Active Ingredients and Carriers in Nutritional Eco-Cosmetics
Abstract
:1. Introduction
2. Active Ingredients of Bio-Nanotechnology
3. Natural Ingredients Used in the Medical, Cosmetic and Diet Supplement Field
3.1. Hyaluronic Acid
3.2. Oligopeptides
3.3. Biomimetic Peptides
3.4. Collagen
4. Structure of Skin
5. Skin Penetration and Supposed Mechanism of Action of Carriers/Active Ingredients
6. Skin and Mucous Membrane: Penetration, Safeness and Effectiveness and the Ambiguity of the Rules
7. Future Trends: Biopolymers as Substrates
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Statista. Beauty & Personal Care-Worldwide, 2022 Statista Market Forecast. Available online: https://www.statista.com/outlook/cmo/beauty-personal-care/worldwide (accessed on 22 February 2022).
- Westbrook, G.; Angus, A. Top 10 Global Consumer Trends 2021, 2022 Euromonitor International. Available online: https://go.euromonitor.com/white-paper-EC-2022-Top-10-Global-Consumer-Trends.html?utm_source=website&utm_medium=website&utm_campaign=CT_22_01_18_WP_Top_10_GCT_2022_EN (accessed on 11 January 2023).
- Key, B.; Kohl, A.-K.; Elflein, J.; Puri-Mirza, A.; Sapun, P.; Cherowbrien, J. Market Size of Cosmetic Ingredients Worldwide 2016–2025. Statista Research Department. 2022. Available online: https://www.statista.com/statistics/627786/market-size-of-cosmetic-ingredients-worldwide/ (accessed on 22 February 2022).
- Beck, G.; Villena, K. Beauty in Recovery: Going Green and Clean, 2021 Euromonitor International. Available online: https://go.euromonitor.com/webinar-bpc-210622-beauty_state_of_play.html?utm_source=Press_release&utm_medium=PR&utm_campaign=WB_21_06_22_REC_BeautyStateofPlay (accessed on 13 January 2022).
- Villena, K. Clean Labels and Holistic Skin Wellness: The Crossover Between Skin Care and Dermatologicals, 2022 Cosmoprof, Las Vegas, Euromonitor International. Available online: https://cosmoprofnorthamerica.com/clean-labels-and-holistic-skin-wellness-the-crossover-between-skin-care-and-dermatologicals/ (accessed on 13 January 2022).
- Ross, G. A Perspective on the Safety of Cosmetic Products: A Position Paper of The American Council on Science and Health. Int. J. Toxicol. 2006, 25, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Morganti, P. Natural Products Work in Multiple Ways. In Nutritional Cosmetics. Beauty from Within; Tabor, A., Blair, R., Eds.; William Andrew Publishes: Norwich, NY, USA, 2009; pp. 95–1111. [Google Scholar]
- Kim, S.; Lee, Y. Why do women want to be beautiful? A qualitative study proposing a new “human beauty values” concept. PLoS ONE 2018, 13, e0201347. [Google Scholar] [CrossRef] [PubMed]
- Fortune, B. Dietary Supplements Market Size, Share & COVID-19 Impact Analysis, by Type, Form Regional Forecasts, 2031–2028; Market Research Report; Fortune Business Insight: Pune, India, 2020. [Google Scholar]
- Feng, C. Substantial Innovation in the Cosmetic Industry-Obstacles, Contributing Factors and Strategies. Ph.D. Thesis, Minnesota University, Minneapolis, MN, USA, 2016. [Google Scholar]
- Strange, T.; Bayley, A. Sustainable Development: Linking Economy, Society, Environment; OECD Insights OECD Publishing: Paris, France, 2008. [Google Scholar]
- Matejuk, A. Skin Immunity. Arch. Immunol. Ther. Exp. 2018, 66, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zappelli, C.; Barbulova, A.; Apone, F.; Colucci, G. Effective Active Ingredients Obtained through Biotechnology. Cosmetics 2016, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Granato, H. Enhancing immune function. Nat. Prod. 2007, 13, 16–28. [Google Scholar]
- Nguyen, A.V.; Soulika, A.M. The Dynamics of the Skin’s Immune System. Int. J. Mol. Sci. 2019, 20, 1811. [Google Scholar] [CrossRef] [Green Version]
- McDougall, A. Connecting Immune Health with Beauty & Wellbeing, Mintel, UK. 2021. Available online: https://www.mintel.com/immune-healthy-and-beauty (accessed on 11 January 2023).
- Goyal, N.; Jerold, F. Biocosmetics: Technological advances and future outlook. Environ. Sci. Pollut. Res. 2021, 1–22. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Van Der Linden, A.; Reichel, A. Bio-Waste in Europe-Turning Challenges into Opportunities; European Environment Agency Report; European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar] [CrossRef]
- Maurício, E.M.; Rosado, C.; Duarte, M.P.; Fernando, A.L.; Díaz-Lanza, A.M. Evaluation of Industrial Sour Cherry Liquor Wastes as an Ecofriendly Source of Added Value Chemical Compounds and Energy. Waste Biomass Valorization 2018, 11, 201–210. [Google Scholar] [CrossRef]
- Pereira, P.; Mauricio, E.M.; Duarte, M.P.; Lima, K.; Fernandes, A.S.; Bernardo-Gil, G.; Cebola, M.J. Potential of supercritical fluid myrtle extracts as an active ingredient and co-preservative for cosmetic and topical pharmaceutical applications. Sustain. Chem. Pharm. 2022, 28, 100739. [Google Scholar] [CrossRef]
- Triunfo, M.; Tafi, E.; Guarnieri, A.; Salvia, R.; Scieuzo, C.; Hahn, T.; Zibek, S.; Gagliardini, A.; Panariello, L.; Coltelli, M.B.; et al. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci. Rep. 2022, 12, 6613. [Google Scholar] [CrossRef]
- Panariello, L.; Coltelli, M.-B.; Hadrich, A.; Braca, F.; Fiori, S.; Haviv, A.; Miketa, F.; Lazzeri, A.; Staebler, A.; Gigante, V.; et al. Antimicrobial and Gas Barrier Crustaceans and Fungal Chitin-Based Coatings on Biodegradable Bioplastic Films. Polymers 2022, 14, 5211. [Google Scholar] [CrossRef]
- Morganti, P.; Vannozzi, A.; Memic, A.; Coltelli, M.B. Chitin and lignin waste in the circular economy. In An Introduction to the Circular Economy; Morganti, P., Coltelli, M.B., Eds.; Nova: New York, NY, USA, 2021; pp. 281–296. [Google Scholar]
- Jindal, S.; Kwek, S.; McDougall, A. Global Beauty and Personal Care Trends 2030. Mintel Report. 2020. Available online: https://www.mintel.com/beauty-trends-2030 (accessed on 11 January 2023).
