Multiscale 2PP and LCD 3D Printing for High-Resolution Membrane-Integrated Microfluidic Chips
Abstract
1. Introduction
2. Materials and Methods
2.1. Microfluidic Chip Design
2.1.1. 2PP-Printed Membranes and Channel Design
2.1.2. LCD-Printed Tubing Adaptors
2.2. Microfluidic Chip Fabrication
2.2.1. Membrane and Channel Fabrication Using 2PP Printing
2.2.2. Tubing Adaptor Fabrication with LCD Printing
2.2.3. Chip Assembly
2.3. Burst Pressure Testing
2.4. Fluidic Testing
3. Results and Discussion
3.1. Membrane Integration and Chip Fabrication
3.1.1. Challenges and Solutions in Membrane Incorporation
3.1.2. 2PP and LCD Component Alignment
3.1.3. Chip Fabrication Time
3.2. Burst Pressure Testing
3.3. Fluidic Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PDMS | Polydimethylsiloxane |
FDM | Fused Deposition Modeling |
SLA | Stereolithography |
LOC | Lab on a Chip |
2PP | 2-Photon Lithography |
LCD | Liquid Crystal Display |
SEM | Scanning Electron Microscopy |
FEP | Fluorinated Ethylene Propylene |
COP | Cycloolefin Polymer |
Appendix A
Appendix A.1. Resin Properties for 3D Printing
Resin Type | Supplier Name | Viscosity (cP) | Curing Wavelength (nm) | Application |
---|---|---|---|---|
2PP | micro resist technology GmbH | 100 | 780 | High Resolution Membrane and Channel |
LCD | Anycubic | 500–600 | 405 | Channel Adaptors |
References
- McClain, M.A.; Culbertson, C.T.; Jacobson, S.C.; Allbritton, N.L.; Sims, C.E.; Ramsey, J.M. Microfluidic Devices for the High-Throughput Chemical Analysis of Cells. Anal. Chem. 2003, 75, 5646–5655. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, Y.; Tang, H.; Zong, N.; Jiang, X. Microfluidics for Biomedical Analysis. Small Methods 2020, 4, 1900451. [Google Scholar] [CrossRef]
- Ríos, A.; Zougagh, M. Modern qualitative analysis by miniaturized and microfluidic systems. Trends Anal. Chem. 2015, 69, 105–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, T.; Wang, L.; Feng, L.; Wang, M.; Zhang, Z.; Feng, H. From passive to active sorting in microfluidics: A review. Rev. Adv. Mater. Sci. 2021, 60, 313–324. [Google Scholar] [CrossRef]
- Sajeesh, P.; Sen, A.K. Particle separation and sorting in microfluidic devices: A review. Microfluid. Nanofluidics 2014, 17, 1–52. [Google Scholar] [CrossRef]
- Calzoula, S.T.; Newman, G.; Feaugas, T.; Perrault, C.M.; Blondé, J.B.; Roy, E.; Porrini, C.; Stojanovic, G.M.; Vidic, J. Membrane-based microfluidic systems for medical and biological applications. Lab Chip 2024, 24, 3579–3603. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, Z.; Ai, Y. Dynamically Tunable elasto-inertial particle focusing and sorting in microfluidics. Lab Chip 2020, 20, 568–581. [Google Scholar] [CrossRef]
- Esposito, G.; Romano, S.; Hulsen, M.A.; D’Avino, G.; Villone, M.M. Numerical simulations of cell sorting through inertial microfluidics. Phys. Fluids 2022, 34, 072009. [Google Scholar] [CrossRef]
- Zhao, T.; Zeng, P.; Zhang, Y.; Hi, J.; Sun, H.; Gablech, I.; Chang, H.; Yuan, X.; Neužil, P.; Feng, J. Inertial co-focusing of heterogeneous particles in hybrid microfluidic channels with constantly variable cross-sections. Lab Chip 2024, 4, 5032–5042. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.; Warkiani, M.E.; Li, W. Fundamentals and Applications of Inertial Microfluidics: A Review. Lab Chip 2016, 16, 10–34. [Google Scholar] [CrossRef] [PubMed]
