Nanoemulsion in Management of Colorectal Cancer: Challenges and Future Prospects
Abstract
:1. Introduction
1.1. Advantages of Nanoemulsion
1.2. Disadvantages
2. Types, Composition, and Characterization of the Nanoemulsion System
2.1. Composition of Nanoemulsion
2.1.1. Oils
2.1.2. Surfactants
- Small molecule surfactants;
- Particle as surfactants;
- Phospholipids surfactants;
- Bioinspired peptide surfactants;
- Bioinspired protein surfactants.
Small Molecule Surfactants
- Anionic surfactants
- Cationic surfactants
- Nonionic surfactants
Particles as Surfactants
Phospholipids
2.1.3. Bioinspired Peptide Surfactants
2.1.4. Bioinspired Protein Surfactants
2.1.5. Cosurfactants
2.2. Physicochemical Characterization of Nanoemulsion
2.2.1. Phase Behavior
2.2.2. Droplet Size and Polydispersity Index
2.2.3. Zeta Potential
2.2.4. Viscosity
2.2.5. Conductivity and Dielectric Measurement
2.2.6. Entrapment Efficiency
2.2.7. Fourier-Transform Infrared Spectroscopy (FTIR) Spectral Analysis
2.2.8. Morphological Study Using SEM and TEM Techniques
2.2.9. In Vitro Drug Release Study
2.2.10. In Vitro Skin Permeation Studies
2.3. Stability Studies
2.3.1. Stability Study of Nanoemulsion
2.3.2. Coalescence
2.3.3. Flocculation
2.3.4. Creaming and Sedimentation
2.3.5. Ostwald Ripening
2.3.6. Nanoemulsion Stability Enhancement
2.4. Formulation Method of Nanoemulsion
- ⊗A is the increasing total interfacial area;
- γ is the interfacial tension.
- Low-energy methods;
- High-energy methods.
2.4.1. Low Energy Methods
Phase Inversion Temperature (PIT)
Phase Inversion Composition (PIC)
2.4.2. High-Energy Methods
Stirring at High Shear Using a Rotor/Stator System
High-Pressure Homogenization (HPH)
Ultrasonication
Microfluidization
3. Nanoemulsion for Colorectal Cancer Delivery
Nanoemulsion Constituents | Active Compound | Production Technique | Type of Cancer | References |
---|---|---|---|---|
Carotenoid; nanoemulsions; CapryolTM 90; Transcutol®HP; Tween 80 | Carotenoid extract from Lycium barbarism | Ultrasonication method | Colon cancer | [100] |
Nanoemulsions carrying gold nanoparticles Tween 80 | Lycopene | Ultrasonication method | Colon cancer | [102] |
Transcutol-HP (surfactant), IPA (cosurfactant), water (aqueous phase), and castor oil (oil phase) | 5-Fluorouracil (5-FU) | Oil phase titration method (PIT) | Colon cancer (HT-29) | [109] |
Tween 80 (T80) and propylene glycol (P.G.) as surfactant and cosurfactant | Teucrium polium L. essential oil | High-pressure homogenization method | Colon cancer HCT116 wild-type and HT-29 mutant-type | [105] |
Capryol 90, Surfactant (Tween 20) m andcosurfactant (PEG 400) | Resveratrol | Phase inversion composition | Colorectal cancer | [110] |
DSPE-PEG2000 | Irinotecan | Phase inversion composition | Colorectal cancer | [111] |
Salvia (SAL) essential oil | Ifosfamide | Oil phase titration method (PIT) | Colorectal cancer | [112] |
Tween 80 as a surfactant, tocopheryl polyethylene glycol 1000 succinate (TPGS) as a cosurfactant, and Kollisolv MCT 70 as the oil phase | Curcumin | Oil phase titration method (PIT) | Pituitary and colon cancer | [113] |
Anethole (57.9%), terpinolene (13.8%), G-terpinene (8.1%), myrcene (6.8%), hexyl butyrate (5.2%), octylbu-tanoate (4.5%), and octyl acetate (3.7%) | Heracleum persicum | Phase inversion composition | Breast cancer | [114] |
linalyl acetate, limonene, and α-terpineol | Citrus aurantium L. | Phase inversion composition | Human lung (A549 cells) | [115] |
Year | Patented Nanoemulsion | Patent No. | Used for | References |
---|---|---|---|---|
2019 | An oil-in-water nanoemulsion (N.E.) drug delivery that encapsulates omega-3 polyunsaturated fatty acid (PUFA)-taxoid | US10206875 | Anticancer | [116] |
2021 | A nanoemulsion consisting of an oil phase, a surfactant, and an aqueous component and an aqueous phase containing a water-soluble active ingredient, a polysaccharide, and hyaluronic acid | US11103600 | Anticancer | [117] |
2022 | A nanoemulsion prepared using oxysterol or oxysterol-like compound | US11332494 | Anticancer | [118] |
2022 | A water-in-oil nanoemulsion containing an oil phase ingredient, a surfactant, and an aqueous phase ingredient which includes a cancer cell fluorescence-inducing substance and a polysaccharide that targets cancer cells, and it is dispersed in water to remove the oil phase ingredient, resulting in the formation of the nanocarrier, which also contains the aqueous phase ingredient | US11298428 | Anticancer | [119] |
2022 | The O/W nanoemulsion that contains 8–12% w/v essential oil, 1–5% w/v polysorbate 80 surfactants, 2–6% w/v glyceryl citrate/lactate/linoleate/oleate co-surfactant, and 1–5% w/v glycerol monocaprylate, type I, wherein a ratio of the surfactant and cosurfactant to essential oil is from 1:1.1 to 1:1.6 | US11364199 | Transdermal delivery | [120] |
