Diverse Methods to Nanomanufacture Colloidal Dispersions of Polyaniline without Templates
Abstract
:1. Introduction
2. Template-Free Synthesis of PANI as Colloidal Dispersions
2.1. Manufacturing Colloidal Dispersions of PANI Nano-Objects by Polymerization without Templates
2.1.1. Solution Polymerization (SP)
Solution Polymerization Using Oxidants Other Than APS
Solution Polymerization with Additives (SPA)
Solution Polymerization with an External Energy Input
2.1.2. Solution Polymerization with Polymeric Stabilizer (SPS)
Biopolymers and Smart Polymers as Stabilizers
2.1.3. Interfacial Polymerization (IP)
Other Immiscible Phases
2.1.4. Mechanochemical Polymerization
2.2. Manufacturing Colloidal Dispersions of PANI Nano-Objects by Nanoprecipitation of a Preformed Polymer
3. Applications of Nano-Objects Synthesized by Template-Free Polymerization
3.1. Sensors
3.2. Electrochemical Energy Storage
3.3. Corrosion Protection
3.4. Biomedical Applications
3.5. Optoelectronics
3.6. Microwave Absorption
3.7. Adsorption of Contaminants
3.8. Photothermal Applications
3.9. Electrorheological Fluids
4. Conclusions
5. Future Directions
Funding
Conflicts of Interest
Abbreviations
4ADA | 4-aminodiphenlamine |
AcOH | acetic acid |
AMPSA | 2-acryamidopropansulfonic acid |
AMYGG | Acid Mordant Dark Yellow GG |
ANIHCl | anillinium hydrochloride |
APS | Ammonium persulfate |
CHI | chitosan |
CSA | camphorsulfonic acid |
CTAB | cetyltrimethylammonium bromide |
DBSA | dodecylbencensulfonic acid |
DLIP | direct laser interference patterning |
DLS | dynamic light scattering |
DLTA | (DL) tartaric acid |
DNSA | dinitrosulfosalycilic acid |
DTAB | dodecyltrimethylammonium bromide |
EB | emeraldine base |
ES | emeraldine salt |
GC | glassy carbon |
HA | hyaluronic acid |
IP | interfacial polymerization |
LCST | lower critical solution temperature |
LIFT | laser-induced forward transfer |
MCP | mechanochenmical polymerization |
MM2 | molecular mechanics (version 2) |
MOF | metal organic framework |
MTDP | Mass Transport Determining Polymerization |
MW | microwaves (0.5–20 GHz) |
NIR | near infrared range (800–1600 nm) |
NMP | N-methylpyrrolidone |
NPT | nanoprecipitation |
NSA | naphtalensulfonic acid |
PANI | polyaniline |
PANI(EB) | polyaniline (emeraldine base form) |
PEO | poly(ethylene oxide) |
pHDP | pH determined polymerization |
PN | pernigraniline base |
PNIPAM | poly(N-isopropylacrylamide) |
PSA | pyrenesulfonic acid |
PVA | poly(vinylalcohol) |
PVP | poly(vinylpyrrolidone) |
RF | radiofrequency (10–100 kHz) |
SA | salicylic acid |
SAXS | small-angle X-ray scattering |
SBET | specific surface area (m2 g−1) measured by nitrogen adsorption isotherm |
Scap | specific capacitance (F g−1) |
SDS | sodium dodecyl sulfate |
SEM | scanning electron microscopy |
SERS | surface enhanced Raman spectroscopy |
SGPEO | star-grafted PEO chains on ethylacrlate/styrene linear copolymer |
SLS | static light scattering |
SP | solution polymerization |
SPS | solution polymerization with stabilizers |
UVA | ultraviolet light (315–400 nm) |
XRD | X-ray diffraction |
ZIF-8 | zeolitic imidazolate framework-8 |
β-CD | β-cryclodextrin |
References
- Reynolds, J.R.; Thompson, B.C.; Skotheim, T.A. Handbook of Conducting Polymers, -2 Volume Set; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene,(CH)x. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Runge, F.F. On some products of coal distillation. Ann. Phys. Chem. 1834, 31, 513–524. [Google Scholar] [CrossRef]
- De Surville, R.; Jozefowicz, M.; Yu, L.T.; Pepichon, J.; Buvet, R. Electrochemical chains using protolytic organic semiconductors. Electrochim. Acta 1968, 13, 1451–1458. [Google Scholar] [CrossRef]
- Macdiarmid, A.G.; Chiang, J.C.; Richter, A.F.; Epstein, A.J. Polyaniline: A new concept in conducting polymers. Synth. Met. 1987, 18, 285–290. [Google Scholar] [CrossRef]
- Kulkarni, V.G.; Campbell, L.D.; Mathew, W.R. Thermal stability of polyaniline. Synth. Met. 1989, 30, 321–325. [Google Scholar] [CrossRef]
- Sapurina, I.; Riede, A.; Stejskal, J. In-situ polymerized polyaniline films—3. Film formation. Synth. Met. 2001, 123, 503–507. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D. One-dimensional nanostructured polyaniline: Syntheses, morphology controlling, formation mechanisms, new features, and applications. Adv. Polym. Sci. 2013, 32, E323–E368. [Google Scholar] [CrossRef]
- Virji, S.; Fowler, J.D.; Baker, C.O.; Huang, J.; Kaner, R.B.; Weiller, B.H. Polyaniline nanofiber composites with metal salts: Chemical sensors for hydrogen sulfide. Small 2005, 1, 624–627. [Google Scholar] [CrossRef]
- Jiang, H.; Ma, J.; Li, C. Polyaniline-MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors. J. Mater. Chem. A 2012, 22, 16939–16942. [Google Scholar] [CrossRef]
- He, J.; Liang, Y.; Shi, M.; Guo, B. Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem. Eng. J. 2020, 385, 123464. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010, 4, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.G.; Venancio, E.C.; Pereira, E.C.; Leite, F.L.; Leite, E.R.; MacDiarmid, A.G.; Mattoso, L.H.C. Synthesis of nanoparticles and nanofibers of polyaniline by potentiodynamic electrochemical polymerization. J. Nanosci. Nanotechnol. 2009, 9, 2169–2172. [Google Scholar] [CrossRef] [PubMed]
- Jackowska, K.; Bieguński, A.T.; Tagowska, M. Hard template synthesis of conducting polymers: A route to achieve nanostructures. J. Solid State Electrochem. 2008, 12, 437–443. [Google Scholar] [CrossRef]
- Anilkumar, P.; Jayakannan, M. Large-scale synthesis of polyaniline nanofibers based on renewable resource molecular template. J. Appl. Polym. Sci. 2009, 4, 3531–3541. [Google Scholar] [CrossRef]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, S.Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D.; Lu, G.Q. Extension of the stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 2011, 50, 5947–5951. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Lv, R.; Robinson, J.A.; Schaak, R.E.; Sun, D.; Sun, Y.; Mallouk, T.E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64. [Google Scholar] [CrossRef]
- Huang, J. Syntheses and applications of conducting polymer polyaniline nanofibers. Pure Appl. Chem. 2006, 78, 15–27. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Ou, B.; Zhao, S.; Wang, Z. Some important issues of the commercial production of 1-D nano-PANI. Polymers 2019, 11, 681. [Google Scholar] [CrossRef]
- Gospodinova, N.; Terlemezyan, L. Conducting polymers prepared by oxidative polymerization: Polyaniline. Prog. Polym. Sci. 1998, 23, 1443–1484. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [PubMed]
- Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166. [Google Scholar] [CrossRef]
- Tiktopulo, E.I.; Uversky, V.N.; Lushchik, V.B.; Klenin, S.I.; Bychkova, V.E.; Ptitsyn, O.B. “Domain” Coil–Globule Transition in Homopolymers. Macromolecules 1995, 28, 7519–7524. [Google Scholar] [CrossRef]
- Allinger, N.L.; Yan, L.; Chen, K. Molecular mechanics calculations (MM2 and MM3) on enamines and aniline derivative. J. Comput. Chem. 1994, 15, 1321–1330. [Google Scholar] [CrossRef]
