A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usman, M.; Nisar, S.; Kim, D.-K.; Golovynskyi, S.; Imran, M.; Dastgeer, G.; Wang, L. Polarization-sensitive photodetection of anisotropic 2D black arsenic. J. Phys. Chem. C 2023, 127, 9076–9082. [Google Scholar] [CrossRef]
- Dastgeer, G.; Nisar, S.; Rasheed, A.; Akbar, K.; Chavan, V.D.; Kim, D.-K.; Wabaidur, S.M.; Zulfiqar, M.W.; Eom, J. Atomically engineered, high-speed non-volatile flash memory device exhibiting multibit data storage operations. Nano Energy 2023, 119, 109106. [Google Scholar] [CrossRef]
- Liu, H.-F.; Luo, Z.-C.; Hu, Z.-K.; Yang, S.-Q.; Tu, L.-C.; Zhou, Z.-B.; Kraft, M. A review of high-performance MEMS sensors for resource exploration and geophysical applications. Pet. Sci. 2022, 19, 2631–2648. [Google Scholar] [CrossRef]
- Asri, M.I.A.; Hasan, M.N.; Fuaad, M.R.A.; Yunos, Y.M.; Ali, M.S.M. MEMS gas sensors: A review. IEEE Sens. J. 2021, 21, 18381–18397. [Google Scholar] [CrossRef]
- Lee, H.G.; Choi, W.; Yang, S.Y.; Kim, D.-H.; Park, S.-G.; Lee, M.-Y.; Jung, H.S. PCR-coupled paper-based surface-enhanced raman scattering (SERS) sensor for rapid and sensitive detection of respiratory bacterial DNA. Sens. Actuators B Chem. 2021, 326, 128802. [Google Scholar] [CrossRef]
- Noor, H.; David, I.G.; Jinga, M.L.; Popa, D.E.; Buleandra, M.; Iorgulescu, E.E.; Ciobanu, A.M. State of the art on developments of (Bio)Sensors and analytical methods for rifamycin antibiotics determination. Sensors 2023, 23, 976. [Google Scholar] [CrossRef]
- Lin, D.Y.; Yu, C.Y.; Ku, C.A.; Chung, C.K. Design, fabrication, and applications of SERS substrates for food safety detection. Micromachines 2023, 14, 1343. [Google Scholar] [CrossRef]
- Eessaa, A.K.; El-Shamy, A. Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies. Microelectron. Eng. 2023, 279, 112061. [Google Scholar] [CrossRef]
- Ku, C.A.; Yu, C.Y.; Hung, C.W.; Chung, C.K. Advances in the Fabrication of Nanoporous Anodic Aluminum Oxide and Its Applications to Sensors: A Review. Nanomaterials 2023, 13, 2853. [Google Scholar] [CrossRef]
- Norek, M. Self-ordered porous anodic alumina with large pore intervals: Review on experimental and theoretical research. J. Electrochem. Soc. 2022, 169, 123503. [Google Scholar] [CrossRef]
- Choudhari, K.S.; Choi, C.H.; Chidangil, S.; George, S.D. Recent progress in the fabrication and optical properties of nanoporous anodic alumina. Nanomaterials 2022, 12, 444. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ni, Y.; Gong, J.; Song, Y.; Gong, T.; Zhu, X. A review: Research progress on the formation mechanism of porous anodic oxides. Nanoscale Adv. 2021, 4, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Norek, M.; Dopierała, M.; Stępniowski, W.J. Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina. J. Electroanal. Chem. 2015, 750, 79–88. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, X.; Pang, Y.; Ge, C.; Xu, Y.; Chen, L.; Li, S.; Wang, L. Porous Au/AAO: A simple and feasible SERS substrate for dynamic monitoring and mechanism analysis of DNA oxidation. Appl. Surf. Sci. 2022, 606, 154842. [Google Scholar] [CrossRef]
- Dong, J.; Wang, Y.; Wang, Q.; Cao, Y.; Han, Q.; Gao, W.; Wang, Y.; Qi, J.; Sun, M. Nanoscale engineering of ring-mounted nanostructure around AAO nanopores for highly sensitive and reliable SERS substrates. Nanotechnology 2022, 33, 135501. [Google Scholar] [CrossRef]
- Dong, J.; Li, C.; Wang, Y.; Fan, Y.; Han, Q.; Gao, W.; Wang, Y.; Ren, K.; Qi, J.; He, E. Fabrication of complexed nanostructure using AAO template for ultrasensitive SERS detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 312, 124044. [Google Scholar] [CrossRef]
- Shi, G.; Li, K.; Gu, J.; Yuan, W.; Xu, S.; Han, W.; Gu, J.; Wang, L.; Zhang, Z.; Chen, C.; et al. Fabrication of multifunctional SERS platform based on Ag NPs self-assembly Ag-AAO nanoarray for direct determination of pesticide residues and baicalein in real samples. Coatings 2021, 11, 1054. [Google Scholar] [CrossRef]
