 1537 | 2088 | 1533 | 2053 | - | 0.7 | RI, MS |
58 | (E)-Nerolidol | 1550 | 2036 | 1550 | 2042 | 3.4 | 13.9 | RI, MS, 13C NMR |
59 | Spathulenol | 1566 | 2126 | 1563 | 2119 | - | 0.7 | RI, MS |
60 | Caryophyllene oxide | 1570 | 1986 | 1572 | 1983 | 1.7 | 0.9 | RI, MS, 13C NMR |
61 | Fokienol | 1577 n | 2170 n | 1577 | 2168 | 1.1 | 2.9 | RI, MS, 13C NMR |
62 | β-Oplopenone | 1593 | 2084 | 1588 | 2077 | - | 0.3 | RI, MS |
63 | Copaborneol | 1600 k | 2181 k | 1595 | 2176 | 1.3 | 1.0 | RI, MS, 13C NMR |
64 | 6,9-epoxy-Farnesa-1,7(14),10-trien-3-ol | 1601 l | 2257 l | 1598 | 2254 | 2.7 | 5.4 | RI, 13C NMR |
65 | 3-epi-6,9-epoxy-Farnesa-1,7(14),10-trien-3-ol | 1601 l | 2255 l | 1598 | 2249 | 1.1 | 4.3 | RI, 13C NMR |
66 | Junenol | 1607 o | 2055 o | 1607 | 2046 | - | 0.6 | RI, MS |
67 | 6-epi-6,9-epoxy-Farnesa-1,7(14),10-trien-3-ol | 1614l | 2276 l | 1610 | 2270 | 0.9 | 2.3 | RI, 13C NMR |
68 | 3,6-diepi-6,9-epoxy-Farnesa-1,7(14),10-trien-3-ol | 1614 l | 2284 l | 1612 | 2279 | 1.2 | 3.3 | RI, 13C NMR |
69 | epi-γ-Eudesmol | 1608 | 2106 | 1614 | 2107 | - | 0.4 | RI, MS |
70 | γ-Eudesmol | 1616 | 2176 | 1614 | 2186 | - | 0.5 | RI, MS |
71 | Alismol | 1620 l | 2295 l | 1617 | 2291 | 0.8 | 0.4 | RI, 13C NMR |
72 | Caryophylla-4(12),8(13)-dien-5α-ol | 1622 l | 2294 l | 1619 | 2291 | - | 0.5 | RI, MS |
73 | τ-Muurolol | 1631 | 2186 | 1625 | 2185 | 1.6 | 1.0 | RI, MS, 13C NMR |
74 | Torreyol (δ-Cadinol) | 1631 p | 2167 p | 1629 | 2164 | - | 0.2 | RI, MS |
75 | α-Cadinol | 1643 | 2227 | 1637 | 2226 | - | 1.1 | RI, MS, 13C NMR |
76 | α-Bisabolol | 1668 | 2213 | 1665 | 2201 | - | 0.8 * | RI, MS, 13C NMR |
77 | epi-α-Bisabolol | 1674 | 2214 | 1665 | 2212 | - | 0.8 * | RI, MS, 13C NMR |
78 | Shyobunol | 1687 q | 1953 r | 1675 | 1940 | - | 0.8 | RI, MS |
79 | Neophytadiene | 1827 s | 1933 s | 1835 | 1936 | - | 0.1 | RI, MS |
80 | (Z)-Phytol | 2077 t | 2551 t | 2096 | 2558 | - | 0.3 | RI, MS |
81 | (E)-Phytol | 2103 t | 2613 t | 2106 | 2609 | - | 0.2 | RI, MS |
Total | 90.1 | 87.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hafidi, S.; Bakhy, K.; Ouhssine, M.; Benzakour, A.; Casanova, J.; Paoli, M.; Tomi, F. Integrated Analysis by GC/MS and 13C NMR of Moroccan Cladanthus mixtus Essential Oil; Identification of Uncommon Epoxyfarnesanes. Compounds 2023, 3, 365-375. https://doi.org/10.3390/compounds3020028
El Hafidi S, Bakhy K, Ouhssine M, Benzakour A, Casanova J, Paoli M, Tomi F. Integrated Analysis by GC/MS and 13C NMR of Moroccan Cladanthus mixtus Essential Oil; Identification of Uncommon Epoxyfarnesanes. Compounds. 2023; 3(2):365-375. https://doi.org/10.3390/compounds3020028
Chicago/Turabian StyleEl Hafidi, Souad, Khadija Bakhy, Mohammed Ouhssine, Abderrahim Benzakour, Joseph Casanova, Mathieu Paoli, and Félix Tomi. 2023. "Integrated Analysis by GC/MS and 13C NMR of Moroccan Cladanthus mixtus Essential Oil; Identification of Uncommon Epoxyfarnesanes" Compounds 3, no. 2: 365-375. https://doi.org/10.3390/compounds3020028
APA StyleEl Hafidi, S., Bakhy, K., Ouhssine, M., Benzakour, A., Casanova, J., Paoli, M., & Tomi, F. (2023). Integrated Analysis by GC/MS and 13C NMR of Moroccan Cladanthus mixtus Essential Oil; Identification of Uncommon Epoxyfarnesanes. Compounds, 3(2), 365-375. https://doi.org/10.3390/compounds3020028