The Effect of Strain on the Aromatic Character of Infinitene
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Garratt, P.J. Aromaticity; John Wiley & Sons: New York, NY, USA, 1986; p. 55. [Google Scholar]
- Solà, M. Aromaticity rules. Nat. Chem. 2022, 14, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Solà, M. Why aromaticity is a suspicious concept? Why? Front. Chem. 2017, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.J.; Katritzky, A.R.; Linda, P. Aromaticity of heterocycles. In Advances in Heterocyclic Chemistry; Katritzky, A.R., Boulton, A.J., Eds.; Academic Press: New York, NY, USA, 1974; Volume 17, pp. 255–356. [Google Scholar]
- Cyransky, M.K. Energetic Aspects of Cyclic Pi-Electron Delocalization: Evaluation of the Methods of Estimating Aromatic Stabilization Energies. Chem. Rev. 2005, 105, 3773–3811. [Google Scholar] [CrossRef]
- Wodrich, M.D.; Wannere, C.S.; Mo, Y.; Jarowski, P.D.; Houk, K.N.; von Ragué Schleyer, P. The Concept of Protobranching and Its Many Paradigm Shifting Implications for Energy Evaluations. Chem. Eur. J. 2007, 13, 7731–7744. [Google Scholar] [CrossRef] [PubMed]
- Clesielski, A.; Stepień, D.K.; Dobrowolski, M.A.; Dobrzycki, L.; Cyranski, M.K. On the aromatic stabilization of benzenoid hydrocarbons. Chem. Commun. 2012, 48, 10129–10131. [Google Scholar] [CrossRef] [PubMed]
- Bird, C.W. A new aromaticity index and its application to five-membered ring heterocycles. Tetrahedron 1985, 41, 1409–1414. [Google Scholar] [CrossRef]
- Bird, C.W. The application of a new aromaticity index to six-membered ring heterocycles. Tetrahedron 1986, 42, 89–92. [Google Scholar] [CrossRef]
- Bird, C.W. Heteroaromaticity.8. the influence of N-oxide formation on heterocyclic aromaticity. Tetrahedron 1993, 49, 8441–8448. [Google Scholar] [CrossRef]
- Kruszewski, J.; Krygowski, T.M. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 1972, 13, 3839–3842. [Google Scholar] [CrossRef]
- Krygowski, T.M. Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems. J. Chem. Inf. Comput. Sci. 1993, 33, 70–78. [Google Scholar] [CrossRef]
- Von Ragué Schleyer, O.; Maerker, C.; Dransfeld, A.; Jiao, H.; von Eikema Hommes, N.J.R. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. [Google Scholar] [CrossRef] [PubMed]
- Corminboeuf, C.; Heine, P.C.; Seifert, G.; von Ragué Schleyer, P.; Weber, J. Induced magnetic fields in aromatic [n]-annulenes—Interpretation of NICS tensor components. Phys. Chem. Chem. Phys. 2004, 6, 273–276. [Google Scholar] [CrossRef]
- Krygowski, T.M.; Cyranski, M.K. Structural Aspects of Aromaticity. Chem. Rev. 2001, 101, 1385–1419. [Google Scholar] [CrossRef]
- Stanger, A. What is … aromaticity: A critique of the concept of aromaticity—Can it really be defined? Chem. Commun. 2009, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesh, M.N.; Makur, A.; Chandrasekhar, J. The interplay of angle strain and aromaticity: Molecular and electronic structure of [0n]paracycliphanes. J. Mol. Model. 2000, 6, 226–233. [Google Scholar] [CrossRef]
- Frizzo, C.P.; Martins, M.A.P. Aromaticity in heterocycles: New HOMA index parametrization. Struct. Chem. 2012, 23, 375–380. [Google Scholar] [CrossRef]