- Hojnik, J.; Ruzzier, M.; Ruzzier, M.K. Transition towards Sustainability: Adoption of Eco-Products among Consumers. Sustainability 2019, 11, 4308. [Google Scholar] [CrossRef] [Green Version]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Carlberg, C.; Molnár, F. (Eds.) Mechanisms of Gene Regulation; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Khan, F.A. (Ed.) Biotechnology Fundamentals; CRC Press: Boca Raton, FL, USA, 2012; p. 6. [Google Scholar]
- Morganti, P.; Gagliardini, A.; Morganti, G. Nanochitin and nanolignin: Activity and effectiveness. In Biofunctional Textiles for an Aging Skin; Morganti, P., Ed.; Lambert Academic Publishing: Chisinau, Moldova, 2022; pp. 333–370. [Google Scholar]
- Ibrahim, M.M.; Nair, A.B.; Aldhubiab, B.E.; Shehata, B.E.A.A.T.M. Hydrogels and Their Combination with Liposomes, Niosomes, or Transfersomes for Dermal and Transdermal Drug Delivery. Liposomes 2017, 155–186. [Google Scholar] [CrossRef] [Green Version]
- Bartelds, R.; Nematollahi, M.H.; Pols, T.; Stuart, M.C.A.; Pardakhty, A.; Asadikaram, G.; Poolman, B. Niosomes, an alternative for liposomal delivery. PLoS ONE 2018, 13, e0194179. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Wei, M.; He, S.; Yuan, W.-E. Advances on non-ionic surfactant vesicles (Niosomes) and their applications in drug delivery. Pharmaceutics 2019, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Chaudhri, N.; Soni, G.C.; Prajapati, S.K. Nanotechnology: An advance tool for nanoCosmetics Preparation. Int. J. Pharma. Res. Rev. 2015, 4, 28–40. [Google Scholar]
- Soares, M.; Vittorino, C.; Sousa, J.; Pais, A. Skin permeation: Challenges and opportunities. Rev. Ciencias Farm. Basic. Appl. 2015, 21, 2698–2712. [Google Scholar]
- Novak, K.; Sydney, E.B.; Soccol, C.R. Biocosmetics. In Biotransformation of Waste Biomass into High Value Biochemicals; Kaur, S., Dhillon, G.S., Soccol, C.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 389–411. [Google Scholar]
- Stiger-Pouvreau, V.; Guerard, F. Bio-inspired molecules extracted from marine macro aNLae: A new generation of active agents. In Blue Biotechnology: Production and Use of Marine Biomolecules; La Barre, S., Bates, S.S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 709–746. [Google Scholar]
- Patravale, V.B.; Mandawgade, S.D. Novel cosmetic delivery systems: An application update. Int. J. Cosmet. Sci. 2008, 30, 19–33. [Google Scholar] [CrossRef]
- Rahnamaeian, M.; Vilcinskas, A. Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens. Appl. Microbiol. Biotechnol. 2015, 99, 8847–8855. [Google Scholar] [CrossRef] [PubMed]
- Rahnamaeian, M.; Cytryńska, M.; Zdybicka-Barabas, A.; Dobslaff, K.; Wiesner, J.; Twyman, R.M.; Zuchner, T.; Sadd, B.; Regoes, R.R.; Schmid-Hempel, P.; et al. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proc. R. Soc. B Boil. Sci. 2015, 282, 20150293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Sun, L.; Zou, X.; Dou, Y. Greenhouse Gas Emissions Analysis Working toward Zero-Waste and Its Indication to Low Carbon City Development. Energies 2021, 14, 6644. [Google Scholar] [CrossRef]
- Draelos, Z.D. Skin-Lightening Challenges. In Cosmetically Active Ingredients: Recent Advances; Kozlowski, A., Ed.; Allured Books: Carol Stream, IL, USA, 2011; pp. 337–346. ISBN 978-1-932633-87-0. [Google Scholar]
- Long, V. Aloe Vera in Dermatology—The Plant of Immortality. JAMA Dermatol. 2016, 152, 1364. [Google Scholar] [CrossRef] [PubMed]
- Sumaiyah; Leisyah, B.M. The effect of antioxidant of grapeseed oil as skin anti-aging in nanoemulsion and emulsion preparations. Rasayan J. Chem. 2019, 12, 1185–1194. [Google Scholar] [CrossRef]
- Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Nogueira, M.L.; Rahal, P. The green tea molecule EGCG inhibits Zika virus entry. Virology 2016, 496, 215–218. [Google Scholar] [CrossRef]
- Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S. Hyaluronic acid, a promising Skin rejuvenating biomedicine: A review of Recent updates and preClinical and Clinical investigations on Cosmetic and nutri-cosmetic effects. Int. J. Biol. Macromol. 2018, 120, 1682–1695. [Google Scholar] [CrossRef]
- Toschi, T.G.; Cardenia, V.; Bonaga, G. Coffee silver skin: Characterization, possible uses, and safety aspects. J. Agric. Food Chem. 2014, 62, 10836–10844. [Google Scholar] [CrossRef]
- Razak, D.L.A.; Rashid, N.Y.A.; Jamaluddin, A.; Sharifudin, S.A.; Kahar, A.A.; Long, K. Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. J. Saudi Soc. Agric. Sci. 2017, 16, 127–134. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Itrat, M.; Zarnigar. Aloe Vera: A review of its clinical effectiveness. Int. Res. J. Pharm. 2013, 4, 8. [Google Scholar] [CrossRef]
