Advancing Towards Higher Contrast, Energy-Efficient Screens with Advanced Anti-Glare Manufacturing Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Texture Design
2.2. Mastering by LBL
2.3. Replication by NIL
3. Results and Discussion
3.1. Texture Design
3.2. Mastering by LBL
3.3. Replication by NIL
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Backlinko Team. Revealing Average Screen Time Statistics. Available online: https://backlinko.com/screen-time-statistics (accessed on 30 September 2024).
- Yeo, R.J.; Wu, W.-Y.; Tomczak, N.; Ji, R.; Wang, S.; Wang, X.; Kong, J.; Liu, H.; Goh, K.E.J.; Xu, J.; et al. Tailoring surface reflectance through nanostructured materials design for energy-efficient applications. Mater. Today Chem. 2023, 30, 101593. [Google Scholar] [CrossRef]
- Kaur, K.; Gurnani, B.; Nayak, S.; Deori, N.; Kaur, S.; Jethani, J.; Singh, D.; Agarkar, S.; Hussaindeen, J.R.; Sukhija, J.; et al. Digital Eye Strain—A Comprehensive Review. Ophthalmol. Ther. 2022, 11, 1655–1680. [Google Scholar] [CrossRef] [PubMed]
- Sitter, B. Design Criteria in the Development of Anti-Glare Surfaces. SID Symp. Dig. Tech. Pap. 2020, 51, 1117–1119. [Google Scholar] [CrossRef]
- Becker, M.E.; Neumeier, J. Optical characterization of scattering anti-glare layers. In Proceedings of the 49th Annual SID Symposium, Seminar, and Exhibition 2011, Display Week 2011, Los Angeles, CA, USA,, 15–20 May 2011; pp. 1038–1041. [Google Scholar] [CrossRef]
- Radiant Vision Systems, LLC. Method for Repeatable Measurement of Sparkle in Anti-Glare Displays: Defining Quality Control Standards Based on Human Perception; Radiant Vision Systems, LLC: Redmond, WA, USA, 2020. [Google Scholar]
- Lander, C.W.; Myers, T.E.; Nguyen, K.; Stephans, A.T. Anti-Glare Surface Treatment Method and Articles thereof. US9651720B2, 16 May 2017. Available online: https://patents.google.com/patent/US9651720B2/en (accessed on 30 September 2024).
- Lan, H.; Ding, Y. Nanoimprint Lithography. In Lithography; InTech: London, UK, 2010. [Google Scholar] [CrossRef]
- Traub, M.C.; Longsine, W.; Truskett, V.N. Advances in Nanoimprint Lithography. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 583–604. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.; Liu, H. UV-nanoimprint lithography: Structure, materials and fabrication of flexible molds. J. Nanosci. Nanotechnol. 2013, 13, 3145–3172. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.-G.; Lee, K.-J.; Kim, K.-D.; Choi, J.-H.; Jeong, J.-H.; Lee, E.-S. Effects of pattern size, dual side patterning, and imprint materials in the fabrication of antireflective structure using nanoimprint. In Proceedings of the Nanoengineering: Fabrication, Properties, Optics, and Devices V, San Diego, CA, USA, 10–14 August 2008; SPIE: Bellingham, WA, USA, 2008; p. 70391E. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, C.; Sun, J.; Peng, X.; Tian, H.; Li, X.; Chen, X.; Chen, X.; Shao, J. Electric-driven flexible-roller nanoimprint lithography on the stress-sensitive warped wafer. Int. J. Extrem. Manuf. 2023, 5, 035101. [Google Scholar] [CrossRef]
- Wang, C.; Fan, Y.; Sun, J.; Shao, J. Mechanical-electric composite-driven transfer nanoimprint for anti-reflective optical diffuser. Opt. Mater. 2023, 145, 114385. [Google Scholar] [CrossRef]
- Steiner, S.; Jotz, M.; Bachhuber, F.; Bilenberg, B.; Bro, T.H.; Meulen, J.M.T.; Ercan, E.; Rashed, A.R.; Deveci, M. Enabling the Metaverse through mass manufacturing of industry-standard optical waveguide combiners. In Proceedings of the Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) IV, San Francisco, CA, USA, 30 January–2 February 2023; SPIE: Bellingham, WA, USA, 2023; p. 118. [Google Scholar] [CrossRef]
- Min, C.H.; Kang, Y.S.; Kim, T.S. Modeling and recipe optimization of anti-glare process using sandblasting for electronic display glass. Electronics 2020, 9, 2048. [Google Scholar] [CrossRef]
Plate Process Parameters | |
---|---|
Substrate | 10-inch Glass Plate |
Resist | GS5000 (TELIC Co., USA) |
Exposure Process Parameters | |
Machine | Picomaster XF 200 |
Overlap | 4 |
Focus offset (V) | 0 |
Scan Resolution (nm) | 100 |
Dose (mJ/cm2) | 80 (design 1), 96 (design 2), 72 (design 3), 40 (design 4) |
Scan speed (mm/s) | 25 |
Post Exposure Processing | |
Development (s) | AZ400K 1:3–60 s |
Rinsing solution | Water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Heijden, D.; Casimiro, A.; ter Meulen, J.M.; Keskinbora, K.; Ercan, E. Advancing Towards Higher Contrast, Energy-Efficient Screens with Advanced Anti-Glare Manufacturing Technology. Nanomanufacturing 2024, 4, 241-248. https://doi.org/10.3390/nanomanufacturing4040016
van der Heijden D, Casimiro A, ter Meulen JM, Keskinbora K, Ercan E. Advancing Towards Higher Contrast, Energy-Efficient Screens with Advanced Anti-Glare Manufacturing Technology. Nanomanufacturing. 2024; 4(4):241-248. https://doi.org/10.3390/nanomanufacturing4040016
Chicago/Turabian Stylevan der Heijden, Danielle, Anna Casimiro, Jan Matthijs ter Meulen, Kahraman Keskinbora, and Erhan Ercan. 2024. "Advancing Towards Higher Contrast, Energy-Efficient Screens with Advanced Anti-Glare Manufacturing Technology" Nanomanufacturing 4, no. 4: 241-248. https://doi.org/10.3390/nanomanufacturing4040016
APA Stylevan der Heijden, D., Casimiro, A., ter Meulen, J. M., Keskinbora, K., & Ercan, E. (2024). Advancing Towards Higher Contrast, Energy-Efficient Screens with Advanced Anti-Glare Manufacturing Technology. Nanomanufacturing, 4(4), 241-248. https://doi.org/10.3390/nanomanufacturing4040016