Interplay between Fe(II) and Fe(III) and Its Impact on Thermoelectric Properties of Iron-Substituted Colusites Cu26−xFexV2Sn6S32
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials and Synthesis
2.2. Phase Composition, Characterization, and Crystal Structure Investigation
2.3. Mössbauer Spectroscopy
2.4. Magnetization Measurements
2.5. Thermoelectric Properties Measurements
3. Results and Discussion
3.1. Phase Composition and Homogeneity Range
3.2. Crystal Structure
3.3. Mössbauer Spectroscopy
3.4. Magnetic Properties
3.5. Thermoelectric Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, B.; Hu, H.; Zhuang, H.L.; Li, J.F. Promising materials for thermoelectric applications. J. Alloys Compd. 2019, 806, 471–486. [Google Scholar]
- Zhu, T.; Liu, Y.; Fu, C.; Heremans, J.P.; Snyder, J.G.; Zhao, X. Compromise and Synergy in High-Efficiency Thermoelectric Materials. Adv. Mater. 2017, 29, 1605884. [Google Scholar] [CrossRef]
- Shevelkov, A.V. Chemical aspects of the design of thermoelectric materials. Russ. Chem. Rev. 2008, 77, 1–19. [Google Scholar] [CrossRef]
- Powell, A.V. Recent developments in Earth-abundant copper-sulfide thermoelectric materials. J. Appl. Phys. 2019, 126, 100901. [Google Scholar] [CrossRef]
- Suekuni, K.; Takabatake, T. Research Update: Cu–S based synthetic minerals as efficient thermoelectric materials at medium temperatures. APL Mater. 2016, 4, 104503. [Google Scholar] [CrossRef]
- Hébert, S.; Berthebaud, D.; Daou, R.; Bréard, Y.; Pelloquin, D.; Guilmeau, E.; Gascoin, F.; Lebedev, O.; Maignan, A. Searching for new thermoelectric materials: Some examples among oxides, sulfides and selenides. J. Phys. Condens. Matter. 2016, 28, 013001. [Google Scholar] [CrossRef]
- Qiu, X.; Qiu, P.; Deng, T.; Huang, H.; Du, X.; Shi, X.; Chen, L. Thermoelectric Properties of Nano-grained Mooihoekite Cu9Fe9S16. Z. Anorg. Allg. Chem. 2020, 646, 1116–1121. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, K.; Du, B.; Reece, M.J. Screening for Cu–S based thermoelectric materials using crystal structure features. J. Mater. Chem. A 2017, 5, 5013–5019. [Google Scholar] [CrossRef]
- Li, J.M.; Li, D.; Song, C.J.; Wang, L.; Xin, H.X.; Zhanga, J.; Qin, X.Y. Realized high power factor and thermoelectric performance in Cu3SbSe4. Intermetallics 2019, 109, 68–73. [Google Scholar] [CrossRef]
- Pavan Kumar, V.; Paradis-Fortin, L.; Lemoine, P.; Le Caër, G.; Malaman, B.; Boullay, P.; Raveau, B.; Guélou, G.; Guilmeau, E. Crossover from Germanite to Renierite-Type Structures in Cu22−xZnxFe8Ge4S32 Thermoelectric Sulfides. ACS Appl. Energy Mater. 2019, 2, 7679–7689. [Google Scholar] [CrossRef]
- Hashikuni, K.; Suekuni, K.; Watanabe, K.; Bouyrie, Y.; Ohta, M.; Ohtaki, M.; Takabatake, T. Carrier concentration tuning in thermoelectric thiospinel Cu2CoTi3S8 by oxidative extraction of copper. J. Solid State Chem. 2018, 259, 5–10. [Google Scholar] [CrossRef]
- Pavan Kumar, V.; Barbier, T.; Lemoine, P.; Raveau, B.; Nassif, V.; Guilmeau, E. Crucial Role of Selenium for Sulphur Substitution in the Structural Transitions and Thermoelectric Properties of Cu5FeS4 Bornite. Dalton Trans. 2017, 46, 2174–2183. [Google Scholar] [CrossRef]