- Kolla, H.S.; Surwade, S.P.; Zhang, X.; MacDiarmid, A.G.; Manohar, S.K. Absolute molecular weight of polyaniline. J. Am. Chem. Soc. 2005, 127, 16770–16771. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-H.; Peacock, P.M.; Flippen, R.B.; Manohar, S.K.; MacDiarmid, A.G. The molecular weight of polyaniline by light scattering and gel permeation chromatography. Synth. Met. 1993, 60, 233–237. [Google Scholar] [CrossRef]
- Stejskal, J.; Gilbert, R.G. Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl. Chem. 2002, 74, 857–867. [Google Scholar] [CrossRef] [Green Version]
- Manohar, S.K.; Macdiarmid, A.G.; Epstein, A.J. Polyaniline: Pernigranile, an isolable intermediate in the conventional chemical synthesis of emeraldine. Synth. Met. 1991, 41, 711–714. [Google Scholar] [CrossRef]
- Li, D.; Kaner, R.B. Shape and aggregation control of nanoparticles: Not shaken, not stirred. J. Am. Chem. Soc. 2006, 128, 968–975. [Google Scholar] [CrossRef]
- Li, D.; Kaner, R.B. Processable stabilizer-free polyaniline nanofiber aqueous colloids. ChemComm 2005, 26, 3286–3288. [Google Scholar] [CrossRef]
- Huang, J.; Kaner, R.B. The intrinsic nanofibrillar morphology of polyaniline. ChemComm 2006, 4, 367–376. [Google Scholar] [CrossRef]
- Huang, J.; Kaner, R.B. Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angew. Chem. Int. Ed. 2004, 43, 5817–5821. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Kaner, R.B. How nucleation affects the aggregation of nanoparticles. J. Mater. Chem. A 2007, 17, 2279–2282. [Google Scholar] [CrossRef]
- Tran, H.D.; Wang, Y.; D’Arcy, J.M.; Kaner, R.B. Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano 2008, 2, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Mailhe-Randolph, C.; Desilvestro, J. Morphology of electropolymerized aniline films modified by para-phenylenediamine. J. Electroanal. Chem. 1989, 262, 289–295. [Google Scholar] [CrossRef]
- Tran, H.D.; Kaner, R.B. A general synthetic route to nanofibers of polyaniline derivatives. ChemComm 2006, 37, 3915–3917. [Google Scholar] [CrossRef]
- Li, X.-G.; Li, A.; Huang, M.-R. Facile High-Yield Synthesis of Polyaniline Nanosticks with Intrinsic Stability and Electrical Conductivity. Chem. Eur. J. 2008, 14, 10309–10317. [Google Scholar] [CrossRef]
- Trchová, M.; Šeděnková, I.; Konyushenko, E.N.; Stejskal, J.; Holler, P. Evolution of polyaniline nanotubes: The oxidation of aniline in water. J. Phys. Chem. B 2006, 110, 9461–9468. [Google Scholar] [CrossRef]
- Blinova, N.V.; Stejskal, J.; Trchová, M.; Prokeš, J. Polyaniline prepared in solutions of phosphoric acid: Powders, thin films, and colloidal dispersions. Polymer 2006, 47, 42–48. [Google Scholar] [CrossRef]
- Riede, A.; Helmstedt, M.; Sapurina, I.; Stejskal, J. In situ polymerized polyaniline films: 4 Film formation in dispersion polymerization of aniline. J. Colloid Interface Sci. 2002, 248, 413–418. [Google Scholar] [CrossRef]
- Stejskal, J.; Špírková, M.; Kratochvíal, P. Polyaniline dispersions 4. Polymerization seeded by polyaniline particles. Acta Polym. 1994, 45, 385–388. [Google Scholar] [CrossRef]
- Sulimenko, T.; Stejskal, J.; Křivka, I.; Prokeš, J. Conductivity of colloidal polyaniline dispersions. Eur. Polym. J. 2001, 37, 219–226. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I.; Trchová, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010, 35, 1420–1481. [Google Scholar] [CrossRef]
- Trchová, M.; Stejskal, J. Polyaniline: The infrared spectroscopy of conducting polymer nanotubes. Pure Appl. Chem. 2011, 83, 1803–1817. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I.; Trchová, M.; Konyushenko, E.N. Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 2008, 41, 3530–3536. [Google Scholar] [CrossRef]
- Luo, C.; Peng, H.; Zhang, L.; Lu, G.-L.; Wang, Y.; Travas-Sejdic, J. Formation of nano-/microstructures of polyaniline and its derivatives. Macromolecules 2011, 44, 6899–6907. [Google Scholar] [CrossRef]
- Feng, J.; Jing, X.; Li, Y. Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures. Chem. Pap. 2013, 67, 891–908. [Google Scholar] [CrossRef]
- Laslau, C.; Zujovic, Z.D.; Zhang, L.; Bowmaker, G.A.; Travas-Sejdic, J. Morphological evolution of self-assembled polyaniline nanostuctures obtained by pH-stat chemical oxidation. Chem. Mater. 2009, 21, 954–962. [Google Scholar] [CrossRef]
- Laslau, C.; Zujovic, Z.D.; Travas-Sejdic, J. Polyaniline “Nanotube” self-assembly: The stage of granular agglomeration on nanorod templates. Macromol. Rapid Commun. 2009, 30, 1663–1668. [Google Scholar] [CrossRef]
- Venancio, E.C.; Wang, P.-C.; MacDiarmid, A.G. The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline. Synth. Met. 2006, 156, 357–369. [Google Scholar] [CrossRef]
- Venancio, E.C.; Wang, P.-C.; Toledo, O.Y.; MacDiarmid, A.G. First preparation of optical quality films of nano/micro hollow spheres of polymers of aniline. Synth. Met. 2007, 157, 758–763. [Google Scholar] [CrossRef]
- Willstätter, R.; Moore, C.W. Über Anilinschwarz. I. Ber. Dtsch. Chem. Ges. 1907, 40, 2665–2689. [Google Scholar] [CrossRef]
- Green, A.G.; Woodhead, A.E. CCXLIII—Aniline-black and allied compounds. Part I. J. Chem. Soc. Trans. 1910, 97, 2388–2403. [Google Scholar] [CrossRef]
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Aniline-Black (accessed on 23 December 2022).
- Li, Y.; Zheng, J.-L.; Feng, J.; Jing, X.-L. Polyaniline micro-/nanostructures: Morphology control and formation mechanism exploration. Chem. Pap. 2013, 67, 876–890. [Google Scholar] [CrossRef]
- Wang, P.-C.; Venancio, E.C.; Sarno, D.M.; MacDiarmid, A.G. Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media. React. Funct. Polym. 2009, 69, 217–223. [Google Scholar] [CrossRef]
- Zhang, X.; Kolla, H.S.; Wang, X.; Raja, K.; Manohar, S.K. Fibrillar growth in polyaniline. Adv. Funct. Mater. 2006, 16, 1145–1152. [Google Scholar] [CrossRef]
- Neelgund, G.M.; Oki, A. A facile method for the synthesis of polyaniline nanospheres and the effect of doping on their electrical conductivity. Polym. Int. 2011, 60, 1291–1295. [Google Scholar] [CrossRef] [Green Version]
- Yalkowsky, S.H.; He, Y.; Jain, P. Handbook of Aqueous Solubility Data, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; p. 259. [Google Scholar]
- Ayad, M.; El-Hefnawy, G.; Zaghlol, S. Facile synthesis of polyaniline nanoparticles; its adsorption behavior. Chem. Eng. J. 2013, 217, 460–465. [Google Scholar] [CrossRef]
- Neira-Carrillo, A.; Yslas, E.; Marini, Y.A.; Vásquez-Quitral, P.; Sánchez, M.; Riveros, A.; Yáñez, D.; Cavallo, P.; Kogan, M.J.; Acevedo, D. Hybrid biomaterials based on calcium carbonate and polyaniline nanoparticles for application in photothermal therapy. Colloids Surf. B 2016, 145, 634–642. [Google Scholar] [CrossRef]
- Li, G.; Zhang, C.; Peng, H. Facile synthesis of self-assembled polyaniline nanodisks. Macromol. Rapid Commun. 2008, 29, 63–67. [Google Scholar] [CrossRef]
- Mahato, N.; Parveen, N.; Cho, M.H. Synthesis of highly crystalline polyaniline nanoparticles by simple chemical route. Mater. Lett. 2015, 161, 372–374. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, X. Formation of polyaniline nanofibers: A morphological study. J. Phys. Chem. B 2008, 112, 1157–1162. [Google Scholar] [CrossRef]