- Khong, N.M.H.; Chan, K.W. Cap 24. Biological activities of Argan oil: Evidence from in vivo studies. In Multiple Biological Activities of Unconventional Seed Oils; Abdalbasit Mariod, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Morganti, P.; Morganti, G.; Memic, A.; Coltelli, M.B.; Hong, D.-C. The new renaissance of beauty and wellness through the green economy. Trends Text. Fash. Des. 2021, 4, 000185. [Google Scholar] [CrossRef]
- Wu, D. Recycle Technology for Potato Peel Waste Processing: A Review. Procedia Environ. Sci. 2016, 31, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Radwan, M.M.; Chandra, S.; Gul, S.; Elsohly, M.A. Cannabinoids, phenolics, terpenes and alkaloids of cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef]
- Kobayashi, J. d-Amino Acids and Lactic Acid Bacteria. Microorganisms 2019, 7, 690. [Google Scholar] [CrossRef] [Green Version]
- Koyande, A.K.; Chen, K.W.; Rambadu, K.; Tao, Y.; Chu, D.T.; Show, P. Micro aNLae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Renga, M.; Ryder, T. Treatment of Horizontsl Wrinkles of The Neck Using a Hyaluronic Acid filler. Dermatol. Surg. 2022; in print. [Google Scholar] [CrossRef]
- Chen, L.H.; Xue, J.F.; Zheng, Z.Y.; Shuhaidi, M.; Thu, H.E.; Hussain, Z. Hyaluronic Acid, an efficient bio macromolecule for treatment of inflammatory skin and joint diseases: A review of Recent development and critical appraisal of pre-clinical and Clinical investigations. Int. J. Biol. Macromol. 2018, 116, 572–584. [Google Scholar] [CrossRef]
- Fiszer-Szafarz, B.; Rommain, M.; Brossard, C.; Smerts, P. Hyaluronic Acid-degrading enzymes in rest alveolar macro-phages and in alveolar fluid: Stimulating of enzyme activity after oral treatment with the immunomodulator RU 41740. Biol. Cell 1988, 63, 355–360. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinol. 2012, 4, 253–258. [Google Scholar] [CrossRef]
- Hussain, Z.; Thu, H.E.; Katas, H.; Bukhari, S.N.A. Hyaluronic Acid-Based Biomaterials: A Versatile and Smart Approach to Tissue Regeneration and Treating Traumatic, Surgical, and Chronic Wounds. Polym. Rev. 2017, 57, 594–630. [Google Scholar] [CrossRef]
- Rieger, M.M. Hyaluronic Acid in Cosmetics. In C&T Cosmeceuticals-Active Skin Treatment; Allured Publishing Corporation: Carol Stream, IL, USA, 2002; pp. 294–302. [Google Scholar]
- Fan, Y.; Choi, T.-H.; Chung, J.-H.; Jeon, Y.-K.; Kim, S. Hyaluronic acid-cross-linked filler stimulates collagen type 1 and elastic fiber synthesis in skin through the TGF-β/Smad signaling pathway in a nude mouse model. J. Plast. Reconstr. Aesthetic Surg. 2019, 72, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Morganti, P.; Coltelli, M.-B. A New Carrier for Advanced Cosmeceuticals. Cosmetics 2019, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Cinelli, P.; Coltelli, M.B.; Signori, F.; Morganti, P.; Lazzeri, A. Cosmetic packaging to save the environment: Future perspective. Cosmetics 2019, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Wieland, T.; Bodanszky, M. (Eds.) The World of Peptides; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, J.; Vilciskas, A. Antimicrobial peptides, the ancient arm of the human immune system. Virulence 2010, 1, 440–464. [Google Scholar] [CrossRef]
- Rahnamaeian, M. Antimicrobial peptides: Modes of mechanism, modulation of defense responses. Plant Signal Behav. 2011, 6, 1325–1332. [Google Scholar] [CrossRef]
- Altgibers, S.; Rippke, F.; Fibry, A.; Conzelmann, S.; Vietzke, J.-P.; Segger, D. Hydration and Barrier Function via Modulation of Gene Expression: Results of Two DoubleBlind Vehicle-Controlled Clinical Studies. Skin Pharmacol. 2022, 35, 102–111. [Google Scholar] [CrossRef]
- Mawazi, S.M.; Ann, J.; Othman, N.; Khan, J.; Alolayan, S.O.; Al Thagfan, S.S.; Kaleemullah, M. A Review of Moisturizers; History, Preparation, Characterization and Applications. Cosmetics 2022, 9, 61. [Google Scholar] [CrossRef]
- McGrath, J.A.; Uitto, J. The filaggrin story: Novel insights into skin-barrier function and disease. Trends Mol. Med. 2008, 14, 20–27. [Google Scholar] [CrossRef]
- Linder, J. The Science Behind Peptides. Plast. Surg. Nurs. 2012, 32, 71–72. [Google Scholar] [CrossRef]
- Lima, T.N.; Moraes, C.A.P. Bioactive Peptides: Applications and Relevance for Cosmeceuticals. Cosmetics 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Katayama, K.; Armendariz-Borunda, J.; Kang, R.R.; Seyer, J.M. A pentapeptide from type I procollagen promotes extracellular matrix production. J. Biol. Chem. 1993, 268, 9941–9944. [Google Scholar] [CrossRef]
- Fields, K.; Falla, T.J.; Rodan, K.; Bush, L. Bioactive peptides: Signaling the future. J. Cosmet. Dermatol. 2009, 8, 8–13. [Google Scholar] [CrossRef]
- Schagen, S.K. Topical Peptide Treatments with Effective Anti-Aging Results. Cosmetics 2017, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Fidler, A.L.; Boudko, S.P.; Rokas, A.; Hudson, B.G. The triple helix of collagens—An ancient protein structure that enabled animal multicellularity and tissue evolution. J. Cell Sci. 2018, 131, jcs203950. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Duan, E. Fighting against skin Aging: The way from bench to bedside. Cell Transplant. 2018, 27, 729–738. [Google Scholar] [CrossRef]