2022 | Ionic liquid-based nanoemulsion consisting of hydrophobic ionic liquid comprises a dication comprising two monocationic groups linked by a bridging group wherein the bridging group provides an at least partially hydrophobic character | US11464738 | Hydrophobic drug delivery | [121] |
2022 | An oil-in-water nanoemulsion that contains clobetasol, one or more oil components, one or more surfactants, and one or more pharmaceutically acceptable excipients or carriers, as well as a continuous aqueous phase and dispersed oil droplets | US10857160 | Prophylaxis or treatment of inflammatory diseases or conditions | [122] |
2022 | A fluorocarbon nanoemulsion prepared by using perfluorohexane and one or more surfactants selected from perfluoro-n-hexyl-oligo ethylene oxy-alcohols | US11304899 | For enhanced oxygen delivery | [123] |
2022 | An oil-in-water emulsion consisting of an internal oil phase includes lauric oil, an external aqueous phase (water or glycerol), and surfactants, preferably anionic surfactants, amphoteric surfactants | US11266580 | [124] | |
2022 | An aqueous, transparent nanoemulsion composition includes at least two different bilayer water-core liposome components and at least one monolayer surfactant-bound particle component | US11304900 | For delivering oil- and water-soluble components of a vitamin supplement | [125] |
2022 | An injection fluid nanoemulsion is prepared by dispersing the oil phase in an aqueous phase, and the formed oil nanodroplets that have a diameter of from 20–1000 nanometers and dispersion of the oil phase in the aqueous phase stabilized by surfactant and nonsuperparamagnetic magnetic nanoparticles encapsulated in the formed oil nanodroplets | US11506049 | - | [126] |
2022 | The nanoemulsion composition consists of a lipid nanoparticle with an inorganic nanoparticle-based hydrophobic core | US11534497 | For delivering RNA | [127] |
2022 | A nanoemulsion composition comprising nanoemulsion particles that contain a hydrophobic core (mixture of liquid oil and one or more inorganic nanoparticles or one or more lipids, such as a cationic lipid) with one or more surfactants and a bioactive agent complexed with the nanoemulsion particles | US11376335 | For delivering RNA | [128] |
4. Ongoing Clinical Trials on Nanoemulsions for Cancer Therapy
5. Limitations and Challenges of Nanoemulsions
5.1. Nanoemulsion Stability
5.2. Economic Concerns about Nanoemulsion
6. Future Perspective
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulman, J.H.; Stoeckenius, W.; Prince, L.M. Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy. J. Phys. Chem. 1959, 63, 1677–1680. [Google Scholar] [CrossRef]
- Jin, Y.; Tian, S.; Guo, J.; Ren, X.; Li, X.; Gao, S. Synthesis, Characterization and Exploratory Application of Anionic Surfactant Fatty Acid Methyl Ester Sulfonate from Waste Cooking Oil. J. Surfactants Deterg. 2016, 19, 467–475. [Google Scholar] [CrossRef]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.J.; Li, Y.; Yang, G.; Zhao, C.-X. Nanoemulsions for drug delivery. Particuology 2022, 64, 85–97. [Google Scholar] [CrossRef]
- Constantinides, P.P. Lipid Microemulsions for Improving Drug Dissolution and Oral Absorption: Physical and Biopharmaceutical Aspects. Pharm. Res. 1995, 12, 1561–1572. [Google Scholar] [CrossRef]
- Jumaa, M.; Müller, B.W. Formulating and stability of benzodiazepines in a new lipid emulsion formulation. Die Pharm. 2002, 57, 740–743. [Google Scholar]
- Gurpret, K.; Singh, S.K. Review of Nanoemulsion Formulation and Characterization Techniques. Indian J. Pharm. Sci. 2018, 80, 781–789. [Google Scholar] [CrossRef]
- Lovelyn, C.; Attama, A.A. Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol. 2011, 2, 626–639. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Chen, F.; Liang, L.; Zhang, Z.; Deng, Z.; Decker, E.A.; McClements, D.J. Inhibition of lipid oxidation in nanoemulsions and filled microgels fortified with omega-3 fatty acids using casein as a natural antioxidant. Food Hydrocoll. 2017, 63, 240–248. [Google Scholar] [CrossRef]
- Uskoković, V.; Drofenik, M. Synthesis of Materials within Reverse Micelles. Surf. Rev. Lett. 2005, 12, 239–277. [Google Scholar] [CrossRef]
- Peng, L.-C.; Liu, C.-H.; Kwan, C.-C.; Huang, K.-F. Optimization of water-in-oil nanoemulsions by mixed surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2010, 370, 136–142. [Google Scholar] [CrossRef]
- Leister, N.; Karbstein, H.P. Evaluating the Stability of Double Emulsions—A Review of the Measurement Techniques for the Systematic Investigation of Instability Mechanisms. Colloids Interfaces 2020, 4, 8. [Google Scholar] [CrossRef]
- Middelberg, A.P.J.; Dimitrijev-Dwyer, M. A Designed Biosurfactant Protein for Switchable Foam Control. ChemPhysChem 2011, 12, 1426–1429. [Google Scholar] [CrossRef]
- Zhao, C.; Dwyer, M.D.; Yu, L.; Middelberg, A.P.J. From Folding to Function: Design of a New Switchable Biosurfactant Protein. ChemPhysChem 2017, 18, 488–492. [Google Scholar] [CrossRef]