- Amarnath, C.A.; Kim, J.; Kim, K.; Choi, J.; Sohn, D. Nanoflakes to nanorods and nanospheres transition of selenious acid doped polyaniline. Polymer 2008, 49, 432–437. [Google Scholar] [CrossRef]
- Lin, M.; Wang, D.; Li, S.; Tang, Q.; Liu, S.; Ge, R.; Liu, Y.; Zhang, D.; Sun, H.; Zhang, H.; et al. Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy. Biomaterials 2016, 104, 213–222. [Google Scholar] [CrossRef]
- Sapurina, I.; Shishov, M. Oxidative Polymerization of Aniline: Molecular Synthesis of Polyaniline and the Formation of Supramolecular Structures. In New Polymers for Special Applications; De Souza-Gomes, A., Ed.; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Bi, S.; Li, M.; Liang, Z.; Li, G.; Yu, G.; Zhang, J.; Chen, C.; Yang, C.; Xue, C.; Zuo, Y.Y.; et al. Self-assembled aluminum oxyhydroxide nanorices with superior suspension stability for vaccine adjuvant. J. Colloid Interface Sci. 2022, 627, 238–246. [Google Scholar] [CrossRef]
- German, N.; Popov, A.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of enzymatic formation of polyaniline nanoparticles. Polymer 2017, 115, 211–216. [Google Scholar] [CrossRef]
- Zeng, F.; Xiao, Y.; Shen, Y.; Xu, X.; Qin, Z. Facile template–free fabrication and charge storage behavior of polyaniline nanobelts by using the oxidation–reduction initiation system in various inorganic acids. Electrochim. Acta 2021, 386, 138516. [Google Scholar] [CrossRef]
- Konyushenko, E.N.; Stejskal, J.; Šeděnková, I.; Trchová, M.; Sapurina, I.; Cieslar, M.; Prokeš, J. Polyaniline nanotubes: Conditions of formation. Polym. Int. 2006, 55, 31–39. [Google Scholar] [CrossRef]
- Ran, F.; Tan, Y.-T.; Liu, J.; Zhao, L.; Kong, L.-B.; Luo, Y.-C.; Kang, L. Preparation of hierarchical polyaniline nanotubes based on self-assembly and its electrochemical capacitance. Polym. Adv. Technol. 2012, 23, 1297–1301. [Google Scholar] [CrossRef]
- Sun, Q.; Park, M.-C.; Deng, Y. Studies on one-dimensional polyaniline (PANI) nanostructures and the morphological evolution. Mater. Chem. Phys. 2008, 110, 276–279. [Google Scholar] [CrossRef]
- Hsieh, B.-Z.; Chuang, H.-Y.; Chao, L.; Li, Y.-J.; Huang, Y.-J.; Tseng, P.-H.; Hsieh, T.-H.; Ho, K.-S. Formation mechanism of a nanotubular polyanilines prepared by an emulsion polymerization without organic solvent. Polymer 2008, 49, 4218–4225. [Google Scholar] [CrossRef]
- Haba, Y.; Segal, E.; Narkis, M.; Siegmann, A. Polymerization of aniline in the presence of DBSA in an aqueous dispersion. Synth. Met. 1999, 106, 59–66. [Google Scholar] [CrossRef]
- do Nascimento, G.M.; Silva, C.H.B.; Izumi, C.M.S.; Temperini, M.L.A. The role of cross-linking structures to the formation of one-dimensional nano-organized polyaniline and their Raman fingerprint. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 71, 869–875. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, Z.; Zhang, L.; Wan, M. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Mater. 2005, 53, 1373–1379. [Google Scholar] [CrossRef]
- He, C.; Tan, Y.; Li, Y. Conducting polyaniline nanofiber networks prepared by the doping induction of camphor sulfonic acid. J. Appl. Polym. Sci. 2003, 87, 1537–1540. [Google Scholar] [CrossRef]
- Shinde, S.D.; Jayakannan, M. Probing the molecular interactions at the conducting polyaniline nanomaterial surface via a pyrene fluorophore. J. Phys. Chem. C 2010, 114, 15491–15498. [Google Scholar] [CrossRef]
- Janošević, A.; Ciric-Marjanovic, G.; Marjanović, B.; Trchová, M.; Stejskal, J. 3,5-Dinitrosalicylic acid-assisted synthesis of self-assembled polyaniline nanorods. Mater. Lett. 2010, 64, 2337–2340. [Google Scholar] [CrossRef]
- Arenas, M.C.; Andablo, E.; Castaño, V.M. Synthesis of conducting polyaniline nanofibers from single and binary dopant agents. J. Nanosci. Nanotechnol. 2010, 10, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Zhang, X.F. Preparation and characterization of polyaniline micro/nanotubes with dopant acid mordant dark yellow GG. Synth. Met. 2010, 160, 783–787. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, H.; Zujovic, Z.D.; Kilmartin, P.A.; Travas-Sejdic, J. Characterization of polyaniline nanotubes formed in the presence of amino acids. Macromol. Chem. Phys. 2007, 208, 1210–1217. [Google Scholar] [CrossRef]
- Janošević, A.; Ćirić-Marjanović, G.; Marjanović, B.; Holler, P.; Trchová, M.; Stejskal, J. Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes. Nanotechnology 2008, 19, 135606. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, Z.; Wan, M. Nanostructures of polyaniline doped with inorganic acids. Macromolecules 2002, 35, 5937–5942. [Google Scholar] [CrossRef]
- Ćirić-Marjanović, G.; Holclajtner-Antunović, I.; Mentus, S.; Bajuk-Bogdanović, D.; Ješić, D.; Manojlović, D.; Trifunović, S.; Stejskal, J. Self-assembled polyaniline 12-tungstophosphate micro/nanostructures. Synth. Met. 2010, 160, 1463–1473. [Google Scholar] [CrossRef]
- Qiu, H.; Qi, S.; Wang, J.; Wang, D.; Wu, X. Synthesis of polyaniline nanorods using sucrose stearate as soft template. Mater. Lett. 2010, 64, 1964–1967. [Google Scholar] [CrossRef]
- Qiu, H.; Qi, S.; Wang, D.; Wang, J.; Wu, X. Synthesis of polyaniline nanostructures via soft template of sucrose octaacetate. Synth. Met. 2010, 160, 1179–1183. [Google Scholar] [CrossRef]
- Pahovnik, D.; Žagar, E.; Vohlídal, J.; Žigon, M. Effect of cations on polyaniline morphology. Chem. Pap. 2013, 67, 946–951. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Zhuang, T.; Wang, G.; Gu, Q. Self-dispersible conducting polyaniline nanofibres synthesized in the presence of β-cyclodextrin. Colloids Surf. A Physicochem. Eng. Asp. 2007, 295, 146–151. [Google Scholar] [CrossRef]
- Li, X.; Zhuang, T.; Wang, G.; Zhao, Y. Stabilizer-free conducting polyaniline nanofiber aqueous colloids and their stability. Mater. Lett. 2008, 62, 1431–1434. [Google Scholar] [CrossRef]
- Park, J.K.; Jeon, S.S.; Im, S.S. Effect of 4-sulfobenzoic acid monopotassium salt on oligoanilines for inducing polyaniline nanostructures. Polymer 2010, 51, 3023–3030. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.-L. Oligomer-Assisted Synthesis of Chiral Polyaniline Nanofibers. J. Am. Chem. Soc. 2004, 26, 2278–2279. [Google Scholar] [CrossRef]
- Li, J.; Zhu, L.; Luo, W.; Liu, Y.; Tang, H. Correlation between one-directional helical growth of polyaniline and its optical activity. J. Phys. Chem. C 2007, 111, 8383–8388. [Google Scholar] [CrossRef]
- Li, W.; Bailey, J.A.; Wang, H.-L. Toward optimizing synthesis of nanostructured chiral polyaniline. Polymer 2006, 47, 3112–3118. [Google Scholar] [CrossRef]
- Yang, Y.; Wan, M. Chiral nanotubes of polyaniline synthesized by a template-free method. J. Mater. Chem. A 2002, 12, 897–901. [Google Scholar] [CrossRef]
- Li, J.; Jia, Q.; Zhu, J.; Zheng, M. Interfacial polymerization of morphologically modified polyaniline: From hollow microspheres to nanowires. Polym. Int. 2008, 57, 337–341. [Google Scholar] [CrossRef]
- Zhang, X.; Goux, W.J.; Manohar, S.K. Synthesis of Polyaniline Nanofibers by “Nanofiber Seeding”. J. Am. Chem. Soc. 2004, 126, 4502–4503. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Y.; Shen, Y.; Yan, H.; Jin, D.; Qin, Z. Impact of isopropanol on nucleation and growth of polyaniline nanofibers towards capacitive charge storage enhancement. Electrochim. Acta 2021, 398, 139326. [Google Scholar] [CrossRef]