- Wang, H.; Huang, L.; Zhang, Y.; Cai, Y.; Cheng, L.; Zhai, L.; Liu, Y.; Zhang, X.; Zhu, J. Vivid reflective color generation mechanism in Al/AAO/Al configuration. Opt. Mater. Express 2022, 12, 2270–2282. [Google Scholar] [CrossRef]
- Du, X.; Cai, D.; Ou, Q.; Chen, D.; Zhang, Z.; Liang, P. Fabrication and characterization of the hierarchical AAO film and AAO-MnO2 composite as the anode foil of aluminum electrolytic capacitor. Surf. Coatings Technol. 2021, 419, 127286. [Google Scholar] [CrossRef]
- Ku, C.A.; Wu, C.C.; Hung, C.W.; Chung, C.K. Influence of Normal-to-High Anodizing Voltage on AAO Surface Hardness from 1050 Aluminum Alloy in Oxalic Acid. Micromachines 2024, 15, 683. [Google Scholar] [CrossRef]
- Sundararajan, M.; Devarajan, M.; Jaafar, M. Investigation of surface and mechanical properties of Anodic Aluminium Oxide (AAO) developed on Al substrate for an electronic package enclosure. Surf. Coatings Technol. 2020, 401, 126273. [Google Scholar] [CrossRef]
- Sundararajan, M.; Devarajan, M.; Jaafar, M. A novel sealing and high scratch resistant nanorod Ni-P coating on anodic aluminum oxide. Mater. Lett. 2021, 289, 129425. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, B.; Lee, H.; Kim, H.; Lee, K.; Park, H. Capacitive humidity sensor design based on anodic aluminum oxide. Sens. Actuators B Chem. 2009, 141, 441–446. [Google Scholar] [CrossRef]
- He, Z.; Yao, L.; Zheng, M.; Ma, L.; He, S.; Shen, W. Enhanced humidity sensitivity of nanoporous alumina films by controlling the concentration and type of impurity in pore wall. Phys. E Low-Dimens. Syst. NanoStruct. 2010, 43, 366–371. [Google Scholar] [CrossRef]
- Balde, M.; Vena, A.; Sorli, B. Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors. Sens. Actuators B Chem. 2015, 220, 829–839. [Google Scholar] [CrossRef]
- Yang, C.C.; Liu, T.H.; Chang, S.H. Relative humidity sensing properties of indium nitride compound with oxygen doping on silicon and AAO substrates. Mod. Phys. Lett. B 2019, 33, 1940044. [Google Scholar] [CrossRef]
- Sharma, K.; Islam, S.S. Optimization of porous anodic alumina nanostructure for ultra high sensitive humidity sensor. Sens. Actuators B Chem. 2016, 237, 443–451. [Google Scholar] [CrossRef]
- Andika, R.; Aziz, F.; Ahmad, Z.; Doris, M.; Fauzia, V.; Bawazeer, T.M.; Alsenany, N.; Alsoufi, M.S.; Supangat, A. Organic nanostructure sensing layer developed by AAO template for the application in humidity sensors. J. Mater. Sci. Mater. Electron. 2018, 30, 2382–2388. [Google Scholar] [CrossRef]
- Qi, R.; Zhang, T.; Guan, X.; Dai, J.; Liu, S.; Zhao, H.; Fei, T. Capacitive humidity sensors based on mesoporous silica and poly(3,4-ethylenedioxythiophene) composites. J. Colloid Interface Sci. 2020, 565, 592–600. [Google Scholar] [CrossRef]
- Kashi, M.A.; Ramazani, A.; Abbasian, H.; Khayyatian, A. Capacitive humidity sensors based on large diameter porous alumina prepared by high current anodization. Sens. Actuators A Phys. 2011, 174, 69–74. [Google Scholar] [CrossRef]
- Chung, C.K.; Ku, C.A.; Wu, Z.E. A high-and-rapid-response capacitive humidity sensor of nanoporous anodic alumina by one-step anodizing commercial 1050 aluminum alloy and its enhancement mechanism. Sens. Actuators B Chem. 2021, 343, 130156. [Google Scholar] [CrossRef]
- Ku, C.A.; Hung, C.W.; Chung, C.K. Influence of Anodic Aluminum Oxide Nanostructures on Resistive Humidity Sensing. Nanomanufacturing 2024, 4, 58–68. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Ram, R.; Kolaru, R.B.; Jana, A.S.; Sadhu, A.S.; Chu, C.-S.; Lin, Y.-N.; Pal, B.N.; Chang, S.-H.; Biring, S. Ingenious fabrication of Ag-filled porous anodic alumina films as powerful SERS substrates for efficient detection of biological and organic molecules. Biosensors 2022, 12, 807. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Shin, G.; Shin, D. Metal-free AAO membranes function as both filters and Raman enhancers for the analysis of nanoplastics. Water Res. 2024, 273, 123043. [Google Scholar] [CrossRef]