- Didar, T.F.; Tabrizian, M. Adhesion-Based Detection, Sorting and Enrichment of Cells in Microfluidic Lab-on-Chip Devices. Lab Chip 2010, 10, 3043–3053. [Google Scholar] [CrossRef] [PubMed]
- Jokar, Z.; Khademiyan, A.; Fallah, M.; Smida, K.; Sajadi, S.M.; Inc, M. Molecular Dynamics Simulation of Urea Adsorption on Various Nanoparticles in a Spiral Microfluidic System. Eng. Anal. Bound. Elem. 2022, 145, 271–285. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, S.; Zhang, Z.; Huang, W.; Baigl, D.; Xie, M.; Chen, Y.; Pang, D. A Micropillar-Integrated Smart Microfluidic Device for Specific Capture and Sorting of Cells. Anal. Chem. 2007, 28, 4713–4722. [Google Scholar] [CrossRef] [PubMed]
- Julbe, A.; Drobek, M.; Ayral, A. About the Role of Adsorption in Inorganic and Composite Membranes. Curr. Opin. Chem. Eng. 2019, 24, 88–97. [Google Scholar] [CrossRef]
- Lüken, A.; Linkhorst, J.; Fröhlingsdorf, R.; Lippert, L.; Rommel, D.; De Laporte, L.; Wessling, M. Unravelling Colloid Filter Cake Motions in Membrane Cleaning Procedures. Sci. Rep. 2020, 10, 20043. [Google Scholar]
- Othman, N.H.; Alias, N.H.; Fuzil, N.S.; Marpani, F.; Shahruddin, M.Z.; Chew, C.M.; Ng, K.M.D.; Lau, W.J.; Ismail, A.F. A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes 2021, 12, 30. [Google Scholar] [CrossRef]
- Ahmad, T.; Guria, C.; Mandal, A. A Review of Oily Wastewater Treatment Using Ultrafiltration Membrane: A Parametric Study to Enhance Membrane Performance. J. Water Proc. Eng. 2020, 36, 101289. [Google Scholar] [CrossRef]
- Gong, W.; Bai, L.; Liang, H. Membrane-Based Technologies for Removing Emerging Contaminants in Urban Water Systems: Limitations, Successes, and Future Improvements. Desalination 2024, 590, 117974. [Google Scholar] [CrossRef]
- Yuan, Y.; Cui, Z.; Jia, H.; Wang, J. High Efficiency Membrane Technology in Microfluidic Systems. Sep. Purif. Rev. 2022, 51, 545–562. [Google Scholar] [CrossRef]
- Amato, L.; Gu, Y.; Bellini, N.; Eaton, S.M.; Cerullo, G.; Osellame, R. Integrated Three-Dimensional Filter Separates Nanoscale from Microscale Elements in a Microfluidic Chip. Lab Chip 2012, 12, 1135–1142. [Google Scholar] [CrossRef]
- van Zwieten, R.; van de Laar, T.; Sprakel, J.; Shroën, K. From Cooperative to Uncorrelated Clogging in Cross-Flow Microfluidic Membranes. Sci. Rep. 2018, 8, 5687. [Google Scholar] [CrossRef] [PubMed]
- Silverio, V.; Guha, S.; Keiser, A.; Natu, R.; Reyes, D.R.; van Heeren, H.; Verplanck, N.; Herbertson, L.H. Overcoming Technological Barriers in Microfluidics: Leakage Testing. Front. Bioeng. Biotechnol. 2022, 10, 958582. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Gruner, D.; Richter, A.; Loskill, P. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications. Lab Chip 2021, 21, 1866–1885. [Google Scholar] [CrossRef] [PubMed]
- McMillan, A.H.; Thomée, E.K.; Dellaquila, A.; Nassman, H.; Segura, T.; Lesher-Pérez, S.C. Rapid Fabrication of Membrane-Integrated Thermoplastic Elastomer Microfluidic Devices. Micromachines 2020, 11, 731. [Google Scholar] [CrossRef]
- Hudecz, D.; Khire, T.; Chung, H.L.; Adumeau, L.; Glavin, D.; Luke, E.; Nielsen, M.S.; Dawson, K.A.; McGrath, J.L.; Yan, Y. Ultrathin Silicon Membranes for in situ Optical Analysis of Nanoparticle Translocation across a Human Blood-Brain Barrier Model. ACS Nano 2020, 14, 1111–1122. [Google Scholar] [CrossRef]