- Morales, G.M. Estudio de la Sintesis y Propiedades de Poliarilaminas Modificadas. Ph.D. Thesis, Universidad Nacional de Rio Cuarto, Río Cuarto, Argentina, 2002. [Google Scholar]
- Morales, G.M.; Tuninetti, J.; Miras, M.C.; Barbero, C. Photolithography of polyaniline on solid substrates using photoassisted polymerization of aniline. Mol. Cryst. Liq. Cryst. 2010, 522, 89–96. [Google Scholar] [CrossRef]
- Pillalamarri, S.K.; Blum, F.D.; Tokuhiro, A.T.; Story, J.G.; Bertino, M.F. Radiolytic synthesis of polyaniline nanofibers: A new templateless pathway. Chem. Mater. 2005, 17, 227–229. [Google Scholar] [CrossRef]
- Li, Z.-F.; Blum, F.D.; Bertino, M.F.; Kim, C.-S.; Pillalamarri, S.K. One-step fabrication of a polyaniline nanofiber vapor sensor. Sens. Actuators B Chem. 2008, 134, 31–35. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Ou, J.; Zhou, J.; Chen, Y.; Yang, S. Fabrication of one dimensional polyaniline nanofibers by uv-assisted polymerization in the aqueous phase. J. Nanosci. Nanotechnol. 2010, 10, 933–940. [Google Scholar] [CrossRef]
- Li, J.; Tang, H.; Zhang, A.; Shen, X.; Zhu, L. A new strategy for the synthesis of polyaniline nanostructures: From nanofibers to nanowires. Macromol. Rapid Commun. 2007, 28, 740–745. [Google Scholar] [CrossRef]
- Jing, X.; Wang, Y.; Wu, D.; Qiang, J. Sonochemical synthesis of polyaniline nanofibers. Ultrason. Sonochem. 2007, 14, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, K.; Zhao, L. Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous Cr(VI): Effect of protonic acids. Chem. Eng. J. 2014, 239, 123–131. [Google Scholar] [CrossRef]
- Ganesan, R.; Shanmugam, S.; Gedanken, A. Pulsed sonoelectrochemical synthesis of polyaniline nanoparticles and their capacitance properties. Synth. Met. 2008, 158, 848–853. [Google Scholar] [CrossRef]
- Barbero, C.; Miras, M.C.; Kötz, R.; Haas, O. Comparative study of the ion exchange and electrochemical properties of sulfonated polyaniline (SPAN) and polyaniline (PANI). Synth. Met. 1993, 55, 1539–1544. [Google Scholar] [CrossRef]
- Qiu, B.; Wang, J.; Li, Z.; Wang, X.; Li, X. Influence of acidity and oxidant concentration on the nanostructures and electrochemical performance of polyaniline during fast microwave-assisted chemical polymerization. Polymers 2020, 12, 310. [Google Scholar] [CrossRef] [Green Version]
- Cooper, E.C.; Vincent, B. Electrically conducting organic films and beads based on conducting latex particles. J. Phys. D 1989, 22, 1580–1585. [Google Scholar] [CrossRef]
- Stejskal, J.; Kratochvíl, P.; Koňák, C. Structural parameters of spherical particles prepared by dispersion polymerization of methyl methacrylate. Polymer 1991, 32, 2435–2442. [Google Scholar] [CrossRef]
- Liu, J.; Yang, S.C. Novel colloidal polyaniline fibrils made by template guided chemical polymerization. J. Chem. Soc. Chem. Commun. 1991, 1529–1531. [Google Scholar] [CrossRef]
- Armes, S.P.; Aldissi, M. Novel colloidal dispersons of polyaniline. J. Chem. Soc. Chem. Commun. 1989, 88–89. [Google Scholar] [CrossRef]
- Dearmitt, C.; Armes, S.P. Synthesis of novel polyaniline colloids using chemically grafted poly(N-vinylpyrrolidone)-based stabilizers. J. Colloid Interface Sci. 1992, 150, 134–142. [Google Scholar] [CrossRef]
- Armes, S.P.; Aldissi, M.; Agnew, S.; Gottesfeld, S. Aqueous Colloidal Dispersions of Polyaniline Formed by Using Poly(vinylpyridine)-Based Steric Stabilizers. Langmuir 1990, 6, 1745–1749. [Google Scholar] [CrossRef]
- ldissi, M.; Armes, S.P. Colloidal dispersions of conducting polymers. Prog. Org. Coat. 1991, 19, 21–58. [Google Scholar] [CrossRef]
- Armes, S.P.; Aldissi, M.; Hawley, M.; Beery, J.G.; Gottesfeld, S. Morphology and Structure of Conducting Polymers. Langmuir 1991, 7, 1447–1452. [Google Scholar] [CrossRef]
- Bay, R.F.C.; Armes, S.P.; Pickett, C.J.; Ryder, K.S. Poly(1-vinylimidazole-co-4-aminostyrene): Steric stabilizer for polyaniline colloids. Polymer 1991, 32, 2456–2460. [Google Scholar] [CrossRef]
- Vincent, B.; Waterson, J. Colloidal dispersions of electrically-conducting, spherical polyaniline particles. J. Chem. Soc. Chem. Commun. 1990, 9, 683–684. [Google Scholar] [CrossRef]
- Stejskal, J.; Kratochvíl, P.; Gospodinova, N.; Terlemezyan, L.; Mokreva, P. Polyaniline dispersions: Preparation of spherical particles and their light-scattering characterization. Polymer 1992, 33, 4857–4858. [Google Scholar] [CrossRef]
- Gospodinova, N.; Terlemezyan, L.; Mokreva, P.; Stejskal, J.; Kratochvil, P. Preparation and characterization of aqueous polyaniline dispersions. Eur. Polym. J. 1993, 29, 1305–1309. [Google Scholar] [CrossRef]
- Stejskal, J.; Kratochvíl, P.; Helmstedt, M. Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers. Langmuir 1996, 12, 3389–3392. [Google Scholar] [CrossRef]
- Banerjee, P.; Bhattacharyya, S.N.; Mandal, B.M. Poly(vinyl methyl ether) Stabilized Colloidal Polyaniline Dispersions. Langmuir 1995, 11, 2414–2418. [Google Scholar] [CrossRef]
- Barisci, J.N.; Innis, P.C.; Kane-Maguire, L.A.P.; Norris, I.D.; Wallace, G.G. Preparation of chiral conducting polymer colloids. Synth. Met. 1997, 84, 181–182. [Google Scholar] [CrossRef]
- Innis, P.C.; Norris, I.D.; Kane-Maguire, L.A.P.; Wallace, G.G. Electrochemical formation of chiral polyaniline colloids codoped with (+)- Or (−)-10-camphorsulfonic acid and polystyrene sulfonate. Macromolecules 1998, 31, 6521–6528. [Google Scholar] [CrossRef]
- Gill, M.T.; Chapman, S.E.; DeArmitt, C.L.; Baines, F.L.; Dadswell, C.M.; Stamper, J.G.; Lawless, G.A.; Billingham, N.C.; Armes, S.P. A study of the kinetics of polymerization of aniline using proton NMR spectroscopy. Synth. Met. 1998, 93, 227–233. [Google Scholar] [CrossRef]
- Stejskal, J.; Spirkova, M.; Riede, A.; Helmstedt, M.; Mokreva, P.; Prokes, J. Polyaniline dispersions 8. The control of particle morphology. Polymer 1999, 40, 2487–2492. [Google Scholar] [CrossRef]
- Chin, B.D.; Park, O.O. Dispersion stability and electrorheological properties of polyaniline particle suspensions stabilized by poly(vinyl methyl ether). J. Colloid Interface Sci. 2001, 234, 344–350. [Google Scholar] [CrossRef]
- Stejskal, J. Colloidal dispersions of conducting polymers. J. Polym. Mater. 2001, 18, 225–258. [Google Scholar]
- Stejskal, J.; Sapurina, I. On the origin of colloidal particles in the dispersion polymerization of aniline. J. Colloid Interface Sci. 2004, 274, 489–495. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I. Polyaniline: Thin films and colloidal dispersions. Pure Appl. Chem. 2005, 77, 815–826. [Google Scholar] [CrossRef]
- Blinova, N.V.; Sapurina, I.; Klimovič, J.; Stejskal, J. The chemical and colloidal stability of polyaniline dispersions. Polym. Degrad. Stab. 2005, 88, 428–434. [Google Scholar] [CrossRef]
- Tosheva, L.; Gospodinova, N.; Vidal, L.; Mihai, I.; Defaux, M.; Ivanov, D.A.; Doyle, A.M. Monoparticulate films of polyaniline. Thin Solid Film. 2009, 517, 5459–5463. [Google Scholar] [CrossRef]