- Gwon, G.; Jung, Y.; Hong, H.; Cho, H.; Kim, H.; Kim, K.-H.; Kim, N.H. Real-Time Monitoring of Molecules in Aqueous Solution via a Surface-Functionalized Ag-Anodic Aluminum Oxide Surface-Enhanced Raman Scattering Platform. ACS Appl. Mater. Interfaces 2024, 16, 53123–53131. [Google Scholar] [CrossRef]
- Yu, C.Y.; Lin, D.Y.; Chung, C.K. Novel dipole-enhancement mechanism and detection of high-sensitivity trace environmental hormone bisphenol A with LiCl as co-adsorbates using simple metal-nanoparticle-free solid SERS substrates. Sens. Actuators B Chem. 2023, 398, 134735. [Google Scholar] [CrossRef]
- Rahim, A.; Ma, L.; Saleem, M.; Lyu, B.; Shafi, M.; You, Y.; Li, M.; Zhang, X.; Liu, M. V-Shaped Heterostructure Nanocavities Array with CM and EM Coupled Enhancement for Ultra-Sensitive SERS Substrate. Adv. Sci. 2024, 11, e2409838. [Google Scholar] [CrossRef]
- Han, S.; Kim, W.; Lee, H.J.; Joyce, R.; Lee, J. Continuous and real-time measurement of plant water potential using an AAO-based capacitive humidity sensor for irrigation control. ACS Appl. Electron. Mater. 2022, 4, 5922–5932. [Google Scholar] [CrossRef]
- Podgolin, S.K.; Petukhov, D.I.; Dorofeev, S.G.; Eliseev, A.A. Anodic alumina membrane capacitive sensors for detection of vapors. Talanta 2020, 219, 121248. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X. Aquaporin-inspired CPs/AAO nanochannels for the effective detection of HCHO: Importance of a hydrophilic/hydrophobic janus device for high-performance sensing. Nano Lett. 2022, 22, 3793–3800. [Google Scholar] [CrossRef]
- Park, J.Y.; Yi, J.H.; Choa, Y.H. Ppb-level ethanol gas sensor of porous anodic aluminum oxide at room temperature. J. Am. Ceram. Soc. 2023, 106, 7209–7217. [Google Scholar] [CrossRef]
- Chung, C.-K.; Ku, C.-A. An effective resistive-type alcohol vapor sensor using one-step facile nanoporous anodic alumina. Micromachines 2023, 14, 1330. [Google Scholar] [CrossRef] [PubMed]
- Mohsen-Nia, M.; Amiri, H.; Jazi, B. Dielectric constants of water, methanol, ethanol, butanol and acetone: Measurement and computational study. J. Solut. Chem. 2010, 39, 701–708. [Google Scholar] [CrossRef]
- de Jesús-González, N.E.; Pérez de la Luz, A.; López-Lemus, J.; Alejandre, J. Effect of the Dielectric Constant on the Solubility of Acetone in Water. J. Chem. Eng. Data 2018, 63, 1170–1179. [Google Scholar] [CrossRef]
- Redón, R.; Vázquez-Olmos, A.; Mata-Zamora, M.E.; Ordóñez-Medrano, A.; Rivera-Torres, F.; Saniger, J.M. Contact angle studies on anodic porous alumina. J. Colloid Interface Sci. 2005, 287, 664–670. [Google Scholar] [CrossRef]
- Pal, S.; Weiss, H.; Keller, H.; Müller-Plathe, F. Effect of Nanostructure on the Properties of Water at the Water−Hydrophobic Interface: A Molecular Dynamics Simulation. Langmuir 2005, 21, 3699–3709. [Google Scholar] [CrossRef]
- Macko, J.; Podrojková, N.; Oriňaková, R.; Oriňak, A. New insights into hydrophobicity at nanostructured surfaces: Experiments and computational models. Nanomater. Nanotechnol. 2022, 12, 18479804211062316. [Google Scholar] [CrossRef]
- Baek, S.; Moon, H.S.; Kim, W.; Jeon, S.; Yong, K. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces. Nanoscale 2018, 10, 17842–17851. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, C.-A.; Li, G.-F.; Chung, C.-K. A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide. Nanomanufacturing 2025, 5, 8. https://doi.org/10.3390/nanomanufacturing5020008
Ku C-A, Li G-F, Chung C-K. A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide. Nanomanufacturing. 2025; 5(2):8. https://doi.org/10.3390/nanomanufacturing5020008
Chicago/Turabian StyleKu, Chin-An, Geng-Fu Li, and Chen-Kuei Chung. 2025. "A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide" Nanomanufacturing 5, no. 2: 8. https://doi.org/10.3390/nanomanufacturing5020008
APA StyleKu, C.-A., Li, G.-F., & Chung, C.-K. (2025). A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide. Nanomanufacturing, 5(2), 8. https://doi.org/10.3390/nanomanufacturing5020008