- Pulko, I.; Krajnc, P. High Internal Phase Emulsion Templating—A Path To Hierarchically Porous Functional Polymers. Macromol. Rapid Commun. 2012, 33, 1731–1746. [Google Scholar] [CrossRef]
- Pickering, S.U. CXCVI.—Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Xiao, M.; Xu, A.; Zhang, T.; Hong, L. Tailoring the Wettability of Colloidal Particles for Pickering Emulsions via Surface Modification and Roughness. Front. Chem. 2018, 6, 225. [Google Scholar] [CrossRef]
- Dasgupta, N.; Ranjan, S.; Gandhi, M. Nanoemulsion ingredients and components. Environ. Chem. Lett. 2019, 17, 917–928. [Google Scholar] [CrossRef]
- Rao, J.; McClements, D.J. Lemon oil solubilization in mixed surfactant solutions: Rationalizing microemulsion & nanoemulsion formation. Food Hydrocoll. 2012, 26, 268–276. [Google Scholar] [CrossRef]
- Kim, D.S.; Cho, J.H.; Park, J.H.; Kim, J.S.; Song, E.S.; Kwon, J.; Giri, B.R.; Jin, S.G.; Kim, K.S.; Choi, H.-G. Self-microemulsifying drug delivery system (SMEDDS) for improved oral delivery and photostability of methotrexate. Int. J. Nanomed. 2019, 14, 4949–4960. [Google Scholar] [CrossRef] [PubMed]
- Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion Components Screening and Selection: A Technical Note. AAPS PharmSciTech 2009, 10, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.M.; Ezzat, M.S. Nanoemulsions in Food Industry. In Some New Aspects of Colloidal Systems in Foods; Milani, M.J., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-78985-781-8. [Google Scholar]
- Liu, D.; Xu, J.; Zhao, H.; Zhang, X.; Zhou, H.; Wu, D.; Liu, Y.; Yu, P.; Xu, Z.; Kang, W.; et al. Nanoemulsions stabilized by anionic and non-ionic surfactants for enhanced oil recovery in ultra-low permeability reservoirs: Performance evaluation and mechanism study. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128235. [Google Scholar] [CrossRef]
- Fernandes, A.R.; Sanchez-Lopez, E.; dos Santos, T.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants. Materials 2021, 14, 7541. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, M.; Nagovitsina, T.; Yurtov, E. Nanoemulsions stabilized by non-ionic surfactants: Stability and degradation mechanisms. Phys. Chem. Chem. Phys. 2018, 20, 10369–10377. [Google Scholar] [CrossRef]
- Schreiner, T.B.; Santamaria-Echart, A.; Ribeiro, A.; Peres, A.M.; Dias, M.M.; Pinho, S.P.; Barreiro, M.F. Formulation and Optimization of Nanoemulsions Using the Natural Surfactant Saponin from Quillaja Bark. Molecules 2020, 25, 1538. [Google Scholar] [CrossRef]
- Isailović, T.M.; Todosijević, M.N.; Đorđević, S.M.; Savić, S.D. Natural Surfactants-Based Micro/Nanoemulsion Systems for NSAIDs—Practical Formulation Approach, Physicochemical and Biopharmaceutical Characteristics/Performances. In Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs; Elsevier: Amsterdam, The Netherlands, 2017; pp. 179–217. ISBN 978-0-12-804017-1. [Google Scholar]
- Wang, X.; Corin, K.; Baaske, P.; Wienken, C.J.; Jerabek-Willemsen, M.; Duhr, S.; Braun, D.; Zhang, S. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Porc. Natl. Acad. Sci. USA 2011, 108, 9049–9054. [Google Scholar] [CrossRef]
- Lam, R.S.H.; Nickerson, M.T. Food proteins: A review on their emulsifying properties using a structure—Function approach. Food Chem. 2013, 141, 975–984. [Google Scholar] [CrossRef]
- Date, A.A.; Nagarsenker, M.S. Parenteral microemulsions: An overview. Int. J. Pharm. 2008, 355, 19–30. [Google Scholar] [CrossRef]
- Zainol, S.; Basri, M.; Basri, H.B.; Shamsuddin, A.F.; Abdul-Gani, S.S.; Karjiban, R.A.; Abdul-Malek, E. Formulation Optimization of a Palm-Based Nanoemulsion System Containing Levodopa. Int. J. Mol. Sci. 2012, 13, 13049–13064. [Google Scholar] [CrossRef]
- Forgiarini, A.; Esquena, J.; González, C.; Solans, C. Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. In Trends in Colloid and Interface Science XIV; Buckin, V., Ed.; Progress in Colloid and Polymer Science; Springer: Berlin/Heidelberg, Germany, 2000; Volume 115, pp. 36–39. ISBN 978-3-540-67128-2. [Google Scholar]
- Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter 2006, 18, R635–R666. [Google Scholar] [CrossRef]
- Chime, S.A.; Kenechukwu, F.C.; Attama, A.A. Nanoemulsions—Advances in Formulation, Characterization and Applications in Drug Delivery. In Application of Nanotechnology in Drug Delivery; Sezer, A.D., Ed.; InTech: Hong Kong, China, 2014; ISBN 978-953-51-1628-8. [Google Scholar]
- Kumar, M.; Pathak, K.; Misra, A. Formulation and Characterization of Nanoemulsion-Based Drug Delivery System of Risperidone. Drug Dev. Ind. Pharm. 2009, 35, 387–395. [Google Scholar] [CrossRef]
- Demisli, S.; Mitsou, E.; Pletsa, V.; Xenakis, A.; Papadimitriou, V. Development and Study of Nanoemulsions and Nanoemulsion-Based Hydrogels for the Encapsulation of Lipophilic Compounds. Nanomaterials 2020, 10, 2464. [Google Scholar] [CrossRef] [PubMed]
- Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 2). Trop. J. Pharm. Res. 2013, 12, 265–273. [Google Scholar] [CrossRef]
- Kadu, P.J.; Kushare, S.S.; Thacker, D.D.; Gattani, S.G. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS). Pharm. Dev. Technol. 2011, 16, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Kurpiers, M.; Wolf, J.D.; Steinbring, C.; Zaichik, S.; Bernkop-Schnürch, A. Zeta potential changing nanoemulsions based on phosphate moiety cleavage of a PEGylated surfactant. J. Mol. Liq. 2020, 316, 113868. [Google Scholar] [CrossRef]
- Da Costa, S.; Basri, M.; Shamsudin, N.; Basri, H. Stability of Positively Charged Nanoemulsion Formulation Containing Steroidal Drug for Effective Transdermal Application. J. Chem. 2014, 2014, 748680. [Google Scholar] [CrossRef]
- Malik, A.; Magisetty, R.; Kumar, V.; Shukla, A.; Kandasubramanian, B. Dielectric and conductivity investigation of polycarbonate-copper phthalocyanine electrospun nonwoven fibres for electrical and electronic application. Polym. Plast. Technol. Mater. 2020, 59, 154–168. [Google Scholar] [CrossRef]
- Masoumi, H.R.F.; Basri, M.; Samiun, W.S.; Izadiyan, Z.; Lim, C.J. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design. Int. J. Nanomed. 2015, 10, 6469–6476. [Google Scholar] [CrossRef]
- Dinache, A.; Tozar, T.; Smarandache, A.; Andrei, I.R.; Nistorescu, S.; Nastasa, V.; Staicu, A.; Pascu, M.-L.; Romanitan, M.O. Spectroscopic Characterization of Emulsions Generated with a New Laser-Assisted Device. Molecules 2020, 25, 1729. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, P.; Sharma, S. Physical, morphological, and storage studies of cinnamon based nanoemulsions developed with Tween 80 and soy lecithin: A comparative study. J. Food Meas. Charact. 2021, 15, 2386–2398. [Google Scholar] [CrossRef]
- Kumari, S.; Kumaraswamy, R.V.; Choudhary, R.C.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Sci. Rep. 2018, 8, 6650. [Google Scholar] [CrossRef]
- Li, R.; Inbaraj, B.S.; Chen, B.-H. Quantification of Xanthone and Anthocyanin in Mangosteen Peel by UPLC-MS/MS and Preparation of Nanoemulsions for Studying Their Inhibition Effects on Liver Cancer Cells. Int. J. Mol. Sci. 2023, 24, 3934. [Google Scholar] [CrossRef]
- Prasad, J.; Das, S.; Maurya, A.; Soni, M.; Yadav, A.; Singh, B.; Dwivedy, A.K. Encapsulation of Cymbopogon khasiana × Cymbopogon pendulus Essential Oil (CKP-25) in Chitosan Nanoemulsion as a Green and Novel Strategy for Mitigation of Fungal Association and Aflatoxin B1 Contamination in Food System. Foods 2023, 12, 722. [Google Scholar] [CrossRef] [PubMed]
- Gulati, N.; Chellappan, D.K.; Tambuwala, M.M.; Aljabali, A.A.A.; Prasher, P.; Singh, S.K.; Anand, K.; Sharma, A.; Jha, N.K.; Gupta, G.; et al. Oral Nanoemulsion of Fenofibrate: Formulation, Characterization, and In Vitro Drug Release Studies. ASSAY Drug Dev. Technol. 2021, 19, 246–261. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Won, M.; Yang; Lee, K.M.; Kim, C.S. In Vitro Permeation Studies of Nanoemulsions Containing Ketoprofen as a Model Drug. Drug Deliv. 2008, 15, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Mohd Izham, M.N.; Hussin, Y.; Aziz, M.N.M.; Yeap, S.K.; Rahman, H.S.; Masarudin, M.J.; Mohamad, N.E.; Abdullah, R.; Alitheen, N.B. Preparation and Characterization of Self Nano-Emulsifying Drug Delivery System Loaded with Citraland Its Antiproliferative Effect on Colorectal Cells In Vitro. Nanomaterials 2019, 9, 1028. [Google Scholar] [CrossRef] [PubMed]
- Tscharnuter, W. Photon Correlation Spectroscopy in Particle Sizing. In Encyclopedia of Analytical Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Sharifi, F.; Jahangiri, M.; Nazir, I.; Asim, M.H.; Ebrahimnejad, P.; Hupfauf, A.; Gust, R.; Bernkop-Schnürch, A. Zeta potential changing nanoemulsions based on a simple zwitterion. J. Colloid Interface Sci. 2021, 585, 126–137. [Google Scholar] [CrossRef]
- Iacob-Tudose, E.T.; Mamaliga, I.; Iosub, A.V. TES Nanoemulsions: A Review of Thermophysical Properties and Their Impact on System Design. Nanomaterials 2021, 11, 3415. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Martín-Belloso, O.; McClements, D. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives. Nanomaterials 2016, 6, 17. [Google Scholar] [CrossRef]
- Agnish, S.; Sharma, A.D.; Kaur, I. Nanoemulsions (O/W) containing Cymbopogon pendulus essential oil: Development, characterization, stability study, and evaluation of in vitro anti-bacterial, anti-inflammatory, anti-diabetic activities. Bionanoscience 2022, 12, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Klang, V.; Matsko, N.B.; Valenta, C.; Hofer, F. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 2012, 43, 85–103. [Google Scholar] [CrossRef] [PubMed]
- de Marques, T.Z.S.; Santos-Oliveira, R.; Betzler de Oliveira de Siqueira, L.; da Silva Cardoso, V.; de Freitas, Z.M.F.; Barros, R.C.S.A.; Villa, A.L.V.; Monteiro, M.S.S.B.; Pereira dos Santos, E.; Ricci-Junior, E. Development and characterization of a nanoemulsion containing propranolol for topical delivery. Int. J. Nanomed. 2018, 13, 2827–2837. [Google Scholar] [CrossRef]