- Chen, F.; Liu, P. Preparation of polyaniline/phosphorylated poly(vinyl alcohol) nanoparticles and their aqueous redispersion stability. AIChE J. 2011, 57, 599–605. [Google Scholar] [CrossRef]
- Peřinka, N.; Držková, M.; Hajná, M.; Jašúrek, B.; Šulcová, P.; Syrový, T.; Kaplanová, M.; Stejskal, J. Thermal analysis of polyaniline poly(N-vinylpyrrolidone)-stabilized dispersions. J. Therm. Anal. Calorim. 2014, 116, 589–595. [Google Scholar] [CrossRef]
- Zimmermann, C.A.; Ferreira, J.C., Jr.; Ramôa, S.D.A.D.S.; Barra, G.M.D.O. Facile approach to produce water-dispersible conducting polyaniline powder. Synth. Met. 2020, 267, 116451. [Google Scholar] [CrossRef]
- Park, H.-W.; Kim, T.; Huh, J.; Kang, M.; Lee, J.E.; Yoon, H. Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics. ACS Nano 2012, 6, 7624–7633. [Google Scholar] [CrossRef]
- Anbalagan, A.C.; Sawant, S.N. Biopolymer stabilized water dispersible polyaniline for supercapacitor electrodes. AIP Conf. Proc. 2018, 1942, 140054. [Google Scholar] [CrossRef]
- Anjali, M.K.; Bharath, G.; Rashmi, H.M.; Avinash, J.; Naresh, K.; Raju, P.N.; Raghu, H.V. Polyaniline-Pectin nanoparticles immobilized paper based colorimetric sensor for detection of Escherichia coli in milk and milk products. Curr. Res. Food Sci. 2022, 5, 823–834. [Google Scholar] [CrossRef]
- Gonçalves, J.P.; de Oliveira, C.C.; da Silva Trindade, E.; Riegel-Vidotti, I.C.; Vidotti, M.; Simas, F.F. In vitro biocompatibility screening of a colloidal gum Arabic-polyaniline conducting nanocomposite. Int. J. Biol. Macromol. 2021, 173, 109–117. [Google Scholar] [CrossRef]
- Cruz-Silva, R.; Arizmendi, L.; Del-Angel, M.; Romero-Garcia, J. pH- and thermosensitive polyaniline colloidal particles prepared by enzymatic polymerization. Langmuir 2007, 23, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Jasenská, D.; Kašpárková, V.; Vašíček, O.; Münster, L.; Minařík, A.; Káčerová, S.; Korábková, E.; Urbánková, L.; Vícha, J.; Capáková, Z.; et al. Enzyme-Catalyzed Polymerization Process: A Novel Approach to the Preparation of Polyaniline Colloidal Dispersions with an Immunomodulatory Effect. Biomacromolecules 2022, 23, 3359–3370. [Google Scholar] [CrossRef] [PubMed]
- Abel, S.B.; Molina, M.A.; Rivarola, C.R.; Kogan, M.J.; Barbero, C.A. Smart polyaniline nanoparticles with thermal and photothermal sensitivity. Nanotechnology 2014, 25, 495602. [Google Scholar] [CrossRef] [PubMed]
- Michaelson, J.C.; McEvoy, A.J. Interfacial polymerization of aniline. J. Chem. Soc. Chem. Commun. 1994, 79–80. [Google Scholar] [CrossRef]
- Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Polyaniline nanofibers: Facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125, 314–315. [Google Scholar] [CrossRef]
- Pramanik, S.; Karak, N.; Banerjee, S.; Kumar, A. Effects of solvent interactions on the structure and properties of prepared PAni nanofibers. J. Appl. Polym. Sci. 2012, 126, 830–836. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.-L.M.; Abraham, M.H.; Taft, R.W. Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, π, α, and β, and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Su, C.; Wang, G.; Huang, F.; Li, X. Effects of synthetic conditions on the structure and electrical properties of polyaniline nanofibers. J. Mater. Sci. 2008, 43, 197–202. [Google Scholar] [CrossRef]
- Chen, C.-H.; Dai, Y.-F. Effect of chitosan on interfacial polymerization of aniline. Carbohydr. Polym. 2011, 84, 840–843. [Google Scholar] [CrossRef]
- Nuraje, N.; Su, K.; Yang, N.-I.; Matsui, H. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano 2008, 2, 502–506. [Google Scholar] [CrossRef]
- Oueiny, C.; Berlioz, S.; Perrin, F.X. Assembly of polyaniline nanotubes by interfacial polymerization for corrosion protection. Phys. Chem. Chem. Phys. 2016, 18, 3504–3509. [Google Scholar] [CrossRef]
- Zhang, X.; Chan-Yu-King, R.; Jose, A.; Manohar, S.K. Nanofibers of polyaniline synthesized by interfacial polymerization. Synth. Met. 2004, 145, 23–29. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Chen, D.; Li, L. Study on nanofibers of polyaniline via interfacial polymerization. J. Macromol. Sci. A 2006, 43, 1815–1824. [Google Scholar] [CrossRef]
- Ding, S.; Mao, H.; Zhang, W. Fabrication of DBSA-doped polyaniline nanorods by interfacial polymerization. J. Appl. Polym. Sci. 2008, 109, 2842–2847. [Google Scholar] [CrossRef]
- Xing, S.X.; Zheng, H.W.; Zhao, G.K. Preparation of Polyaniline Nanofibers via a Novel Interfacial Polymerization Method. Synth. Met. 2008, 158, 59–63. [Google Scholar] [CrossRef]
- Kamarudin, S.; Rani, M.S.A.; Mohammad, M.; Mohammed, N.H.; Su’ait, M.S.; Ibrahim, M.A.; Asim, N.; Razali, H. Investigation on size and conductivity of polyaniline nanofiber synthesised by surfactant-free polymerization. J. Mater. Res. 2021, 14, 255–261. [Google Scholar] [CrossRef]
- Sun, Q.; Deng, Y. The unique role of dl-tartaric acid in determining the morphology of polyaniline nanostructures during an interfacial oxidation polymerization. Mater. Lett. 2008, 62, 1831–1834. [Google Scholar] [CrossRef]
- Dallas, P.; Stamopoulos, D.; Boukos, N.; Tzitzios, V.; Niarchos, D.; Petridis, D. Characterization, magnetic and transport properties of polyaniline synthesized through interfacial polymerization. Polymer 2007, 48, 3162–3169. [Google Scholar] [CrossRef]
- Do Nascimento, G.M.; Kobata, P.Y.G.; Temperini, M.L.A. Structural and vibrational characterization of polyaniline nanofibers prepared from interfacial polymerization. J. Phys. Chem. B 2008, 112, 11551–11557. [Google Scholar] [CrossRef]
- Morales, G.M.; Llusa, M.; Miras, M.C.; Barbero, C. Effects of high hydrochloric acid concentration on aniline chemical polymerization. Polymer 1997, 38, 5247–5250. [Google Scholar] [CrossRef]
- Zeng, F.; Qin, Z.; Liang, B.; Li, T.; Liu, N.; Zhu, M. Polyaniline nanostructures tuning with oxidants in interfacial polymerization system. Prog. Nat. Sci. 2015, 25, 512–519. [Google Scholar] [CrossRef]
- Cui, J.-F.; Bao, X.-M.; Sun, H.-X.; An, J.; Guo, J.-H.; Yang, B.-P.; Li, A. Preparation of superhydrophobic surfaces by cauliflower-like polyaniline. J. Appl. Polym. Sci. 2014, 131, 39767. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Manuel, J.; Ahn, J.-H.; Kim, D.-S.; Ahn, H.-J.; Kim, K.-W.; Kim, J.-K.; Jacobsson, P. Synthesis and electrochemical properties of polyaniline nanofibers by interfacial polymerization. J. Nanosci. Nanotechnol. 2012, 12, 3534–3537. [Google Scholar] [CrossRef]
- Barbero, C.; Miras, M.C.; Schnyder, B.; Hass, O.; Kötz, R. Sulfonated polyaniline films as cation insertion electrodes for battery applications. Part 1.—Structural and electrochemical characterization. J. Mater. Chem. B 1994, 4, 1775–1783. [Google Scholar] [CrossRef]
- Goel, S.; Gupta, A.; Singh, K.P.; Mehrotra, R.; Kandpal, H.C. Optical studies of polyaniline nanostructures. Mater. Sci. Eng. A 2007, 443, 71–76. [Google Scholar] [CrossRef]
- Mu, S. Nanostructured polyaniline synthesized using interface polymerization and its redox activity in a wide pH range. Synth. Met. 2010, 160, 1931–1937. [Google Scholar] [CrossRef]
- Jin, D.; Qin, Z.; Shen, Y.; Li, T.; Ding, L.; Chen, Y.; Zhang, Y. Enhancing the formation and capacitance properties of interfacial polymerized polyaniline nanofibers by introducing small alcohol molecules. J. Solid State Electrochem. 2018, 22, 1227–1236. [Google Scholar] [CrossRef]