- Pavan Kumar, V.; Paradis-Fortin, L.; Lemoine, P.; Caignaert, V.; Raveau, B.; Malaman, B.; Le Caër, G.; Cordier, S.; Guilmeau, E. Designing a Thermoelectric Copper-Rich Sulfide from a Natural Mineral: Synthetic Germanite Cu22Fe8Ge4S32. Inorg. Chem. 2017, 56, 13376–13381. [Google Scholar] [CrossRef] [PubMed]
- Ang, R.; Ullah Khan, A.; Tsujii, N.; Takai, K.; Nakamura, R.; Mori, T. Thermoelectricity Generation and Electron–Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent. Angew. Chem. Int. Ed. 2015, 54, 12909–12913. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Sakai, Y.; Kamihara, Y.; Matoba, M. Effect of Sn-Substitution on Thermoelectric Properties of Copper-Based Sulfide, Famatinite Cu3SbS4. J. Phys. Soc. Jpn. 2015, 84, 044706. [Google Scholar] [CrossRef]
- Liang, D.-D.; Zhang, B.-P.; Zou, L. Enhanced thermoelectric properties of Cu1.8S by Ti-doping induced secondary phase. J. Alloys Compd. 2018, 731, 577–583. [Google Scholar] [CrossRef]
- Qiu, P.; Zhu, Y.; Qin, Y.; Shi, X.; Chen, L. Electrical and thermal transports of binary copper sulfides CuxS with x from 1.8 to 1.96. APL Mater. 2016, 4, 104805. [Google Scholar] [CrossRef]
- Dennler, G.; Chmielowski, R.; Jacob, S.; Capet, F.; Roussel, P.; Zastrow, S.; Nielsch, K.; Opahle, I.; Madsen, G.K.H. Are binary copper sulfides/selenides really new and promising thermoelectric materials? Adv. Energy Mater. 2014, 4, 1301581. [Google Scholar] [CrossRef]
- Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Q.; Uher, C.; Day, T.; Snyder, G.J. Copper ion liquid-like thermoelectrics. Nat. Mater. 2012, 11, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Morelli, D.T.; Xia, Y.; Zhou, F.; Ozolins, V.; Chi, H.; Zhou, X.; Uher, C. High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites. Adv. Energy Mater. 2013, 3, 342–348. [Google Scholar] [CrossRef]
- Chetty, R.; Prem Kumar, D.S.; Rogl, G.; Rogl, P.; Bauer, E.; Michor, H.; Suwas, S.; Puchegger, S.; Giesterg, G.; Mallik, R.C. Thermoelectric properties of a Mn substituted synthetic tetrahedrite. Phys. Chem. Chem. Phys. 2015, 17, 1716–1727. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Laurita, G.; Muir, S.; Subramanian, M.A.; Keszler, D.A. Enhanced Thermoelectric Performance of Synthetic Tetrahedrites. Chem. Mater. 2014, 26, 2047–2051. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Pi, J.-H.; Lee, G.-E.; Kim, I.-H. Synthesis of Fe-Doped Tetrahedrites Cu12−xFexSb4S13 and Characterization of Their Thermoelectric Properties. Korean J. Met. Mater. 2020, 58, 340–347. [Google Scholar] [CrossRef]
- Tippireddy, S.; Chetty, R.; Naik, M.H.; Jain, M.; Chattopadhyay, K.; Mallik, R.C. Electronic and Thermoelectric Properties of Transition Metal Substituted Tetrahedrites. J. Phys. Chem. C 2018, 122, 8735–8749. [Google Scholar] [CrossRef]
- Barbier, T.; Lemoine, P.; Gascoin, S.; Lebedev, O.I.; Kaltzoglou, A.; Vaqueiro, P.; Powell, A.V.; Smith, R.I.; Guilmeau, E. Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases. J. Alloys Compd. 2015, 634, 253–262. [Google Scholar] [CrossRef]