- Malik, M.R.; Al-Harbi, F.F.; Nawaz, A.; Amin, A.; Farid, A.; Al Mohaini, M.; Alsalman, A.J.; Al Hawaj, M.A.; Alhashem, Y.N. Formulation and Characterization of Chitosan-Decorated Multiple Nanoemulsion for Topical Delivery In Vitro and Ex Vivo. Molecules 2022, 27, 3183. [Google Scholar] [CrossRef]
- Ledet, G.; Pamujula, S.; Walker, V.; Simon, S.; Graves, R.; Mandal, T.K. Development and in vitro evaluation of a nanoemulsion for transcutaneous delivery. Drug Dev. Ind. Pharm. 2014, 40, 370–379. [Google Scholar] [CrossRef]
- Ali, M.S. Accelerated Stability Testing of a Clobetasol Propionate Loaded Nanoemulsion as per ICH Guideline. Sci. Pharm. 2013, 81, 1089–1100. [Google Scholar] [CrossRef]
- Ali, M.S.; Alam, M.S.; Alam, N.; Siddiqui, M.R. Preparation, Characterization and Stability Study of Dutasteride Loaded Nanoemulsion for Treatment of Benign Prostatic Hypertrophy. Iran. J. Pharm. Res. IJPR 2014, 13, 1125–1140. [Google Scholar] [CrossRef] [PubMed]
- Romes, N.B.; Wahab, R.A.; Hamid, M.A.; Oyewusi, H.A.; Huda, N.; Kobun, R. Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion. Sci. Rep. 2021, 11, 2085. [Google Scholar] [CrossRef] [PubMed]
- Derjaguin, B.; Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 1993, 43, 30–59. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Kiil, S. Introduction to Colloid and Surface Chemistry. In Introduction to Applied Colloid and Surface Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 1–10. ISBN 978-1-118-88119-4. [Google Scholar]
- Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst. 2019, 3, 95. [Google Scholar] [CrossRef]
- Ivanov, I.B.; Danov, K.D.; Kralchevsky, P.A. Flocculation and coalescence of micron-size emulsion droplets. Colloids Surf. A Physicochem. Eng. Asp. 1999, 152, 161–182. [Google Scholar] [CrossRef]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef]
- Tadros, T.F. Creaming/Sedimentation of Emulsions and Its Prevention. In Emulsions; De Gruyter: Berlin, Germany, 2016; pp. 95–112. ISBN 978-3-11-045224-2. [Google Scholar]
- Khurana, V.; Kwatra, D.; Shah, S.; Mandal, A.; Mitra, A.K. Emerging Nanotechnology for Stem Cell Therapy. In Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Elsevier: Amsterdam, The Netherlands, 2017; pp. 85–103. ISBN 978-0-323-42978-8. [Google Scholar]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 303–318. [Google Scholar] [CrossRef]
- Delgado, A.V.; González-Caballero, F.; Hunter, R.J.; Koopal, L.K.; Lyklema, J. Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 2007, 309, 194–224. [Google Scholar] [CrossRef]
- Tambe, D.E.; Sharma, M.M. Factors Controlling the Stability of Colloid-Stabilized Emulsions. J. Colloid Interface Sci. 1994, 162, 1–10. [Google Scholar] [CrossRef]
- Claesson, P.M.; Kjellin, M.; Rojas, O.J.; Stubenrauch, C. Short-range interactions between non-ionic surfactant layers. Phys. Chem. Chem. Phys. 2006, 8, 5501. [Google Scholar] [CrossRef]
- Safaya, M.; Rotliwala, Y.C. Nanoemulsions: A review on low energy formulation methods, characterization, applications and optimization technique. Mater. Today Proc. 2020, 27, 454–459. [Google Scholar] [CrossRef]
- Shaikh, N.M.; Swamy, S.M.V.; Narsing, N.S.; Kulkarni, K.B. Formulation and evaluation of nanoemulsion for topical application. J. Drug Deliv. Ther. 2019, 9, 370–375. [Google Scholar] [CrossRef]
- Wang, L.; Guan, X.; Zheng, C.; Wang, N.; Lu, H.; Huang, Z. New Low-Energy Method for Nanoemulsion Formation: pH Regulation Based on Fatty Acid/Amine Complexes. Langmuir 2020, 36, 10082–10090. [Google Scholar] [CrossRef]
- de Morais, J.M.; dos Santos, O.D.H.; Delicato, T.; Gonçalves, R.A.; da Rocha-Filho, P.A. Physicochemical Characterization of Canola Oil/Water Nano-emulsions Obtained by Determination of Required HLB Number and Emulsion Phase Inversion Methods. J. Dispers. Sci. Technol. 2006, 27, 109–115. [Google Scholar] [CrossRef]
- Solans, C.; Solé, I. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 2012, 17, 246–254. [Google Scholar] [CrossRef]
- Friberg, S.E.; Corkery, R.W.; Blute, I.A. Phase Inversion Temperature (PIT) Emulsification Process. J. Chem. Eng. Data 2011, 56, 4282–4290. [Google Scholar] [CrossRef]
- Kumar, A.; Li, S.; Cheng, C.-M.; Lee, D. Recent Developments in Phase Inversion Emulsification. Ind. Eng. Chem. Res. 2015, 54, 8375–8396. [Google Scholar] [CrossRef]
- Feng, J.; Rodríguez-Abreu, C.; Esquena, J.; Solans, C. A Concise Review on Nano-emulsion Formation by the Phase Inversion Composition (PIC) Method. J. Surfactants Deterg. 2020, 23, 677–685. [Google Scholar] [CrossRef]
- Håkansson, A.; Rayner, M. General Principles of Nanoemulsion Formation by High-Energy Mechanical Methods. In Nanoemulsions; Elsevier: Amsterdam, The Netherlands, 2018; pp. 103–139. ISBN 978-0-12-811838-2. [Google Scholar]