- Petekaev, N.N.; Borzykh, O.B.; Medvedev, G.U.; Petrova, M.M.; Gavrilyuk, O.A.; Karpova, E.I. Genetic and epigenetic aspects of skin collagen fiber turnover and functioning. Cosmetics 2021, 8, 92. [Google Scholar] [CrossRef]
- Etich, J.; Koch, M.; Wagener, R.; Zaucke, F.; Fabri, M.; Brachvogel, B. Gene Expression Profiling of the Extracellular Matrix Signature in Macrophages of Different Activation Status: Relevance for Skin Wound Healing. Int. J. Mol. Sci. 2019, 20, 5086. [Google Scholar] [CrossRef] [Green Version]
- Herskind, C.; Sticht, C.; Sami, A.; Giordano, F.A.; Wenz, F. Gene expression profiles reveal extracellular matrix and inflammatory signaling in radiation-induced premature differentiation of human fibroblast in vitro. Front. Cell Dev. Biol. 2021, 9, 539893. [Google Scholar] [CrossRef]
- Mirastchijski, U.; Luose, B.; Maedler, K.; Sarma, B.; Radtke, A.; BeNLe, G. Matrix metalloproteinase-3 is key effector of TNF-alpha-induced collagen degradation in skin. Int. J. Mol. Sci. 2019, 20, 5234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velez, D.O.; Ranamukhaarachchi, S.K.; Kumar, A.; Modi, R.N.; Lim, E.W.; Engler, A.J.; Metallo, C.M.; Fraley, S.I. 3D collagen architecture regulates cell adhesion through degradability, thereby controlling metabolic and oxidative stress. Integr. Biol. 2019, 11, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Gardelli, C.; Russo, L.; Cipolla, L.; Moro, M.; Andriani, F.; Rondinone, O. Differential glycosylation of collagen modulates lung cancer stem cell subsets through Beta1 integrin-mediated interactions. Cancer Sci. 2021, 112, 217–230. [Google Scholar] [CrossRef]
- Hoy, R.C.; D’Erminio, D.N.; Krishnamoorthy, D.; Natelson, D.M.; Laudier, D.M.; Illien-Junger, S. Advanced glycation end products cause RAGE-dependent annulus fibrous collagen disruption and loss identified using in situ second harmonic generation imaging in mice intervertebral disk in vivo and in organ culture model. JOR Spine 2020, 3, e1126. [Google Scholar] [CrossRef] [PubMed]
- Musime, E.; Chang, J.; Deng, L.; Guo, C.L. Cell-extracellular matrix interactions with triple-helical collagen introduce new roles for the enzyme in tissue remodeling. Sci. Rep. 2019, 9, 18789. [Google Scholar]
- Barman, L. Skin Ageing and is Treatment. J. Pathol. 2007, 211, 241–251. [Google Scholar]
- León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V.M.; Vargas-Torres, A.; Zeugolis, D.I.; Aguirre-Álvarez, G. Hydrolyzed Collagen—Sources and Applications. Molecules 2019, 24, 4031. [Google Scholar] [CrossRef] [Green Version]
- Mematerano, J.; Aniks, S.; Kim, S.-K.; Shim, M. Marine fish protein and peptides for cosmeceuticals: A review. Mar. Drugs 2017, 15, 143. [Google Scholar]
- Baldwin, A.D.; Kilck, K.L. Polysaccharide-modified Synthetic Polymeric Biomaterials. Biopolymers 2010, 94, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Reis, R.L.; Neves, N.M. (Eds.) Natural-Based Polymers for Biomedical Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Morganti, P.; Morganti, G.; Gao, X. Smart Cosmeceutical-tissues as antiaging active Carrier. In Biofunctional Textiles for an Ageing Skin; Morganti, P., Ed.; Lambert Academic Publishing Group: Chisinau, Moldova, 2022; pp. 696–732. [Google Scholar]
- Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656. [Google Scholar] [CrossRef] [Green Version]
- Shearan, A.; Garcia, A.J. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. Biochim. Biophys. Acta 2011, 1810, 350–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero-Rivière, N.A. Structure and function of skin. In Toxicology of Skin; Monteiro-Riviere, N.A., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–18. [Google Scholar]
- Robinson, M.; Visscher, M.; Laruffa, A.; Wickett, R. Natural moisturizing factors (NMF) in the stratum corneum (SC) 1. Effects of lipid extraction and soaking. J. Cosmet. Sci. 2010, 61, 13–22. [Google Scholar]
- Harding, C.R. The stratum corneum: Structure and function in health and disease. Dermatol. Ther. 2004, 17, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Ding, F.; Gong, L.; Gu, X. Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine. Curr. Stem Cell Res. Ther. 2017, 12, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Malafaya, P.B.; Silva, G.A.; Reis, R.L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 2007, 59, 207–233. [Google Scholar] [CrossRef] [Green Version]
- Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 2010, 5, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 2010, 62, 83–99. [Google Scholar] [CrossRef]
- Gilsenan, K. Affluent Consumer Trends: Tapping into the Wealthiest Segment; GWI Report; GWI: London, UK, 2021. [Google Scholar]
- Mintel. Beauty & Personal Care, Mintel-Trends 2025. Available online: mintel.com (accessed on 18 March 2021).