- Suekuni, K.; Tsuruta, K.; Kunii, M.; Nishiate, H.; Nishibori, E.; Maki, S.; Ohta, M.; Yamamoto, A.; Koyano, M. High-performance thermoelectric mineral Cu12−xNixSb4S2 tetrahedrite. J. Appl. Phys. 2013, 113, 43712. [Google Scholar] [CrossRef]
- Suekuni, K.; Tsuruta, K.; Ariga, T.; Koyano, M. Thermoelectric properties of mineral tetrahedrites Cu10Tr2Sb4S13 with low thermal conductivity. Appl. Phys. Express 2012, 5, 51201. [Google Scholar] [CrossRef]
- Suekuni, K.; Kim, F.S.; Nishiate, H.; Ohta, M.; Tanaka, H.I.; Takabatake, T. High-performance thermoelectric minerals: Colusites Cu26V2M6S32 (M = Ge, Sn). Appl. Phys. Lett. 2014, 105, 132107. [Google Scholar] [CrossRef]
- Suekuni, K.; Kim, F.S.; Takabatake, T. Tunable electronic properties and low thermal conductivity in synthetic colusites Cu26−xZnxV2M6S32 (x ≤ 4, M = Ge, Sn). J. Appl. Phys. 2014, 116, 63706. [Google Scholar] [CrossRef]
- Hagiwara, T.; Suekuni, K.; Lemoine, P.; Supka, A.R.; Chetty, R.; Guilmeau, E.; Raveau, B.; Fornari, M.; Ohta, M.; Al Orabi, R.A.R.; et al. Key Role of d0 and d10 Cations for the design of colusite structure: Highly Performant Thermoelectric Sulfides Cu26Ti2Sb6S32. Chem. Mater. 2021, 33, 3449–3456. [Google Scholar] [CrossRef]
- Pavan Kumar, V.; Supka, A.R.; Lemoine, P.; Lebedev, O.I.; Raveau, B.; Suekuni, K.; Nassif, V.; Al Orabi, R.A.R.; Fornari, M.; Guilmeau, E. High Power Factors of Thermoelectric Colusites Cu26T2Ge6S32 (T = Cr, Mo, W): Toward Functionalization of the Conductive “Cu-S” Network. Adv. Energy Mater. 2019, 9, 1803249. [Google Scholar] [CrossRef]
- Pavan Kumar, V.; Guélou, G.; Lemoine, P.; Raveau, B.; Supka, A.; Al Orabi, R.A.R.; Fornari, M.; Suekuni, K.; Guilmeau, E. Copper-rich thermoelectric sulfides: Size mismatch effect and chemical disorder in the [TS4]Cu6 complexes of Cu26T2Ge6S32 (T = Cr, Mo, W) colusites. Angew. Chem. Int. Ed. 2019, 58, 15455–15463. [Google Scholar] [CrossRef] [PubMed]
- Raveau, B. Copper Mixed Valence Concept: “Cu(I)–Cu(II)” in Thermoelectric Copper Sulfidess—An Alternative to “Cu(II)–Cu(III)” in Superconducting Cuprates. J. Supercond. Nov. Magn. 2020, 33, 259–263. [Google Scholar] [CrossRef]
- Lemoine, P.; Pavan Kumar, V.; Guélou, G.; Nassif, V.; Raveau, B.; Guilmeau, E. Thermal Stability of the Crystal Structure and Electronic Properties of the High Power Factor Thermoelectric Colusite Cu26Cr2Ge6S32. Chem. Mater. 2020, 32, 830–840. [Google Scholar] [CrossRef]
- Bourgès, C.; Bouyrie, Y.; Supka, A.R.; Al Orabi, R.A.R.; Lemoine, P.; Lebedev, O.I.; Ohta, M.; Suekuni, K.; Nassif, V.; Hardy, V.; et al. High-Performance Thermoelectric Bulk Colusite by Process Controlled Structural Disordering. J. Am. Chem. Soc. 2018, 140, 2186–2195. [Google Scholar] [CrossRef]
- Kim, F.S.; Suekuni, K.; Nishiate, H.; Ohta, M.; Tanaka, H.I.; Takabatake, T. Tuning the charge carrier density in the thermoelectric colusite. J. Appl. Phys. 2016, 119, 175105. [Google Scholar] [CrossRef]