- Carter, R.N.; Casillo, S.M.; Mazzocchi, A.R.; DesOrmeaux, J.S.; Roussie, J.A.; Gaborski, T.R. Ultrathin Transparent Membranes for Cellular Barrier and Co-Culture Models. Biofabrication 2018, 9, 015019. [Google Scholar] [CrossRef]
- Ly, K.L.; Raub, C.B.; Luo, X. Tuning the Porosity of Biofabricated Chitosan Membranes in Microfluidics with Co-Assembled Nanoparticles as Templates. Mater. Adv. 2020, 1, 34. [Google Scholar] [CrossRef]
- Liu, Y.; Coppens, M.; Jiang, Z. Mixed-Dimensional Membranes: Chemistry and Structure-Property Relationships. Chem. Soc. Rev. 2021, 50, 11747–11765. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Hou, D.; Duan, H.; Deng, B.; Zeng, Z.; Liu, B.; Sun, L.; Song, R.; Du, J.; et al. Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. ACS Appl. Mater. Interfaces 2021, 13, 29926–29935. [Google Scholar] [CrossRef]
- Miller, K.; Gayle, J.M.; Roy, S.; Abdellah, M.H.; Hardian, R.; Cseri, L.; Demingos, P.D.; Nadella, H.R.; Lee, F.; Tripathi, M.; et al. Tunable 2D Conjugated Porous Organic Polymer Films for Precise Molecular Nanofiltration and Optoelectronics. Small 2024, 20, 2401269. [Google Scholar] [CrossRef]
- Balakrishnan, H.K.; Doeven, E.H.; Merenda, A.; Dumée, L.F.; Guijt, R.M. 3D Printing for the Integration of Porous Materials into Miniaturised Fluidic Devices: A Review. Anal. Chim. Acta 2021, 1185, 338796. [Google Scholar] [CrossRef] [PubMed]
- Quirós-Solano, W.F.; Gaio, N.; Stassen, O.M.J.A.; Arik, Y.B.; Silvestri, C.; Van Engeland, N.C.A.; Van der Meer, A.; Passier, R.; Sahlgren, C.M.; Bouten, C.V.C.; et al. Microfabricated Tunable and Transferable Porous PDMS Membranes for Organs-on-Chips. Sci. Rep. 2018, 8, 13524. [Google Scholar] [CrossRef] [PubMed]
- Vogt, J.; Rosenthal, K. Validation of Easy Fabrication Methods for PDMS-Based Microfluidic (Bio)Reactors. Sci 2022, 4, 36. [Google Scholar] [CrossRef]
- Abate, A.R.; Lee, D.; Do, T.; Holtze, C.; Weitz, D.A. Glass Coating for PDMS Microfluidic Channels by Sol–Gel Methods. Lab Chip 2008, 8, 516–518. [Google Scholar] [CrossRef]
- Vedhanayagam, A.; Golfetto, M.; Ram, J.L.; Basu, A.S. Rapid Micromolding of Sub-100 µm Microfluidic Channels Using an 8K Stereolithographic Resin 3D Printer. Micromachines 2023, 14, 1519. [Google Scholar] [CrossRef]
- Femmer, T.; Kuehne, A.J.; Wessling, M. Print your own membrane: Direct rapid prototyping of Polydimethylsiloxane. Lab Chip 2014, 14, 2610. [Google Scholar] [CrossRef]
- Bauer, M.; Bahani, A.; Ogata, T.; Madou, M. 3D Printing of Elastic Membranes for Fluidic Pumping and Demonstration of Reciprocation Inserts on the Microfluidic Disc. Micromachines 2019, 10, 549. [Google Scholar] [CrossRef]
- Wang, L.; Meyer, C.; Guibert, E.; Homsy, A.; Whitlow, H.J. Fabrication of High-Transmission Microporous Membranes by Proton Beam Writing-Based Molding Technique. Nucl. Instrum. Methods Phys. Res. B 2017, 404, 224–227. [Google Scholar] [CrossRef]
- Hellin Rico, R.; Du Bois, B.; Witvrouw, A.; Van Hoof, C.; Celis, J.P. Fabrication of Porous Membranes for MEMS Packaging by One-Step Anodization in Sulfuric Acid. J. Electrochem. Soc. 2007, 154, K74–K78. [Google Scholar] [CrossRef]
- Hirschwald, L.T.; Brosch, S.; Linz, G.; Linkhorst, J.; Wessling, M. Freeform Membranes with Tunable Permeability in Microfluidics. Adv. Mater. Technol. 2023, 8, 2201857. [Google Scholar] [CrossRef]
- Fallahianbijan, F.; Emami, P.; Hillsley, J.M.; Motevalian, S.P.; Conde, B.C.; Reilly, K.; Zydney, A.L. Effect of Membrane Pore Structure on Fouling Behavior of Glycoconjugate Vaccines. J. Memb. Sci. 2021, 619, 118797. [Google Scholar] [CrossRef]