- Morganti, P.; Lanzone, A.; Tiberi, L. A new diffusion system through the mucous membranes. J. Appl. Cosmetol. 1998, 16, 45–50. [Google Scholar]
- Wiechers, J.W. Skin Delivery: What it. In Skin Delivery Systems; Wichers, J.W., Ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2008; pp. 1–21. [Google Scholar]
- Kim, B.; Cho, H.-E.; Moon, S.H.; Ahn, H.-J.; Bae, S.; Cho, H.-D.; An, S. Transdermal delivery systems in cosmetics. Biomed. Dermatol. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Alexander, A.; Dwivedi, S.; Ajazuddin, T.K.; Saraf, S.; Tripathi, D.K. Approaches for break the barriers of drug permeation through transdermal drug Delivery. J. Control. Release 2012, 164, 26–40. [Google Scholar] [CrossRef]
- Liu, C.; Xia, Z.; Czermuszka, J. Design and development of three-dimensional scaffolds for Tissue-engineering. Chem. Eng. Res. Design 2007, 85, 1051–1064. [Google Scholar] [CrossRef]
- Sundararajan, V.; Madihally, S.V.; Marrhew, H.W. Porous Chitosan scaffolds for tissue Engineering. Biomaterials 1999, 29, 1133–1142. [Google Scholar]
- Pavlou, P.; Siamidi, A.; Varvaresou, A.; Vlachou, M. Skin Care Formulations and Lipid Carriers as Skin Moisturizing Agents. Cosmetics 2021, 8, 89. [Google Scholar] [CrossRef]
- Euliss, L.E.; DuPont, J.A.; Gratton, S.; DeSimone, J. Imparting size, shape and composition control of materials for Nanomedicine. ChemInform 2007, 38, 1095–1104. [Google Scholar] [CrossRef]
- Weissleder, R.; Kelly, K.A.; Sun, E.Y.; Shtatland, T.; Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 2005, 23, 1418–1423. [Google Scholar] [CrossRef]
- Moore, T.; Graham, E.; Mattix, B.; Alexis, F. Nanoparticles to cross biological barriers. In Biomaterials Science; Rosen, Y., Elman, N., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 85–121. [Google Scholar]
- Cevc, C.; Vierl, U. Nanotechnology and the transdermal route: A state of the art review and critical appraisal. J. Control. Release 2010, 141, 277–299. [Google Scholar] [CrossRef]
- Morganti, P.; Febo, P.; Cardillo, M.; Donnarumma, G.; Baroni, A. Chitin Nanofibril and Nanolignin: Natural Polymers of Biomedical Interest. J. Clin. Cosmet. Dermatol. 2017, 1, JCCD-1-113. [Google Scholar] [CrossRef]
- Morganti, P. Use of chitin Nanofibers from biomass for an innovative bioeconomy. In Nanofabrication Using Bioeconomy; Ebothe, J., Ahmed, W., Eds.; One Central Press: Manchester, UK, 2016; pp. 1–22. [Google Scholar]
- Ramanujan, S.; Pluen, A.; McKee, T.D.; Brown, E.B.; Bouker, J.; Noel, D. Diffusion and convection in collagen gels: Implications for transport in the tumor interstitium. Biophys. J. 2002, 83, 1650–1660. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.K.; Stylianopoulos, I. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.-Q.; Yang, X.; Wu, X.-F.; Fan, Y.-B. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. [Google Scholar] [CrossRef]
- Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol. Pharm. 2008, 5, 505–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coltelli, M.-B.; Morganti, P.; Castelvetro, V.; Lazzeri, A.; Danti, S.; Benjelloun-Mlayah, B.; Gagliardini, A.; Fusco, A.; Donnarumma, G. Chitin Nanofibril-Nanolignin Complexes as Carriers of Functional Molecules for Skin Contact Applications. Nanomaterials 2022, 12, 1295. [Google Scholar] [CrossRef] [PubMed]
- Coltelli, M.-B.; Cinelli, P.; Gigante, V.; Aliotta, L.; Morganti, P.; Panariello, L.; Lazzeri, A. Chitin Nanofibrils in Poly(Lactic Acid) (PLA) Nanocomposites: Dispersion and Thermo-Mechanical Properties. Int. J. Mol. Sci. 2019, 20, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cederval, T.; Lynch, L.; Lindman, S.; Berggard, T.; Thulin, E.; Nilson, H. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for Nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-D.; Huang, L. Pharmacokinetics and Biodistribution of Nanoparticles. Mol. Pharm. 2008, 5, 496–504. [Google Scholar] [CrossRef]
- Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270. [Google Scholar] [CrossRef]
- Morganti, P.; Danti, S.; Coltelli, M.B. Chitin and lignin to produce biocompatible tissues. Res. Clin. Dermatol. 2018, 1, 5–11. [Google Scholar] [CrossRef]
- Morganti, P.; Morganti, G.; Colao, C. Biofunctional textiles for AGING Skin. Biomedicines 2019, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Motwani, K.G.; Lipworth, B.J. Clinical pharmacokinetics drug administered buccally and sublingually. Clin. Pharm. 1991, 21, 83–94. [Google Scholar] [CrossRef]
- Barang, N.; Sharma, J. Sublingual mucosa as a route for systemic drug delivery. Int. J. Pharm. Pharm. 2011, 3 (Suppl. 2), 18–22. [Google Scholar]
- Sing, H.N.; Joshi, A.; Toor, A.P.; Verna, G. Drug delivery: Advancements and Challenges. In Nanostructures for Drug Delivery; Andronescu, E., Grumezescu, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 865–886. [Google Scholar]