- Guélou, G.; Lemoine, P.; Raveau, B.; Guilmeau, E. Recent developments in high-performance thermoelectric sulphides: An overview of the promising synthetic colusites. J. Mater. Chem. C 2021, 9, 773–795. [Google Scholar] [CrossRef]
- Nasonova, D.I.; Presniakov, I.A.; Sobolev, A.V.; Verchenko, V.Y.; Tsirlin, A.A.; Wei, Z.; Dikarev, E.V.; Shevelkov, A.V. Role of iron in synthetic tetrahedrites revisited. J. Solid State Chem. 2016, 235, 28–35. [Google Scholar] [CrossRef]
- Petricek, V.; Dusek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. Z. Kristallogr.—Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Matsnev, M.E.; Rusakov, V.S. An application for Mössbauer spectra modeling and fitting. AIP Conf. Proc. 2012, 1489, 178–185. [Google Scholar]
- Lemoine, P.; Guélou, G.; Raveau, B.; Guilmeau, E. Crystal structure classification of copper-based sulphides as a tool for the design of inorganic functional materials. Angew. Chem. Int. Ed. 2022, 61, e202108686. [Google Scholar] [CrossRef]
- Suekuni, K.; Shimizu, Y.; Nishibori, E.; Kasai, H.; Saito, H.; Yoshimoto, D.; Hashikuni, K.; Bouyrie, Y.; Chetty, R.; Ohta, M.; et al. Atomic-Scale Phonon Scatterers in Thermoelectric Colusites with a Tetrahedral Framework Structure. J. Mater. Chem. A 2019, 7, 228–235. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Fatseas, G.A. Mössbauer 57Fe isomer shift as a measure of valence in mixed-valence iron sulfides. J. Solid State Chem. 1982, 41, 1–22. [Google Scholar] [CrossRef]
- Macovicky, E.; Tippelt, G.; Forcher, K.; Lottermoser, W.; Karup-Mǿller, S.; Amthauer, G. Mössbauer study of Fe-bearing synthetic tennantite. Can. Mineral. 2003, 41, 1125–1134. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Presniakov, I.A.; Nasonova, D.I.; Verchenko, V.Y.; Shevelkov, A.V. Thermally Activated Electron Exchange in Cu12−xFexSb4S13 (x = 1.3, 1.5) Tetrahedrites: A Mössbauer Study. J. Phys. Chem. C 2017, 121, 4548–4557. [Google Scholar] [CrossRef]
- Macovicky, E.; Forcher, K.; Lottermoser, W.; Amthauer, G. The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite. Miner. Petrol. 1990, 43, 73–81. [Google Scholar] [CrossRef]
- Borgheresi, M.; Di Benedetto, F.; Romanelli, M.; Reissner, M.; Lottermoser, W.; Gainov, R.R.; Khassanov, R.R.; Tippelt, G.; Giaccherini, A.; Sorace, L.; et al. Mössbauer study of bornite and chemical bonding in Fe-bearing sulphides. Phys. Chem. Miner. 2018, 45, 227–235. [Google Scholar] [CrossRef]
- Tjon, J.A.; Blume, M. Mössbauer spectra in a fluctuating environment II. Randomly varying electric field gradients. Phys. Rev. 1968, 165, 456–461. [Google Scholar] [CrossRef]
- Nasonova, D.I.; Sobolev, A.V.; Presniakov, I.A.; Andreeva, K.D.; Shevelkov, A.V. Position and oxidation state of tin in Sn-bearing tetrahedrites Cu12−xSnxSb4S13. J. Alloys Compd. 2019, 778, 774–778. [Google Scholar] [CrossRef]
- Nasonova, D.I.; Verchenko, V.Y.; Tsirlin, A.A.; Shevelkov, A.V. Low-Temperature structure and thermoelectric properties of pristine synthetic tetrahedrite Cu12Sb4S13. Chem. Mater. 2016, 28, 6621–6627. [Google Scholar] [CrossRef]