- Jasmina, H.; Džana, O.; Alisa, E.; Edina, V.; Ognjenka, R. Preparation of nanoemulsions by high-energy and low energy emulsification methods. In CMBEBIH 2017; Badnjevic, A., Ed.; IFMBE Proceedings; Springer: Singapore, 2017; Volume 62, pp. 317–322. ISBN 978-981-10-4165-5. [Google Scholar]
- Scholz, P.; Keck, C.M. Nanoemulsions produced by rotor–stator high speed stirring. Int. J. Pharm. 2015, 482, 110–117. [Google Scholar] [CrossRef]
- Hidajat, M.J.; Jo, W.; Kim, H.; Noh, J. Effective Droplet Size Reduction and Excellent Stability of Limonene Nanoemulsion Formed by High-Pressure Homogenizer. Colloids Interfaces 2020, 4, 5. [Google Scholar] [CrossRef]
- Sharma, S.; Sahni, J.K.; Ali, J.; Baboota, S. Effect of high-pressure homogenization on formulation of TPGS loaded nanoemulsion of rutin—Pharmacodynamic and antioxidant studies. Drug Deliv. 2015, 22, 541–551. [Google Scholar] [CrossRef]
- Tang, S.Y.; Shridharan, P.; Sivakumar, M. Impact of process parameters in the generation of novel aspirin nanoemulsions—Comparative studies between ultrasound cavitation and microfluidizer. Ultrason. Sonochem. 2013, 20, 485–497. [Google Scholar] [CrossRef]
- Canselier, J.P.; Delmas, H.; Wilhelm, A.M.; Abismaïl, B. Ultrasound Emulsification—An Overview. J. Dispers. Sci. Technol. 2002, 23, 333–349. [Google Scholar] [CrossRef]
- Ali, G.S.; Hambali, E.; Fahma, F. Potential of nanoemulsion process and method using agro-industrial based materials in skincare formulations: A review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1034, 012029. [Google Scholar] [CrossRef]
- Kale, S.N.; Deore, S.L. Emulsion Micro Emulsion and Nano Emulsion: A Review. Syst. Rev. Pharm. 2016, 8, 39–47. [Google Scholar] [CrossRef]
- Hussain, A.; Singh, V.K.; Singh, O.P.; Shafaat, K.; Kumar, S.; Ahmad, F.J. Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B. Drug Deliv. 2016, 23, 3101–3110. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, E.; Guerra, M.; Dias-Ferreira, J.; Lopez-Machado, A.; Ettcheto, M.; Cano, A.; Espina, M.; Camins, A.; Garcia, M.L.; Souto, E.B. Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials 2019, 9, 821. [Google Scholar] [CrossRef]
- Yu, H.; Xu, Z.; Chen, X.; Xu, L.; Yin, Q.; Zhang, Z.; Li, Y. Reversal of Lung Cancer Multidrug Resistance by pH-Responsive Micelleplexes Mediating Co-Delivery of siRNA and Paclitaxel: Reversal of Lung Cancer Multidrug Resistance. Macromol. Biosci. 2014, 14, 100–109. [Google Scholar] [CrossRef]
- Chen, B.-H.; Huang, R.-F.S.; Wei, Y.-J.; Inbaraj, B.S. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene. Int. J. Nanomed. 2015, 10, 2823–2846. [Google Scholar] [CrossRef]
- Ahsan, H. Family History of Colorectal Adenomatous Polyps and Increased Risk for Colorectal Cancer. Ann. Intern. Med. 1998, 128, 900. [Google Scholar] [CrossRef]
- Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 2006, 7, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Mein, J.R.; Lian, F.; Wang, X.-D. Biological activity of lycopene metabolites: Implications for cancer Prevention: Nutrition Reviews©. Nutr. Rev. 2008, 66, 667–683. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, G.; Zhang, R.; Flores, L.G.; Huang, Q.; Gelovani, J.G.; Li, C. Tumor Site–Specific Silencing of NF-κB p65 by Targeted Hollow Gold Nanosphere–Mediated Photothermal Transfection. Cancer Res. 2010, 70, 3177–3188. [Google Scholar] [CrossRef]
- Hu, C.-M.J.; Zhang, L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 2012, 83, 1104–1111. [Google Scholar] [CrossRef]
- Abadi, A.V.M.; Karimi, E.; Oskoueian, E.; Mohammad, G.R.K.S.; Shafaei, N. Chemical investigation and screening of anti-cancer potential of Syzygium aromaticum L. bud (clove) essential oil nanoemulsion. 3 Biotech 2022, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.J.; Huang, R.F.; Kao, T.H.; Inbaraj, B.S.; Chen, B.H. Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells. Nanotechnology 2017, 28, 135103. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Cai, T.; Liu, Q.; Whitney, J.; Du, M.; Ma, Q.; Zhang, R.; Yang, L.; Cole, S.; Cai, Y. Preparation and evaluation of spirulina polysaccharide nanoemulsions. Int. J. Mol. Med. 2018, 42, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Khatamian, N.; Tabrizi, M.H.; Ardalan, P.; Yadamani, S.; Maragheh, A.D. Synthesis of Carum Carvi essential oil nanoemulsion, the cytotoxic effect, and expression of caspase 3 gene. J. Food Biochem. 2019, 43, e12956. [Google Scholar] [CrossRef]
- Al-Otaibi, W.A.; AlMotwaa, S.M. Oxaliplatin-loaded nanoemulsion containing Teucrium polium L. essential oil induces apoptosis in Colon cancer cell lines through ROS-mediated pathway. Drug Deliv. 2022, 29, 2190–2205. [Google Scholar] [CrossRef]
- Alkreathy, H.M.; Alkhatib, M.H.; Al Musaddi, S.A.; Balamash, K.S.A.; Osman, N.N.; Ahmad, A. Enhanced antitumour activity of doxorubicin and simvastatin combination loaded nanoemulsion treatment against a Swiss albino mouse model of Ehrlich ascites carcinoma. Clin. Exp. Pharmacol. Physiol. 2019, 46, 496–505. [Google Scholar] [CrossRef]