- Li, F.; Ceballos, M.R.; Balavandy, S.K.; Fan, J.; Khataei, M.M.; Yamini, Y.; Maya, F. 3D Printing in Analytical Sample Preparation. J. Sep. Sci. 2020, 43, 1854–1866. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Wang, F.; McAlpine, M.C. 3D Printed Microfluidics: Advances in Strategies, Integration and Applications. Lab Chip 2023, 23, 1279–1299. [Google Scholar] [CrossRef]
- Shafique, H.; Karamzadeh, V.; Kim, G.; Morocz, Y.; Sohrabi-Kashani, A.; Shen, M.L.; Junker, D. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices. Lab Chip 2024, 24, 2774–2790. [Google Scholar] [CrossRef]
- Luitz, M.; Konak, B.M.K.; Sherbaz, A.; Prediger, R.; Nekoonam, N.; Di Ventura, B.; Kotz-Helmer, F.; Rapp, B.E. Fabrication of Embedded Microfluidic Chips with Single Micron Resolution Using Two-Photon Lithography. Adv. Mat. Tech. 2023, 8, 2300667. [Google Scholar] [CrossRef]
- Young, O.M.; Xu, X.; Sarker, S.; Sochol, R.D. Direct laser writing-enabled 3D printing strategies for microfluidic applications. Lab Chip 2024, 24, 2371–2396. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, J.K.; Zou, M. 3D Printing of High-Porosity Membranes with Submicron Pores for Microfluidics. Nanomanufacturing 2024, 4, 120–137. [Google Scholar] [CrossRef]
- Bakhchova, L.; Jonušauskas, L.; Andrijec, D.; Kurachkina, M.; Baravykas, T.; Eremin, A.; Steinmann, U. Femtosecond Laser-Based Integration of Nano-Membranes into Organ-on-a-Chip Systems. Materials 2020, 13, 3076. [Google Scholar] [CrossRef]
- Perrucci, F.; Bertana, V.; Marasso, S.L.; Scordo, G.; Ferrero, S.; Pirri, C.F.; Cocuzza, M.; El-Tamer, A.; Hinze, U.; Chichkov, B.N.; et al. Optimization of a suspended two photon polymerized microfluidic filtration system. Microelectron. Eng. 2018, 195, 95–100. [Google Scholar] [CrossRef]
- Liu, K.; Qu, J.; Yan, Y.; Wang, Y.; Lin, J.; Li, Y.; Wang, X.; Fang, N. Direct Laser Writing Photonic Crystal Hydrogel Sensors for In-Situ Sensing in Microfluidic Device. Chem. Eng. J. 2024, 482, 148679. [Google Scholar] [CrossRef]
- Singhal, A.; Kapoor, A.; Koul, V.; Rajaram, S. Two-Photon Polymerized IP-DIP 3D Photonic Crystals for Mid IR Spectroscopic Applications. IEEE Photonics Technol. Lett. 2023, 35, 410–413. [Google Scholar] [CrossRef]
- Malinauskas, M.; Gilbergs, H.; Žukauskas, A.; Purlys, V.; Paipulas, D.; Gadonas, R. A Femtosecond Laser-Induced Two-Photon Photopolymerization Technique for Structuring Microlenses. J. Opt. 2010, 12, 035204. [Google Scholar] [CrossRef]
- Waheed, S.; Cabot, J.M.; Macdonald, N.P.; Lewis, T.; Guijt, R.M.; Paull, B.; Breadmore, M.C. 3D printed microfluidic devices: Enablers and barriers. Lab Chip 2016, 16, 1993–2013. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, G.; Roppolo, I.; Pirri, C.F.; Chiappone, A. Current and Emerging Trends in Polymeric 3D Printed Microfluidic Devices. Addit. Manuf. 2022, 55, 102867. [Google Scholar] [CrossRef]
- Lamont, A.C.; Alsharhan, A.T.; Sochol, R.D. Geometric Determinants of In-Situ Direct Laser Writing. Sci. Rep. 2019, 9, 394. [Google Scholar] [CrossRef]
- Alsharhan, A.T.; Acevedo, R.; Warren, R.; Sochol, R.D. 3D Microfluidics via Cyclic Olefin Polymer-Based In-Situ Direct Laser Writing. Lab Chip 2019, 19, 2799–2810. [Google Scholar] [CrossRef]