- Matsui, T.; Matsuno, H.; Kotegawa, H.; Tou, H.; Suekuni, K.; Hasegawa, T.; Tanaka, H.I.; Takabatake, T. First-Order Metal–Semiconductor Transition Triggered by Rattling Transition in Tetrahedrite Cu12Sb4S13: Cu-Nuclear Magnetic Resonance Studies. J. Phys. Soc. Jpn. 2019, 88, 054710. [Google Scholar] [CrossRef]
- Acharya, S.; Anwar, S.; Mori, T.; Soni, A. Coupling of Charge Carriers with Magnetic Entropy for Power Factor Enhancement in Mn Doped Sn1.03Te for Thermoelectric Applications. J. Mater. Chem. C 2018, 6, 6489–6493. [Google Scholar] [CrossRef]
- Vaney, J.-B.; Aminorroaya Yamini, S.; Takaki, H.; Kobayashi, K.; Kobayashi, N.; Mori, T. Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite. Mater. Today Phys. 2019, 9, 100090. [Google Scholar] [CrossRef]
- Hegedüs, M.; Achimovičová, M.; Hui, H.; Guélou, G.; Lemoine, P.; Fourati, I.; Juraszek, J.; Malaman, B.; Baláž, P.; Guilmeau, E. Promoted Crystallization and cationic ordering in thermoelectric Cu26V2Sn6S32 colusite by eccentric vibratory ball milling. Dalton Trans. 2020, 49, 15828–15836. [Google Scholar] [CrossRef] [PubMed]
- Bourgés, C.; Gilmas, M.; Lemoine, P.; Mordvinova, N.E.; Lebedev, O.I.; Hug, E.; Nassif, V.; Malaman, B.; Daou, R.; Guilmeau, E. Structural analysis and thermoelectric properties of mechanically alloyed colusites. J. Mater. Chem. C 2016, 4, 7455–7463. [Google Scholar] [CrossRef]
- Candolfi, C.; Guélou, G.; Bourgès, C.; Supka, A.R.; Al Orabi, R.A.R.; Fornari, M.; Malaman, B.; Le Caër, G.; Lemoine, P.; Hardy, V.; et al. Disorder-Driven Glasslike Thermal Conductivity in Colusite Cu26V2Sn6S32 Investigated by Mössbauer Spectroscopy and Inelastic Neutron Scattering. Phys. Rev. Mater. 2020, 4, 025404. [Google Scholar] [CrossRef]
- Mashadieva, L.F.; Mammadli, P.R.; Babanly, D.M.; Ashirov, G.M.; Shevelkov, A.V.; Yusibov, Y.A. Solid-Phase Equilibria in the Cu-Sb-S System and Thermodynamic Properties of Copper-Antimony Sulfides. JOM 2021, 73, 1522–1530. [Google Scholar] [CrossRef]
- Paradis-Fortin, L.; Guélou, G.; Pavan Kumar, V.; Lemoine, P.; Prestipino, C.; Merdrignac-Conanec, O.; Durand, G.R.; Cordier, S.; Lebedev, O.I.; Guilmeau, E. Structure, Microstructure and Thermoelectric Properties of Germanite-Type Cu22Fe8Ge4S32 Compounds. J. Alloys Compd. 2020, 831, 154767. [Google Scholar] [CrossRef]
- Chetty, R.; Bali, A.; Mallik, R.C. Tetrahedrites as thermoelectric materials: An overview. J. Mater. Chem. C 2015, 3, 12364–12378. [Google Scholar] [CrossRef]
- Stadnik, Z.M. Electric field gradient calculations in rare-earth iron garnets. J. Phys. Chem. Solids 1984, 45, 311–318. [Google Scholar] [CrossRef]
- Yatsenko, A.V. Analysis of the electronic dipole polarizability of ions in cubic oxides, fluorides, and sulfides of alkaline earth elements. Crystallogr. Rep. 2010, 55, 668–672. [Google Scholar] [CrossRef]
- Haas, H.; Menninger, M.; Andreasen, H.; Damgaard, S.; Grann, H.; Pedersen, F.T.; Petersen, J.W.; Weyer, G. EFG sign for Sn in Zn, Cd, and Sb. Hyperfine Interact. 1983, 15/16, 215–218. [Google Scholar] [CrossRef]