- Jung, T.; Kamm, W.; Breitenbach, A.; Kaiserling, E.; Xiao, J.X.; Kissel, T. Biodegradable Nanoparticles for oral delivery of peptides: Is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 2000, 50, 147–160. [Google Scholar] [CrossRef]
- Madhav, N.V.S.; Shakya, A.K.; Shakya, P.; Singh, K. Orotransmucal drug delivery systems: A review. J. Control. Release 2009, 140, 2–11. [Google Scholar] [CrossRef]
- Lai, S.K.; Wang, Y.-Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009, 61, 158–171. [Google Scholar] [CrossRef] [Green Version]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef]
- Jarret, A. (Ed.) The Mucous Membranes Vol 6 of Pathophysiology of the Skin; Academic Press: London, UK, 1980. [Google Scholar]
- Kaaber, S. The permeability and barrier functions of the oral mucosa with respect to water and electrolytes. Studies of the transport of water, sodium and potassium through the human mucosal surface in vivo. Acta Odontol. Scand. Suppl. 1974, 32, 3–47. [Google Scholar]
- McHugh, D.; Gil, J. Senescence and aging: Causes consequences, and therapeutic avenues. J. Clin. Biol. 2018, 217, 66–77. [Google Scholar] [CrossRef]
- Morganti, P. The photoprotective activity of nutraceuticals. Clin. Dermatol. 2009, 27, 166–174. [Google Scholar] [CrossRef]
- Vranesić-Bender, D. The role of nutraceuticals in anti-aging medicine. Acta Clin. Croat. 2010, 49, 537–544. [Google Scholar]
- Perez-Sanchez, A.; Barrajon-Catalan, E.; Herranz-Lopez, M.; Micol, V. Nutraceuticals for skin care: A comprehensive review of human clinical studies. Nutrients 2018, 10, 403. [Google Scholar] [CrossRef]
- Morganti, P.; Fabrizi, G.; Palombo, P.; Palombo, M.; Guarneri, F.; Cardillo, A.; Morganti, G. New chitin complexes and their anti-aging activity from inside out. J. Nutr. Health Aging 2011, 16, 242–245. [Google Scholar] [CrossRef]
- Abdulaziz, Z.A.; Mohd-Nasir, H.; Ahmad, A.; Setapar, S.H.M.; Lee Peng, W.; Chuo, S.C. Role of nanotechnology for design and development of cosmeceutical application: In make up and skin care. Front. Chem. 2019, 7, 739. [Google Scholar] [CrossRef]
- Salvioni, L.; Morelli, L.; Ochoa, E.; Labra, M.; Fiandra, V.; Palugan, L. The emerging role of nanotechnology in skin care. Adv. Colloid Interface Sci. 2021, 293, 102437. [Google Scholar] [CrossRef] [PubMed]
- Alkilani, A.Z.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics 2015, 7, 438–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, T.M.; Mijaljica, D.; Townley, J.P.; Spada, F.; Harrison, I.P. Vehicles for Drug Delivery and Cosmetic Moisturizers: Review and Comparison. Pharmaceutics 2021, 13, 2012. [Google Scholar] [CrossRef] [PubMed]
- Danti, S.; Trombi, L.; Fusco, A.; Azimi, B.; Lazzeri, A.; Morganti, P.; Coltelli, M.-B.; Donnarumma, G. Chitin Nanofibrils and Nanolignin as Functional Agents in Skin Regeneration. Int. J. Mol. Sci. 2019, 20, 2669. [Google Scholar] [CrossRef] [Green Version]
- Morganti, P.; Morganti, G.; Coltelli, M.B. Chitin nanomaterials and nanocomposites for tissue repair. In Marine-Derived Biomaterials for Tissue Engineering Applications; Choi, A.H., Ben-Nissan, B., Eds.; Springer: Singapore, 2019; pp. 523–544. [Google Scholar]
- Morganti, P.; Morganti, G.; Coltelli, M.B. Skin and pollution: The smart nano-based cosmeceutical-tissues to save the planet’ ecosystem. In Nanocosmetics; Nanda, A., Nanda, S., Nguyen, T.A., Raiendran, S., Slimani, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 455–481. [Google Scholar]
- EU. Cosmetic Products Regulation 1223/2009 Art 2.1.a; European Union: Brussels, Belgium, 2009. [Google Scholar]
- Morganti, P. Where cosmeceuticals and nutraceuticals are going. J. Appl. Cosmetol. 2002, 20, 259–274. [Google Scholar]
- Morganti, P. Reflections on cosmetics, cosmeceuticals and nutraceuticals. Clin. Dermatol. 2008, 26, 318–320. [Google Scholar] [CrossRef]
- Draelos, Z.D. (Ed.) Cosmeceuticals, 3rd ed.; Elsevier: Berlin, Germany, 2014. [Google Scholar]
- Morganti, P.; Paglialunga, S. EU borderline cosmetic products review of current regulatory status. Clin. Dermatol. 2008, 26, 392–397. [Google Scholar] [CrossRef]
- Ita, K. Transdermal drug delivery: Progress and challenges. J. Drug Deliv. Sci. Technol. 2014, 24, 245–250. [Google Scholar] [CrossRef]
- UN. World Population Ageing 2019 Highlights; Department of Economic and Social Affairs of United States: New York, NY, USA, 2019. [Google Scholar]
- Kligman, A.M.; Graham, J.A. Cosmetic make-over in elderly women. In A New Look at Old Skin: A Challenge to Cosmetology; Morganti, P., Montagna, W., Eds.; International Ediemme: Rome, Italy, 1986; pp. 197–201. [Google Scholar]
- Morganti, P. Wellness and Beauty outside in: China-West Working together. SÖFW-J. 2010, 136, 59–64. [Google Scholar]
- Callagan, S.; Losch, M.; Pione, A.; Telchner, W. Feeling Good: The Future of $1.5 Trillion Wellness Market. McKinsey Report. 2021. Available online: mckinseyandcompany.com (accessed on 17 March 2022).