- Trautmann, A.; Roth, G.-L.; Nujiqi, B.; Walther, T.; Hellmann, R. Towards a Versatile Point-of-Care System Combining Femtosecond Laser Generated Microfluidic Channels and Direct Laser Written Microneedle Arrays. Microsyst. Nanoeng. 2019, 5, 6. [Google Scholar] [CrossRef]
- Bohne, S.; Heymann, M.; Chapman, H.N.; Trieu, H.K.; Bajt, S. 3D Printed Nozzles on a Silicon Fluidic Chip. Rev. Sci. Instrum. 2019, 90, 035108. [Google Scholar] [CrossRef]
- Sarker, S.; Colton, A.; Wen, Z.; Xu, X.; Erdi, M.; Jones, A.; Kofinas, P.; Tubaldi, E.; Walczak, P.; Janowski, M.; et al. 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy. Adv. Mater. Technol. 2023, 8, 2201641. [Google Scholar] [CrossRef]
- Smith, G.L.; Gesell, A.S.; Restaino, M.; Tyler, J.B.; Xu, X.; Sochol, R.D.; Bergbreiter, S.; Lazarus, N. 3D-Printed Multi-scale Fluidics for Liquid Metals. Adv. Mater. Technol. 2024, 9, 2301980. [Google Scholar] [CrossRef]
- Xu, X.; Qiu, Y.; Chen, C.Y.; Carton, M.; Campbell, P.M.R.; Chowdhury, A.M.; Bandyopadhyay, B.C.; Bentley, W.E.; Smith, B.R.; Sochol, R.D. 3D Nanoprinting of PDMS Microvessels with Tailored Tortuosity and Microporosity via Direct Laser Writing. Lab Chip 2025, 25, 1947–1958. [Google Scholar] [CrossRef]
- Lölsberg, J.; Linkhorst, J.; Cinar, A.; Jans, A.; Kuehne, A.J.C.; Wessling, M. 3D Nanofabrication Inside Rapid Prototyped Microfluidic Channels Showcased by Wet-Spinning of Single Micrometre Fibres. Lab Chip 2018, 18, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, S.-Z.; Xu, J.; Niu, L.-G.; Midorikawa, K.; Sugioka, K. Hybrid Femtosecond Laser Microfabrication to Achieve True 3D Glass/Polymer Composite Biochips with Multiscale Features and High Performance: The Concept of Ship-in-a-Bottle Biochip. Laser Photonics Rev. 2014, 8, 458–467. [Google Scholar] [CrossRef]
- Wu, D.; Xu, J.; Niu, L.-G.; Wu, S.-Z.; Midorikawa, K.; Sugioka, K. In-Channel Integration of Designable Microoptical Devices Using Flat Scaffold-Supported Femtosecond-Laser Microfabrication for Coupling-Free Optofluidic Cell Counting. Light. Sci. Appl. 2015, 4, e228. [Google Scholar] [CrossRef]
- Han, J.Y.; Warshawsky, S.; DeVoe, D.L. In Situ Photografting During Direct Laser Writing in Thermoplastic Microchannels. Sci. Rep. 2021, 11, 10980. [Google Scholar] [CrossRef]
- Ren, W.; Kim, H.; Lee, H.-J.; Wang, J.; Wang, H.; Kim, D.-P. A Pressure-Tolerant Polymer Microfluidic Device Fabricated by the Simultaneous Solidification-Bonding Method and Flash Chemistry Application. Lab Chip 2014, 14, 4263–4269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoskins, J.K.; Pysz, P.M.; Stenken, J.A.; Zou, M. Multiscale 2PP and LCD 3D Printing for High-Resolution Membrane-Integrated Microfluidic Chips. Nanomanufacturing 2025, 5, 11. https://doi.org/10.3390/nanomanufacturing5030011
Hoskins JK, Pysz PM, Stenken JA, Zou M. Multiscale 2PP and LCD 3D Printing for High-Resolution Membrane-Integrated Microfluidic Chips. Nanomanufacturing. 2025; 5(3):11. https://doi.org/10.3390/nanomanufacturing5030011
Chicago/Turabian StyleHoskins, Julia K., Patrick M. Pysz, Julie A. Stenken, and Min Zou. 2025. "Multiscale 2PP and LCD 3D Printing for High-Resolution Membrane-Integrated Microfluidic Chips" Nanomanufacturing 5, no. 3: 11. https://doi.org/10.3390/nanomanufacturing5030011
APA StyleHoskins, J. K., Pysz, P. M., Stenken, J. A., & Zou, M. (2025). Multiscale 2PP and LCD 3D Printing for High-Resolution Membrane-Integrated Microfluidic Chips. Nanomanufacturing, 5(3), 11. https://doi.org/10.3390/nanomanufacturing5030011