- Akbarinezhad, E.; Ebrahimi, M.; Sharif, F.; Faridi, H.R. Facile synthesis of polyaniline nanofibers in supercritical CO2 with high yield. Res. Chem. Intermed. 2013, 39, 4137–4144. [Google Scholar] [CrossRef]
- Gao, H.; Jiang, T.; Han, B.; Wang, Y.; Du, J.; Liu, Z.; Zhang, J. Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles. Polymer 2004, 45, 3017–3019. [Google Scholar] [CrossRef]
- He, Y. One-dimensional polyaniline nanostructures synthesized by interfacial polymerization in a solids-stabilized emulsion. Appl. Surf. Sci. 2006, 252, 2115–2118. [Google Scholar] [CrossRef]
- Bhadra, S.; Lee, J.H. Synthesis of higher soluble nanostructured polyaniline by vapor-phase polymerization and determination of its crystal structure. J. Appl. Polym. Sci. 2009, 114, 331–340. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, Y.; Xu, X.; Shen, Y.; Yan, H.; Qin, Z. Interior design of hierarchical micro/nanostructures for enhancing energy storage ability of polyanilines through frozen interfacial polymerization. Electrochim. Acta 2021, 386, 138448. [Google Scholar] [CrossRef]
- Gao, N.; Yu, J.; Chen, S.; Xin, X.; Zang, L. Interfacial polymerization for controllable fabrication of nanostructured conducting polymers and their composites. Synth. Met. 2021, 273, 116693. [Google Scholar] [CrossRef]
- Dallas, P.; Georgakilas, V. Interfacial polymerizatiob of conductive polymers: Generation of polymeric nanostructures in a 2-D space. Adv. Colloid Interface Sci. 2015, 224, 46–61. [Google Scholar] [CrossRef]
- Huang, J.; Moore, J.A.; Acquaye, J.H.; Kaner, R.B. Mechanochemical route to the conducting polymer polyaniline. Macromolecules 2005, 38, 317–321. [Google Scholar] [CrossRef]
- Zhou, C.-F.; Du, X.-S.; Liu, Z.; Ringer, S.P.; Mai, Y.-W. Solid phase mechanochemical synthesis of polyaniline branched nanofibers. Synth. Met. 2009, 159, 1302–1307. [Google Scholar] [CrossRef]
- Du, X.-S.; Zhou, C.-F.; Wang, G.-T.; Mai, Y.-W. Novel solid-state and template-free synthesis of branched polyaniline nanofibers. Chem. Mater. 2008, 20, 3806–3808. [Google Scholar] [CrossRef]
- Bhadra, S.; Kim, N.H.; Rhee, K.Y.; Lee, J.H. Preparation of nanosize polyaniline by solid-state polymerization and determination of crystal structure. Polym. Int. 2009, 58, 1173–1180. [Google Scholar] [CrossRef]
- Shao, W.; Jamal, R.; Xu, F.; Ubul, A.; Abdiryim, T. The effect of a small amount of water on the structure and electrochemical properties of solid-state synthesized polyaniline. Materials 2012, 5, 1811–1825. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.; Khastgir, D. Template-free solid state synthesis of ultra-long hairy polyaniline nanowire supercapacitor. Mater. Lett. 2014, 135, 202–205. [Google Scholar] [CrossRef]
- Bhandari, S.; Khastgir, D. Synergistic effect of simultaneous dual doping in solvent-free mechanochemical synthesis of polyaniline supercapacitor comparable to the composites with multiwalled carbon nanotube. Polymer 2015, 81, 62–69. [Google Scholar] [CrossRef]
- Barbero, C.A.; Acevedo, D.F. Mechanochemical Synthesis of Polyanilines and Their Nanocomposites: A Critical Review. Polymers 2023, 15, 133. [Google Scholar] [CrossRef]
- Vauthier, C.; Bouchemal, K. Methods for the Preparation and Manufacture of Polymeric Nanoparticles. Pharm. Res. 2009, 26, 1025–1058. [Google Scholar] [CrossRef]
- Stockton, W.B.; Rubner, M.F. Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 1997, 30, 2717–2725. [Google Scholar] [CrossRef]
- Cheung, J.H.; Stockton, W.B.; Rubner, M.F. Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules 1997, 30, 2712–2716. [Google Scholar] [CrossRef]
- Abel, S.B.; Yslas, E.I.; Rivarola, C.R.; Barbero, C.A. Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect. Nanotechnology 2018, 29, 125604. [Google Scholar] [CrossRef]
- Chia, M.-R.; Phang, S.-W.; Ahmad, I. Emerging Applications of Versatile Polyaniline-Based Polymers in the Food Industry. Polymers 2022, 14, 5168. [Google Scholar] [CrossRef]
- Mostafa, M.H.; Ali, E.S.; Darwish, M.S.A. Polyaniline/carbon nanotube composites in sensor applications. Mater. Chem. Phys. 2022, 291, 126699. [Google Scholar] [CrossRef]
- Osuna, V.; Vega-Rios, A.; Zaragoza-Contreras, E.A.; Estrada-Moreno, I.A.; Dominguez, R.B. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. Biosensors 2022, 12, 137. [Google Scholar] [CrossRef]
- da Silva, B.N.; Vieira, M.F.; Izumi, C.M.S. In situ preparation of silver nanoparticles on polyaniline nanofibers for SERS applications. Synth. Met. 2022, 291, 117171. [Google Scholar] [CrossRef]
- Popov, A.; Aukstakojyte, R.; Gaidukevic, J.; Lisyte, V.; Kausaite-Minkstimiene, A.; Barkauskas, J.; Ramanaviciene, A. Reduced graphene oxide and polyaniline nanofibers nanocomposite for the development of an amperometric glucose biosensor. Sensors 2021, 21, 948. [Google Scholar] [CrossRef]
- Nate, Z.; Gill, A.A.S.; Chauhan, R.; Karpoormath, R. Polyaniline-cobalt oxide nanofibers for simultaneous electrochemical determination of antimalarial drugs: Primaquine and proguanil. Microchem. J. 2021, 160, 105709. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, Z.; Guo, X.; Peng, Z.; Yu, C.; Zhong, W. Mechanically Robust and Elastic Graphene/Aramid Nanofiber/Polyaniline Nanotube Aerogels for Pressure Sensors. ACS Appl. Mater. Interfaces 2022, 14, 17858–17868. [Google Scholar] [CrossRef] [PubMed]
- Thakur, B.; Amarnath, C.A.; Mangoli, S.H.; Sawant, S.N. Polyaniline nanoparticle based colorimetric sensor for monitoring bacterial growth. Sens. Actuators B Chem. 2015, 207, 262–268. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, X.; Cai, C. Polyaniline Nanofibers: Synthesis, Characterization, and Application to Direct Electron Transfer of Glucose Oxidase. J. Phys. Chem. C 2009, 113, 4987–4996. [Google Scholar] [CrossRef]
- Rajesh; Ahuja, T.; Kumar, D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens. Actuators B Chem. 2009, 136, 275–286. [Google Scholar] [CrossRef]
- Xie, J.; Gu, P.; Zhang, Q. Nanostructured Conjugated Polymers: Toward High-Performance Organic Electrodes for Rechargeable Batteries. ACS Energy Lett. 2017, 2, 1985–1996. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, K.; Ye, K.; Yan, J.; Wang, G.; Cao, D. Hierarchical conducting polymer coated conjugated polyimide anode towards durable lithium-ion batteries. J. Power Sources 2022, 552, 232226. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; You, J.; Park, M.-S.; Al Hossain, M.S.; Yamauchi, Y.; Kim, J.H. Conductive polymers for next-generation energy storage systems: Recent progress and new functions. Mater. Horiz. 2016, 3, 517–535. [Google Scholar] [CrossRef]
- Kim, B.C.; Kwon, J.S.; Ko, J.M.; Park, J.H.; Too, C.O.; Wallace, G.G. Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber. Synth. Met. 2010, 160, 94–98. [Google Scholar] [CrossRef]
- Gao, Y.; Ying, J.; Xu, X.; Cai, L. Nitrogen-enriched carbon nanofibers derived from polyaniline and their capacitive properties. Appl. Sci. 2018, 8, 1079. [Google Scholar] [CrossRef]