- Nenmgan, C. COVID-19 Increases Demand for Sale and Reliable Beauty and Personal Care Products 2020. Mintel Report. Available online: https://www.mintel.com/blog/beauty-market-news/covid-19-increases-demand-for-safe-and-reliable-bpc-products (accessed on 17 March 2022).
- Li, D. Mintel Launches the Future of Nutrition, Health and Wellness, Mintel Report 2021. Available online: https://www.mintel.com/press-centre/food-and-drink/mintel-launches-the-future-of-nutrition-health-and-wellness-2021-report (accessed on 17 March 2022).
- Morganti, P.; Morganti, G.; Gagliardini, A.; Lohani, A. From Cosmetics to Innovative Cosmeceuticals—Non-Woven Tissues as New Biodegradable Carriers. Cosmetics 2021, 8, 65. [Google Scholar] [CrossRef]
- EMF. Toward the Circular Economy. Ellen MacArthur Foundation. 2012. Available online: www.mckinsey.com (accessed on 2 July 2022).
- Serup, J.; Jemec, G.B.E. (Eds.) Non_Invasive Methods and the Skin; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Elsner, P.; Berardesca, E.; Wilhelm, K.P. (Eds.) Bioenginering of the Skin, Skin Biomechanics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Wilhem, K.P.; Elsner, P.; Berardesca, E.; Maibach, H.I. (Eds.) Bioengineering of the Skin, Skin Imaging & Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Berardesca, E. Non-Invasive Assessment of Skin Aging. In Biofunctional Textiles for an Aging Skin; Morganti, P., Ed.; Lap Lambert Academic Publishing: Chisinau, Moldova, 2022; pp. 734–744. [Google Scholar]
- Morganti, P. Skin ecofriendly-tissues of medical interest. In Proceedings of the 24th Annual Meeting of Chinese Society of Dermatology, Kunming, China, 20–24 June 2018. [Google Scholar]
- Sabbagh, F.; Kim, B.S. Recent advances in polymeric transdermal drug delivery systems. J. Control. Release 2021, 341, 132–146. [Google Scholar] [CrossRef]
- Sabbagh, F.; Muhamad, I.I.; Niazmad, R.; Dikshit, P.K.; Kim, B.S. Recent progress in polymeric non-invasive insulin delivery. Int. J. Biol. Macromol. 2022, 203, 222–243. [Google Scholar] [CrossRef]
- Coltelli, M.B.; Gigante, V.; Cinelli, P.; Lazzeri, A. Flexible food packaging using polymers from biomass. In Bionanotechnology to Save the Environment; Morganti, P., Ed.; MDPI: Basel, Switzerland, 2019; pp. 272–296. [Google Scholar]
- Cinelli, P.; Coltelli, M.B.; Lazzeri, A. Naturally-made hard containers for food packaging: Actual and future perspectives. In Bionanotechnology to Save the Environment; Morganti, P., Ed.; MDPI: Basel, Switzerland, 2019; pp. 297–318. [Google Scholar]
- Cinelli, P.; Coltelli, M.B.; Mallegni, N.; Morganti, P. Degradability and sustainability of nanocomposites based on polylactic acid and chitin nano fibrils. Chem. Eng. Trans. 2017, 60, 115–120. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Li, C.; Xu, Y.; Luo, Y.; Liang, D.; Huang, C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021, 10, 1845. [Google Scholar] [CrossRef]
- Guerrero, B.B.; Pecharromán, A.L.; León, R.C.S. Trends in Cosmetics: Product Packaging at the Point of Sale. Cosmetics 2022, 9, 27. [Google Scholar] [CrossRef]
- AlAli, M.; Alqubaisy, M.; Aljaafari, M.; AlAli, A.; Baqais, L.; Molouki, A.; Abushelaibi, A.; Lai, K.-S.; Lim, S.-H. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021, 26, 2540. [Google Scholar] [CrossRef]
- Teno, J.; Pardo-Figuerez, M.; Hummel, N.; Bonin, V.; Fusco, A.; Ricci, C.; Donnarumma, G.; Coltelli, M.-B.; Danti, S.; Lagaron, J.M. Preliminary Studies on an Innovative Bioactive Skin Soluble Beauty Mask Made by Combining Electrospinning and Dry Powder Impregnation. Cosmetics 2020, 7, 96. [Google Scholar] [CrossRef]
- Coltelli, M.-B.; Danti, S.; Trombi, L.; Morganti, P.; Donnarumma, G.; Baroni, A.; Fusco, A.; Lazzeri, A. Preparation of Innovative Skin Compatible Films to Release Polysaccharides for Biobased Beauty Masks. Cosmetics 2018, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Coltelli, M.-B.; Panariello, L.; Morganti, P.; Danti, S.; Baroni, A.; Lazzeri, A.; Fusco, A.; Donnarumma, G. Skin-Compatible Biobased Beauty Masks Prepared by Extrusion. J. Funct. Biomater. 2020, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Panariello, L.; Vannozzi, A.; Morganti, P.; Coltelli, M.-B.; Lazzeri, A. Biobased and Eco-Compatible Beauty Films Coated with Chitin Nanofibrils, Nanolignin and Vitamin E. Cosmetics 2021, 8, 27. [Google Scholar] [CrossRef]