- Zhang, Z.; Kuo, J.C.-T.; Zhang, C.; Huang, Y.; Zhou, Z.; Lee, R.J. A Squalene-Based Nanoemulsion for Therapeutic Delivery of Resiquimod. Pharmaceutics 2021, 13, 2060. [Google Scholar] [CrossRef]
- Enin, H.A.A.; Alquthami, A.F.; Alwagdani, A.M.; Yousef, L.M.; Albuqami, M.S.; Alharthi, M.A.; Alsaab, H.O. Utilizing TPGS for Optimizing Quercetin Nanoemulsion for Colon Cancer Cells Inhibition. Colloids Interfaces 2022, 6, 49. [Google Scholar] [CrossRef]
- Ahmad, N.; Albassam, A.A.; Khan, M.F.; Ullah, Z.; Buheazah, T.M.; AlHomoud, H.S.; Al-Nasif, H.A. A novel 5-Fluorocuracil multiple-nanoemulsion used for the enhancement of oral bioavailability in the treatment of colorectal cancer. Saudi J. Biol. Sci. 2022, 29, 3704–3716. [Google Scholar] [CrossRef]
- Kotta, S. Formulation of Resveratrol Nanoemulsion by Phase Inversion Technique and Evaluation of Anti-Cancer Activity on Human Colon Cancer Cell Lines. Indian J. Pharm. Educ. Res. 2021, 55, S623–S629. [Google Scholar] [CrossRef]
- Patel, R.; Singh, S.K.; Singh, S.; Sheth, N.R.; Gendle, R. Development and characterization of curcumin loaded transfersome for transdermal delivery. J. Pharm. Sci. Res. 2009, 1, 65–71. [Google Scholar]
- Almotwaa, S.M.; Alkhatib, M.H.; Alkreathy, H.M. Incorporating ifosfamide into salvia oil-based nanoemulsion diminishes its nephrotoxicity in mice inoculated with tumor. Bioimpacts 2019, 10, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.D.; Tamane, P.K.; Khante, S.N.; Pokharkar, V.B. QbD Based Optimization of Curcumin Nanoemulsion: DoE and Cytotoxicity Studies. Indian J. Pharm. Educ. Res. 2020, 54, 329–336. [Google Scholar] [CrossRef]
- Bashlouei, S.G.; Karimi, E.; Zareian, M.; Oskoueian, E.; Shakeri, M. Heracleum persicum Essential Oil Nanoemulsion: A Nanocarrier System for the Delivery of Promising Anticancer and Antioxidant Bioactive Agents. Antioxidants 2022, 11, 831. [Google Scholar] [CrossRef] [PubMed]
- Shoorvarzi, S.N.; Shahraki, F.; Shafaei, N.; Karimi, E.; Oskoueian, E. Citrus aurantium L. bloom essential oil nanoemulsion: Synthesis, characterization, cytotoxicity, and its potential health impacts on mice. J. Food Biochem. 2020, 44, e13181. [Google Scholar] [CrossRef] [PubMed]
- James, E.E.; Iwao, O.; Botchkina, M.M.; Ivanovna, G. Nanoemulsion Compositions of Taxoid Drugs, and Methods for the Use Thereof to Target Cancer Cells and Cancer Stem Cells. US10206875, February 2019. Available online: https://www.freepatentsonline.com/result.html?sort=relevance&srch=top&query_txt=10206875&submit=&patents_us=on (accessed on 10 February 2023).
- Won, L.K.; Sara, Y.L. Hydrogel-Based Nanoemulsion for Selectively Labelling Cancer Lesion, and Preparation Method Therefor United States Seoul National University R&db Foundation. US11103600, 2021. Available online: https://www.freepatentsonline.com/11103600.html (accessed on 10 February 2023).
- Thome, K.F.; Paulo, B.S.; Debora, L. Nanoemulsions and Methods for Cancer Therapy United States Fernando Thome Kreutz. US11332494, 2022. Available online: https://www.freepatentsonline.com/11332494.html (accessed on 10 February 2023).
- Won, L.K.; Yoon, J.; Sara, L. Nanocarrier for Selective Fluorescence Labeling of Cancer Cell and Preparation Method Therefor United Statesseoul National University R&Db Foundation. US11298428, 2022. Available online: https://www.freepatentsonline.com/11298428.html (accessed on 10 February 2023).
- Tayeb, H.H.; Felimban, R.; Hasaballah, N.; Mahfouz, J.B.; Chaudhary, A.; Felemban, M.; Alnadwi, F.; Rizg, W. Essential Oil Nanoemulsion and Methods of Use Thereof United States King Abdulaziz University. US11364199, 2022. Available online: https://www.freepatentsonline.com/11364199.html (accessed on 10 February 2023).
- Moira, M.S. Ionic Liquid-Based Nanoemulsion Formulation for the Efficient Delivery of Hydrophilic and Hydrophobic Therapeutic Agents United States Wisconsin Alumni Research Foundation. US11464738, 2022. Available online: https://www.freepatentsonline.com/11464738.html (accessed on 10 February 2023).
- Aquilue, S.; Gris, J.L.; Del Carmen, M.; Gañán, D.; Isabel, M. Oil-in-Water Nanoemulsion Composition of Clobetasol United States Laboratorios Salvat, S.A. US10857160, 2020. Available online: https://www.freepatentsonline.com/10857160.html (accessed on 10 February 2023).
- Evan, C.U.; Edmund, R.M. Compositions of Fluorocarbon Nanoemulsion, and Methods of Preparation and Use Thereof United States NuvOx Pharma LLC (Tucson, AZ, US). US11304899, 2022. Available online: https://www.freepatentsonline.com/11304899.html (accessed on 10 February 2023).
- Congling, Q. Transparent Nanoemulsions Comprising Lauric Oil United States Conopco, Inc. (Trumbull, CT, US). US11266580, 2022. Available online: https://www.freepatentsonline.com/11266580.html (accessed on 10 February 2023).