- Udayan, A.P.M.; Sadak, O.; Gunasekaran, S. Metal-Organic Framework/Polyaniline Nanocomposites for Lightweight Energy Storage. ACS Appl. Energy Mater. 2020, 3, 12368–12377. [Google Scholar] [CrossRef]
- Banerjee, J.; Dutta, K.; Kader, M.A.; Nayak, S.K. An overview on the recent developments in polyaniline-based supercapacitors. Polym. Adv. Technol. 2019, 30, 1902–1921. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Z.; Wang, X.-Z.; Fu, X.-Z.; Luo, J.-L. Different acid doped polyaniline waterborne epoxy coatings: Anticorrosion and passivation performance on 5083 Al alloy. Prog. Org. Coat. 2022, 173, 107182. [Google Scholar] [CrossRef]
- Pugacheva, T.A.; Malkov, G.V.; Ilyin, A.A.; Indeikin, E.A.; Kurbatov, V.G. Core/Shell Pigments with Polyaniline Shell: Optical and Physical–Technical Properties. Polymers 2022, 14, 2005. [Google Scholar] [CrossRef]
- Fuseini, M.; Zaghloul, M.M.Y.; Elkady, M.F.; El-Shazly, A.H. Evaluation of synthesized polyaniline nanofibres as corrosion protection film coating on copper substrate by electrophoretic deposition. J. Mater. Sci. 2022, 57, 6085–6101. [Google Scholar] [CrossRef]
- Abel, S.B.; Olejnik, R.; Rivarola, C.R.; Slobodian, P.; Saha, P.; Acevedo, D.F.; Barbero, C.A. Resistive Sensors for Organic Vapors Based on Nanostructured and Chemically Modified Polyanilines. IEEE Sens. J. 2018, 18, 6510–6516. [Google Scholar] [CrossRef]
- Crean, C.; Lahiff, E.; Gilmartin, N.; Diamond, D.; O’Kennedy, R. Polyaniline nanofibres as templates for the covalent immobilisation of biomolecules. Synth. Met. 2011, 161, 285–292. [Google Scholar] [CrossRef]
- Yslas, E.I.; Ibarra, L.E.; Peralta, D.O.; Barbero, C.A.; Rivarola, V.A.; Bertuzzi, M.L. Polyaniline nanofibers: Acute toxicity and teratogenic effect on Rhinella arenarum embryos. Chemosphere 2012, 87, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, L.E.; Yslas, E.I.; Molina, M.A.; Rivarola, C.R.; Romanini, S.; Barbero, C.A.; Rivarola, V.A.; Bertuzzi, M.L. Near-infrared mediated tumor destruction by photothermal effect of PANI-Np in vivo. Laser Phys. 2013, 23, 066004. [Google Scholar] [CrossRef]
- Kašpárková, V.; Jasenská, D.; Capáková, Z.; Maráková, N.; Stejskal, J.; Bober, P.; Lehocký, M.; Humpolíček, P. Polyaniline colloids stabilized with bioactive polysaccharides: Non-cytotoxic antibacterial materials. Carbohydr. Polym. 2019, 219, 423–430. [Google Scholar] [CrossRef]
- Molina, M.A.; Rivarola, C.R.; Miras, M.C.; Lescano, D.; Barbero, C.A. Nanocomposite synthesis by absorption of nanoparticles into macroporous hydrogels. Building a chemomechanical actuator driven by electromagnetic radiation. Nanotechnology 2011, 22, 245504. [Google Scholar] [CrossRef]
- Ghosh, S.; Amariei, G.; Mosquera, M.E.G.; Rosal, R. Conjugated polymer nanostructures displaying highly photoactivated antimicrobial and antibiofilm functionalities. J. Mater. Chem. B 2021, 9, 4390–4399. [Google Scholar] [CrossRef]
- Pang, Q.; Wu, K.; Jiang, Z.; Shi, Z.; Si, Z.; Wang, Q.; Cao, Y.; Hou, R.; Zhu, Y. A Polyaniline Nanoparticles Crosslinked Hydrogel with Excellent Photothermal Antibacterial and Mechanical Properties for Wound Dressing Macromolecular. Bioscience 2022, 22, 2100386. [Google Scholar] [CrossRef]
- Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderón, M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem. Soc. Rev. 2015, 44, 6161–6186. [Google Scholar] [CrossRef]
- Araújo, P.L.B.; Araújo, E.S.; Santos, R.F.S.; Pacheco, A.P.L. Synthesis and morphological characterization of PMMA/polyaniline nanofiber composites. Microelectron. J. 2005, 36, 1055–1057. [Google Scholar] [CrossRef]
- Ghaleghafi, E.; Rahmani, M.B. Exploring different routes for the synthesis of 2D MoS2/1D PANI nanocomposites and investigating their electrical properties. Phys. E Low Dimens. Syst. Nanostruct. 2022, 138, 115128. [Google Scholar] [CrossRef]
- Yarmohamadi-Vasel, M.; Modarresi-Alam, A.R.; Noroozifar, M.; Hadavi, M.S. An investigation into the photovoltaic activity of a new nanocomposite of (polyaniline nanofibers)/(titanium dioxide nanoparticles) with different architectures. Synth. Met. 2019, 252, 50–61. [Google Scholar] [CrossRef]
- Luo, Z.; Feng, S.; Li, Y.; Xu, G.; Fang, G.; Wang, S.; Zhu, C.; Liu, C. Synthesis of Conductive Polyaniline Composites for Superior Electromagnetic Wave Absorption with Lightweight and Broad Bandwidth. Adv. Eng. Mater. 2023, 25, 2200976. [Google Scholar] [CrossRef]
- Zhang, P.; Han, X.; Kang, L.; Qiang, R.; Liu, W.; Du, Y. Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv. 2013, 3, 12694–12701. [Google Scholar] [CrossRef]
- Yang, X.; Fan, B.; Wang, X.; Tang, X.; Wang, J.; Tong, G.; Wang, X.; Tian, W. HCl induced structure evolution and dual-frequency broadband microwave absorption of PANI hierarchical microtubes. J. Environ. Chem. Eng. 2021, 9, 105672. [Google Scholar] [CrossRef]
- Su, S.; Yu, J.; Liu, X.; Yu, J. Fe nanoparticles embedded in polyaniline-derived carbon fibers as broad bandwidth microwave absorbers for GHz electromagnetic wave. Solid State Commun. 2021, 334–335, 114400. [Google Scholar] [CrossRef]
- Bayat, A.; Tati, A.; Ahmadipouya, S.; Haddadi, S.A.; Arjmand, M. Electrospun chitosan/polyvinyl alcohol nanocomposite holding polyaniline/silica hybrid nanostructures: An efficient adsorbent of dye from aqueous solutions. J. Mol. Liq. 2021, 331, 115734. [Google Scholar] [CrossRef]
- Lyu, W.; Yu, M.; Li, J.; Feng, J.; Yan, W. Adsorption of anionic acid red G dye on polyaniline nanofibers synthesized by FeCl3 oxidant: Unravelling the role of synthetic conditions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129203. [Google Scholar] [CrossRef]
- Huang, W.S.; MacDiarmid, A.G. Optical properties of polyaniline. Polymer 1993, 34, 1833–1845. [Google Scholar] [CrossRef]
- Barbero, C.; Kötz, R.; Haas, O. Differential photothermal deflection spectroscopy (DPDS). A technique to study electrochromism of synthetic metals. Synth. Met. 1999, 101, 170. [Google Scholar] [CrossRef]
- Riberi, K.; Bongiovanni Abel, S.; Martinez, M.V.; Molina, M.A.; Rivarola, C.R.; Acevedo, D.F.; Rivero, R.; Cuello, E.A.; Gramaglia, R.; Barbero, C.A. Smart Thermomechanochemical Composite Materials Driven by Different Forms of Electromagnetic Radiation. J. Compos. Sci. 2020, 4, 3. [Google Scholar] [CrossRef]
- Abel, S.B.; Rivarola, C.R.; Barbero, C.A.; Molina, M. Electromagnetic radiation driving of volume changes in nanocomposites made of a thermosensitive hydrogel polymerized around conducting polymer nanoparticles. RSC Adv. 2020, 10, 9155–9164. [Google Scholar] [CrossRef]
- Bongiovanni Abel, S.; Molina, M.; Rivarola, C.R.; Barbero, C.A. Pickering emulsions stabilized with PANI-NP. Study of the thermoresponsive behavior under heating and radiofrequency irradiation. J. Appl. Polym. Sci. 2021, 138, 50625. [Google Scholar] [CrossRef]
- Dong, Y.; Geng, C.; Liu, C.; Gao, J.; Zhou, Q. Near-infrared light photothermally induced shape memory and self-healing effects of epoxy resin coating with polyaniline nanofibers. Synth. Met. 2020, 266, 116417. [Google Scholar] [CrossRef]