Nominal Composition | Cu25Fe1V2Sn6S32 | Cu24Fe2V2Sn6S32 | Cu23Fe3V2Sn6S32 | Cu22Fe4V2Sn6S32 |
---|---|---|---|---|
Crystal system | Cubic | |||
Space group | P-43n | |||
a, Å | 10.78020(3) | 10.7900(1) | 10.79847(2) | 10.80704(7) |
V, Å3 | 1252.797(7) | 1256.22(3) | 1259.177(3) | 1262.18(1) |
Z | 1 | |||
dcalc | 4.6187 | 4.5959 | 4.575 | 4.554 |
Wavelength, Å | 0.35422 | 0.35451 | 0.35451 | 0.35451 |
Temperature, K | 293 | |||
2θ range (data collection) | 1.00–45.00 | 1.00–37.914 | ||
R/Rw (I > 2σ(I)) | 0.0733/0.0810 | 0.0414/0.0717 | 0.0415/0.1231 | 0.0506/0.0556 |
Rp/Rwp | 0.1278/0.1621 | 0.1441/0.1849 | 0.1279/0.1649 | 0.1304/0.1788 |
GoF | 1.89 | 2.66 | 1.86 | 2.45 |
Sample | Sites | δFe (mm s−1) | ΔFe (mm s−1) | <Ω> * (s−1) | W (mm s−1) | I (%) |
---|---|---|---|---|---|---|
Cu25FeV2Sn6S32 | Fe(1A) | 0.32(1) | 0.29(1) | 0.28(1) | 79(2) | |
Fe(1B) | 0.10(1) | 0.61(3) | 0.28(1) | 21(2) | ||
Cu24Fe2V2Sn6S32 | Fe(1) | 0.33(1) | 0.26(1) | 0.25(1) | 10(1) | |
Fe(2) | 0.60(1) | 2.84(1) | 0.25(1) | 16(1) | ||
“relax” | ** | ** | 1.7(1)·107 | 0.25(1) | 74(2) | |
Cu23Fe3V2Sn6S32 | Fe(1) | 0.34(1) | 0.29(1) | 0.25(1) | 7(1) | |
Fe(2) | 0.61(1) | 2.94(1) | 0.25(1) | 28(3) | ||
“relax” | ** | ** | 2.0(3)·107 | 0.25(1) | 65(3) | |
Cu22Fe4V2Sn6S32 | Fe(1) | 0.35(1) | 0.29(1) | 0.27(1) | 10(1) | |
Fe(2) | 0.60(1) | 2.94(1) | 0.27(1) | 61(3) | ||
“relax” | ** | ** | 1.8(2)·107 | 0.27(1) | 29(3) |
Sample | δSn (mm s−1) | ΔSn (mm s−1) | W (mm s−1) * |
---|---|---|---|
Cu25Fe1V2Sn6S32 ** | 1.54(1) | 0.70(1) | 0.95 |
Cu24Fe2V2Sn6S32 | 1.49(1) | 0.66(1) | 0.95(1) |
Cu23Fe3V2Sn6S32 | 1.52(1) | 0.54(1) | 0.95(1) |
Cu22Fe4V2Sn6S32 | 1.51(1) | 0.43(1) | 0.95(1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polevik, A.O.; Sobolev, A.V.; Glazkova, I.S.; Presniakov, I.A.; Verchenko, V.Y.; Link, J.; Stern, R.; Shevelkov, A.V. Interplay between Fe(II) and Fe(III) and Its Impact on Thermoelectric Properties of Iron-Substituted Colusites Cu26−xFexV2Sn6S32. Compounds 2023, 3, 348-364. https://doi.org/10.3390/compounds3020027
Polevik AO, Sobolev AV, Glazkova IS, Presniakov IA, Verchenko VY, Link J, Stern R, Shevelkov AV. Interplay between Fe(II) and Fe(III) and Its Impact on Thermoelectric Properties of Iron-Substituted Colusites Cu26−xFexV2Sn6S32. Compounds. 2023; 3(2):348-364. https://doi.org/10.3390/compounds3020027
Chicago/Turabian StylePolevik, Alexey O., Alexey V. Sobolev, Iana S. Glazkova, Igor A. Presniakov, Valeriy Yu. Verchenko, Joosep Link, Raivo Stern, and Andrei V. Shevelkov. 2023. "Interplay between Fe(II) and Fe(III) and Its Impact on Thermoelectric Properties of Iron-Substituted Colusites Cu26−xFexV2Sn6S32" Compounds 3, no. 2: 348-364. https://doi.org/10.3390/compounds3020027
APA StylePolevik, A. O., Sobolev, A. V., Glazkova, I. S., Presniakov, I. A., Verchenko, V. Y., Link, J., Stern, R., & Shevelkov, A. V. (2023). Interplay between Fe(II) and Fe(III) and Its Impact on Thermoelectric Properties of Iron-Substituted Colusites Cu26−xFexV2Sn6S32. Compounds, 3(2), 348-364. https://doi.org/10.3390/compounds3020027