- Panariello, L.; Coltelli, M.-B.; Giangrandi, S.; Garrigós, M.C.; Hadrich, A.; Lazzeri, A.; Cinelli, P. Influence of Functional Bio-Based Coatings Including Chitin Nanofibrils or Polyphenols on Mechanical Properties of Paper Tissues. Polymers 2022, 14, 2274. [Google Scholar] [CrossRef] [PubMed]
- Morganti, P.; Gao, X.; Vukovic, N.; Gagliardini, A.; Lohani, A.; Morganti, G. Food loss and food waste for green cosmetics and medical device for a cleaner planet. Cosmetics 2022, 9, 19. [Google Scholar] [CrossRef]
- Morganti, P. Nanocosmetics: An introduction. In Nanocosmetics; Nanda, A., Nanda, S., Nguyen, T.A., Raiendran, S., Slimani, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–16. [Google Scholar]
- Morganti, P.; Chen, H.-D.; Morganti, G. Nanocosmetics: Future perspective. In Nanocosmetics; Nanda, A., Nanda, S., Nguyen, T.A., Raiendran, S., Slimani, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 455–479. [Google Scholar]
- Morganti, P.; Del Ciotto, P.; Gao, X. Skin delivery and controlled release of active ingredients nanoencapsulated by chitin Nanofibrils: A new approach. Cosmet. Sci. Tehnol. 2012, 20, 136–142. [Google Scholar]
- Morganti, P.; Palombo, M.; Chen, H.-D.; Gao, X. Medical textiles and Nanotechnology. Cosmet. Sci. Technol. 2013, 21, 128–138. [Google Scholar]
- Raju, N.S.; Krishnaswami, V.; Vijayaraghavalu, S.; Kandasamy, R. Transdermal and bioactive Nanocarriers. In Nanocosmetics; Nanda, A., Nanda, S., Nguyen, T.A., Raiendran, S., Slimani, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–33. [Google Scholar]
- Svarc, F.; Hermida, L. Transdermal and bioactive Nanocarriers for skin care. In Nanocosmetics; Nanda, A., Nanda, S., Nguyen, T.A., Raiendran, S., Slimani, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 35–58. [Google Scholar]
- Abbasi, B.H.; Fazal, H.; Ahmad, N.; Ali, M.; Giglioli-Guivarch, N.; Hano, C. Nanomaterials for cosmeceuticals: Nano-materials-induced advancement in cosmetics, challenges, and opportunities. In Nanocosmetics; Nanda, A., Nanda, S., Nguyen, T.A., Raiendran, S., Slimani, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 79–108. [Google Scholar]
Bioingredients | Source | References |
---|---|---|
Flavonoids, polyphenols | fruits, vegetables, cereals (Coffee, tomato, rice, etc.) | [47,48,49] |
Salicilic/cinnamic acid | Aloe vera plant | [50] |
Tocopherols/FFA | Argania Spinosa oil | [51] |
Chitin | Crustaceans, fungi, insects | [52] |
Lignin | Agro and forestry waste | [52] |
Vitamin b and C, minerals | Potato | [53] |
Cannabinoids, terpenes | Cannabis sativa | [54] |
Minerals, proteins | Microalgae | [55,56] |
Nutritional Eco-Cosmetics | Substrate | Active Molecules | Loading Method | References |
---|---|---|---|---|
electrospun beauty mask | Pullulan, nanostructured tissue | CN-NL-glycyrrethinic acid | Dry powder impregnation | [177] |
Compression moulded beauty mask | polyhydroxyalcanoate/starch, film | CN+CN-NL+ CN-NL-Vitamine E, starch | spray | [178,179,180] |
Cellulose wipe | Cellulose, tissue | CN and polyphenols from watermelon | spray | [181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morganti, P.; Lohani, A.; Gagliardini, A.; Morganti, G.; Coltelli, M.-B. Active Ingredients and Carriers in Nutritional Eco-Cosmetics. Compounds 2023, 3, 122-141. https://doi.org/10.3390/compounds3010011
Morganti P, Lohani A, Gagliardini A, Morganti G, Coltelli M-B. Active Ingredients and Carriers in Nutritional Eco-Cosmetics. Compounds. 2023; 3(1):122-141. https://doi.org/10.3390/compounds3010011
Chicago/Turabian StyleMorganti, Pierfrancesco, Alka Lohani, Alessandro Gagliardini, Gianluca Morganti, and Maria-Beatrice Coltelli. 2023. "Active Ingredients and Carriers in Nutritional Eco-Cosmetics" Compounds 3, no. 1: 122-141. https://doi.org/10.3390/compounds3010011
APA StyleMorganti, P., Lohani, A., Gagliardini, A., Morganti, G., & Coltelli, M. -B. (2023). Active Ingredients and Carriers in Nutritional Eco-Cosmetics. Compounds, 3(1), 122-141. https://doi.org/10.3390/compounds3010011