- Datta, S.; Barua, R.; Das, J. A Review on Electro-Rheological Fluid (ER) and Its Various Technological Applications. In Extremophilic Microbes and Metabolites-Diversity, Bioprospecting and Biotechnological Applications; Afef, N., Ameur, C., Haïtham, S., Hadda, I.O., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Quadrat, O.; Stejskal, J. Polyaniline in electrorheology. J. Ind. Eng. Chem. 2006, 12, 352–361. [Google Scholar]
- Wang, Y. Preparation and application of polyaniline nanofibers: An overview. Polym. Int. 2018, 67, 650–669. [Google Scholar] [CrossRef]
- Abel, S.B.; Frontera, E.; Acevedo, D.; Barbero, C.A. Functionalization of Conductive Polymers through Covalent Postmodification. Polymers 2023, 15, 205. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, Y. Polyaniline nanofibers fabricated by electrochemical polymerization: A mechanistic study. Eur. Polym. J. 2007, 43, 2292–2297. [Google Scholar] [CrossRef]
- Karami, Z.; Youssefi, M.; Raeissi, K.; Zhiani, M. Morphology control of polyaniline nanostructures on the surface of reduced graphene oxide/cotton fabric composite electrode for high-performance wearable supercapacitor application. J. Mater. Sci. 2022, 57, 16776–16794. [Google Scholar] [CrossRef]
- Rodriguez, R.C.; Moncada, A.B.; Acevedo, D.F.; Planes, G.A.; Miras, M.C.; Barbero, C.A. Electroanalysis using modified hierarchical nanoporous carbon materials. Faraday Discuss. 2014, 164, 147–173. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Wang, Y.; Horiuchi, Y.; Do Kim, H.; Fang, Y.; Ohkita, H.; Wang, B. Obvious improvement of dispersion of multiwall carbon nanotubes in polymer matrix through careful interface design. Polym. Adv. Technol. 2022, 33, 3350–3358. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green solvents for sustainable organic synthesis: State of the art. Green Chem. 2005, 7, 267–278. [Google Scholar] [CrossRef]
- Mir, A.; Kumar, A.; Riaz, U. A short review on the synthesis and advance applications of polyaniline hydrogels. RSC Adv. 2022, 12, 19122–19132. [Google Scholar] [CrossRef]
- Li, M.; Xu, B.; Zheng, L.; Zhou, J.; Luo, Z.; Li, W.; Ma, W.; Mao, Q.; Xiang, H.; Zhu, M. Highly stable polyaniline array@ partially reduced graphene oxide hybrid fiber for high-performance flexible supercapacitors. Carbon 2023, 203, 455–461. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, H.; Sharma, R.; Kumari, R.; Thakur, M. Quantum dot decorated polyaniline plastic as a multifunctional nanocomposite: Experimental and theoretical approach. RSC Adv. 2022, 12, 24063–24076. [Google Scholar] [CrossRef] [PubMed]
- Tanweer, M.S.; Iqbal, Z.; Alam, M. Experimental Insights into Mesoporous Polyaniline-Based Nanocomposites for Anionic and Cationic Dye Removal. Langmuir 2022, 38, 8837–8853. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Gu, H.; Huang, J.; Guan, H.; Xing, S. Three-dimensional polyaniline/cerium oxide composite aerogel with enhanced microwave absorption properties. Synth. Met. 2023, 293, 117251. [Google Scholar] [CrossRef]
- Sahiner, N.; Demirci, S. In situ preparation of polyaniline within neutral, anionic, and cationic superporous cryogel networks as conductive, semi-interpenetrating polymer network cryogel composite systems. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Martínez, M.V.; Bongiovanni Abel, S.; Rivero, R.; Miras, M.C.; Rivarola, C.R.; Barbero, C.A. Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: Strong effect of the preparation procedure on the properties. Polymer 2015, 78, 94–103. [Google Scholar] [CrossRef]
- Suganya, N.; Jaisankar, V.; Sivakumar, E.K.T. Conducting Polymeric Hydrogel Electrolyte Based on Carboxymethylcellulose and Polyacrylamide/Polyaniline for Supercapacitor Applications. Int. J. Nanosci. 2018, 17, 1760003. [Google Scholar] [CrossRef]
- Kovtyukhova, N.I.; Martin, B.R.; Mbindyo, J.K.N.; Mallouk, T.E.; Cabassi, M.; Mayer, T.S. Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices. Mater. Sci. Eng. C 2002, 19, 255–262. [Google Scholar] [CrossRef]
- Michel, M.; Ettingshausen, F.; Scheiba, F.; Wolz, A.; Roth, C. Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes. Phys. Chem. Chem. Phys. 2008, 10, 3796–3801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, Z.; Wang, X.; Liu, J.; Sun, J.; Wang, L.; Ye, W.; Pan, C. A multifunctional coating with silk fibroin/chitosan quaternary ammonium salt/heparin sodium for AZ31B magnesium alloy. Mater. Today Commun. 2023, 34, 105070. [Google Scholar] [CrossRef]
- Balach, J.; Bruno, M.M.; Cotella, N.G.; Acevedo, D.F.; Barbero, C.A. Electrostatic self-assembly of hierarchical porous carbon microparticles. J. Power Sources 2012, 199, 386–394. [Google Scholar] [CrossRef]
- Didier, F.; Alastuey, P.; Tirado, M.; Odorico, M.; Deschanels, X.; Toquer, G. Solar absorbers based on electrophoretically deposited carbon nanotubes using pyrocatechol violet as a charging agent. Thin Solid Film. 2023, 764, 139614. [Google Scholar] [CrossRef]
- Zhao, H.; Isozaki, K.; Taguchi, T.; Yang, S.; Miki, K. Laying down of gold nanorods monolayers on solid surfaces for surface enhanced Raman spectroscopy applications. Phys. Chem. Chem. Phys. 2021, 23, 26822–26828. [Google Scholar] [CrossRef] [PubMed]
- Saberi, Z.; Naderi, N.; Meymian, M.-R.Z. Improved optical and electrical stability of ZnO nanorods via electrophoretic deposition of graphene thin film. J. Mater. Sci. Mater. Electron. 2022, 33, 13367–13375. [Google Scholar] [CrossRef]
- Dan, L.I.; Huang, J.; Kaner, R.B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2009, 42, 135–145. [Google Scholar] [CrossRef]
- Barbero, C.A.; Acevedo, D.F. Manufacturing Functional Polymer Surfaces by Direct Laser Interference Patterning (DLIP): A Polymer Science View. Nanomanufacturing 2022, 2, 229–264. [Google Scholar] [CrossRef]
- Cavallo, P.; Coneo Rodriguez, R.; Broglia, M.; Acevedo, D.F.; Barbero, C.A. Simple fabrication of active electrodes using direct laser transference. Electrochim. Acta 2014, 116, 194–202. [Google Scholar] [CrossRef]
- Kim, S.; Oh, S.M.; Kim, S.Y.; Park, J.D. Role of adsorbed polymers on nanoparticle dispersion in drying polymer nanocomposite films. Polymers 2021, 13, 2960. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yuan, Z.; Wang, L.; Chen, S.; Wei, W.; Zhang, F. Multi-nanocomponent-assembled films with exceptional capacitance performance and electromagnetic interference shielding. Mater. Chem. Front. 2022, 6, 2201–2210. [Google Scholar] [CrossRef]
- Borchert, K.B.L.; Carrasco, K.H.; Steinbach, C.; Reis, B.; Gerlach, N.; Mayer, M.; Schwarz, S.; Schwarz, D. Tuning the pore structure of templated mesoporous poly(melamine-co-formaldehyde) particles toward diclofenac removal. J. Environ. Manag. 2022, 324, 116221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbero, C.A. Diverse Methods to Nanomanufacture Colloidal Dispersions of Polyaniline without Templates. Nanomanufacturing 2023, 3, 57-90. https://doi.org/10.3390/nanomanufacturing3010005
Barbero CA. Diverse Methods to Nanomanufacture Colloidal Dispersions of Polyaniline without Templates. Nanomanufacturing. 2023; 3(1):57-90. https://doi.org/10.3390/nanomanufacturing3010005
Chicago/Turabian StyleBarbero, Cesar A. 2023. "Diverse Methods to Nanomanufacture Colloidal Dispersions of Polyaniline without Templates" Nanomanufacturing 3, no. 1: 57-90. https://doi.org/10.3390/nanomanufacturing3010005