- Christopher, W.S.; Steven, T. Transparent Colloidal Vitamin Supplement Blend United States Quicksilver Scientific, Inc. (Lafayette, CO, US). US11304900, 2022. Available online: https://www.freepatentsonline.com/11304900.html (accessed on 10 February 2023).
- Felix, S.J.M.; Nan, S.; Amr, I.A.-F. Magnetic Emulsions as Contrast Agents for Subsurface Applications United States SAUDI ARABIAN OIL COMPANY (Dhahran, SA). US11506049, 2022. Available online: https://www.freepatentsonline.com/11506049.html (accessed on 10 February 2023).
- Amit, K.; Steven, R.; Malcolm, D.; Jesse, E.; Darrick, C.; Bryan, J.B. Compositions and Methods for Delivery of RNA United States HDT Bio Corp. (Seattle, WA, USA). Available online: https://www.freepatentsonline.com/11534497.htmlus11534497 (accessed on 10 February 2023).
- Amit, K.; Duthie, R.S.; Erasmus, M.; Carter, J.; Bryan, B.; Seattle, J. RNA-Lipid Nanoparticle Complexes of Viral RNA Polymerase Region and SARS-CoV-2 Spike Protein Region United States HDT Bio Corp (Seattle, WA, US). US11376335, 2022. Available online: https://www.freepatentsonline.com/11376335.html (accessed on 10 February 2023).
- Luan, L.; Chi, Z.; Liu, C. Chinese White Wax Solid Lipid Nanoparticles as a Novel Nanocarrier of Curcumin for Inhibiting the Formation of Staphylococcus aureus Biofilms. Nanomaterials 2019, 9, 763. [Google Scholar] [CrossRef]
- Aljabri, N.M.; Shi, N.; Cavazos, A. Nanoemulsion: An emerging technology for oilfield applications between limitations and potentials. J. Pet. Sci. Eng. 2021, 208, 109306. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov (accessed on 12 February 2023).
- Chittasupho, C.; Chaobankrang, K.; Sarawungkad, A.; Samee, W.; Singh, S.; Hemsuwimon, K.; Okonogi, S.; Kheawfu, K.; Kiattisin, K.; Chaiyana, W. Antioxidant, anti-inflammatory and attenuating intracellular reactive oxygen species activities of Nicotiana tabacum var. Virginia leaf extract phytosomes and shape memory gel Formulation. Gels 2023, 9, 78. [Google Scholar] [CrossRef]
- Chittasupho, C.; Ditsri, S.; Singh, S.; Kanlayavattanakul, M.; Duangnin, N.; Ruksiriwanich, W.; Athikomkulchai, S. Ultraviolet radiation protective and anti-inflammatory effects of Kaempferia galanga L. rhizome oil and microemulsion: Formulation, characterization, and hydrogel preparation. Gels 2022, 8, 639. [Google Scholar] [CrossRef]
Parameter | Techniques/Method | Reference |
---|---|---|
Phase behavior study | Self-emulsification method | [51] |
Droplet size and polydispersity index | Photon correlation spectroscopy (PCS) | [52] |
Zeta potential | Zeta sizer | [53] |
Viscosity | Viscometer | [54] |
Conductivity and dielectric measurement | Conductivity meter | [55] |
Drug and excipient interactions | Fourier-transform infrared spectroscopy (FTIR) | [56] |
Morphological study | Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) | [57,58] |
In vitro drug release | USP dissolution equipment II | [59] |
In vitro skin permeation | Keshary-Chien diffusion cell | [60] |
ClinicalTrial.Gov ID | Active Compound | Nanoemulsion Constituents | Sponsor and Collaborators | Description | Status |
---|---|---|---|---|---|
NCT02367547 | Aminolevulinic Acid | Soy phosphatidyl-choline; propylene glycol | Joint Authority for Päijät-Häme Social and Health Care. Tampere University University of Jyvaskyla. | Superficial basal cell cancer’s photodynamic therapy. | Active, not recruiting |
NCT01975363 | Curcumin | Data not found | Ohio State University Comprehensive Cancer Center. | Curcumin nanoparticles to modulate pro-inflammatory. Biomarkers in plasma and breast adipose tissue. | Active, not recruiting |
NCT03865992 | Curcumin | Data not available | City of Hope Medical Center. National Cancer Institute (NCI). | Oral curcumin nanoemulsion for treating joint pain in breast cancer survivors caused by using aromatase inhibitors. | Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohite, P.; Rajput, T.; Pandhare, R.; Sangale, A.; Singh, S.; Prajapati, B.G. Nanoemulsion in Management of Colorectal Cancer: Challenges and Future Prospects. Nanomanufacturing 2023, 3, 139-166. https://doi.org/10.3390/nanomanufacturing3020010
Mohite P, Rajput T, Pandhare R, Sangale A, Singh S, Prajapati BG. Nanoemulsion in Management of Colorectal Cancer: Challenges and Future Prospects. Nanomanufacturing. 2023; 3(2):139-166. https://doi.org/10.3390/nanomanufacturing3020010
Chicago/Turabian StyleMohite, Popat, Tanavirsing Rajput, Ramdas Pandhare, Adinath Sangale, Sudarshan Singh, and Bhupendra G. Prajapati. 2023. "Nanoemulsion in Management of Colorectal Cancer: Challenges and Future Prospects" Nanomanufacturing 3, no. 2: 139-166. https://doi.org/10.3390/nanomanufacturing3020010
APA StyleMohite, P., Rajput, T., Pandhare, R., Sangale, A., Singh, S., & Prajapati, B. G. (2023). Nanoemulsion in Management of Colorectal Cancer: Challenges and Future Prospects. Nanomanufacturing, 3(2), 139-166. https://doi.org/10.3390/nanomanufacturing3020010