- D’Auria, M. The use of D’ index in the determination of the aromatic character of organic compounds. Comparison with HOMHED and NICS. ChemistrySelect 2020, 5, 2816–2823. [Google Scholar] [CrossRef]
- D’Auria, M. An approach to the aromaticity based on the energy of the occupied orbitals. Curr. Org. Chem. 2016, 20, 971–983. [Google Scholar] [CrossRef]
- Krzeszewski, M.; Ito, H.; Itami, K. Infinitene: A helically twisted figure-eight [12]circulene. J. Am. Chem. Soc. 2022, 144, 862–871. [Google Scholar] [CrossRef]
- Martínez, A.; Zeeshan, M.; Zaidi, A.; Sliwka, H.-R.; Naqvi, K.R.; Partali, V. On infinitenes—Reliable calculation of λ∞ and molecular modeling of lemniscate structured carotenoids. Comput. Theor. Chem. 2018, 1125, 133–141. [Google Scholar] [CrossRef]
- Orozco-Ic, M.; Valiev, R.R.; Sundholm, D. Non-intersecting ring currents in [12]infinitene. Phys. Chem. Chem. Phys. 2022, 24, 6404–6409. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Chen, P.; Sheng, H.; Li, C.; Jingang Wang, J. Physical mechanism on linear spectrum and nonlinear spectrum in double helical carbon nanomolecule–infinitene. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121674. [Google Scholar] [CrossRef] [PubMed]
- Freixas, V.M.; Tretiak, S.; Fernandez-Alberti, S. Infinitene: Computational Insights from Nonadiabatic Excited State Dynamics. J. Phys. Chem. Lett. 2022, 13, 8495–8501. [Google Scholar] [CrossRef] [PubMed]
- Monaco, G.; Zanasi, R.; Summa, F.F. Magnetic Characterization of the Infinitene Molecule. J. Phys. Chem. A. 2022, 126, 3717–3723. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Becke, A.D. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
Orbital | Dodecacene | [12]Circulene | Infinitene |
---|---|---|---|
π1 | −11.34 | −11.66 | −11.10 |
π2 | −11.23 | −11.58 | −11.03 |
π3 | −11.05 | −11.58 | −10.44 |
π4 | −10.80 | −11.42 | −9.74 |
π5 | −10.48 | −11.42 | −9.68 |
π6 | −10.10 | −10.99 | −9.23 |
π7 | −9.66 | −10.99 | −9.13 |
π8 | −9.15 | −8.97 | −9.04 |
π9 | −8.73 | −8.79 | −8.76 |
π10 | −8.60 | −8.79 | −8.51 |
π11 | −8.60 | −8.79 | −8.24 |
π12 | −8.40 | −8.79 | −8.16 |
π13 | −8.14 | −8.25 | −7.91 |
π14 | −8.00 | −8.25 | −7.83 |
π15 | −7.56 | −7.45 | −7.30 |
π16 | −7.42 | −7.45 | −7.17 |
π17 | −7.38 | −7.38 | −7.00 |
π18 | −6.95 | −6.47 | −6.91 |
π19 | −6.48 | −6.18 | −6.18 |
π20 | −6.46 | −6.18 | −6.18 |
π21 | −6.43 | −4.70 | −5.88 |
π22 | −5.85 | −4.70 | −5.68 |
π23 | −5.23 | −4.32 | −5.47 |
π24 | −4.59 | −11.66 | −5.05 |
π25 | −4.01 | ||
D′ | 1.45 | 1.45 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Auria, M. The Effect of Strain on the Aromatic Character of Infinitene. Compounds 2023, 3, 336-340. https://doi.org/10.3390/compounds3020025
D’Auria M. The Effect of Strain on the Aromatic Character of Infinitene. Compounds. 2023; 3(2):336-340. https://doi.org/10.3390/compounds3020025
Chicago/Turabian StyleD’Auria, Maurizio. 2023. "The Effect of Strain on the Aromatic Character of Infinitene" Compounds 3, no. 2: 336-340. https://doi.org/10.3390/compounds3020025
APA StyleD’Auria, M. (2023). The Effect of Strain on the Aromatic Character of Infinitene. Compounds, 3(2), 336-340. https://doi.org/10.3390/compounds3020025