Carbonization of Biopolymers as a Method for Producing a Photosensitizing Additive for Energy Materials
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials and preparation
2.1.1. Materials
2.1.2. Initial Pyrotechnic Compositions
2.2. Methods
2.2.1. Synthesis of Few-Layer Graphene (FLG)
2.2.2. Electron Microscopy
2.2.3. Dispersion Measurement
2.2.4. X-ray Diffraction
2.2.5. Raman Spectroscopy
2.2.6. Specific Surface Area Measurement
2.2.7. Determination of Stone–Wales Defect Concentration (S-W)
2.2.8. Synthesis of the Pyrotechnic Composition
2.2.9. Investigation of Pyrotechnic Compositions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krutov, S.M.; Voznyakovskii, A.P.; Gribkov, I.V.; Shugalei, I.V. Lignin Wastes: Past, Present, and Future. Russ. J. Gen. Chem. 2014, 84, 2632–2642. [Google Scholar] [CrossRef]
- Fu, F.; Yang, D.; Zhang, W.; Wang, H.; Qiu, X. Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors. Chem. Eng. J. 2020, 392, 123721. [Google Scholar] [CrossRef]
- Wang, H.; Feng, P.; Huang, P.; Huang, M.; Lin, X.; Feng, Y.; Gan, S.; Han, D.; Wang, W.; Niu, L. Solvent-induced molecular structure engineering of lignin for hierarchically porous carbon: Mechanisms and supercapacitive properties. Ind. Props Prod. 2022, 189, 115831. [Google Scholar] [CrossRef]
- Krutov, S.M.; Voznyakovskii, A.P.; Gordin, A.A.; Savkin, D.I.; Shugalei, L.V. Environmental Problems of Wood Biomass Processing. Waste Processing Lignin. Russ. J. Gen. Chem. 2015, 85, 2898–2907. [Google Scholar] [CrossRef]
- Wang, H.; Pu, Y.; Ragauskas, A.; Yang, B. From lignin to valuable products–strategies, challenges, and prospects. Bioresour. Technol. 2019, 271, 449–461. [Google Scholar] [CrossRef]
- Tsvetkova, M.V.; Salganskii, E.A. Lignin: Applications and Ways of Utilization (Review). Russ. J. Appl. Chem. 2018, 91, 1129–1136. [Google Scholar] [CrossRef]
- Voznyakovskii, A.P.; Savkin, D.I.; Kalinin, A.V.; Shugalei, I.V.; Krutov, S.M.; Mazur, A.S. Self-Propagating High-Temperature Synthesis as a Promising Method for the Utilization of Technical Lignins. Russ. J. Gen. Chem. 2016, 86, 3008–3011. [Google Scholar] [CrossRef]
- ISO/TS 80004-13:2017; Nanotechnologies—Vocabulary—Part 13: Graphene and Related Two-Dimensional (2D) Materials. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-13:ed-1:v1:en (accessed on 8 January 2023).
- Dolgoborodov, A.Y.; Streletskii, A.N.; Makhov, M.N.; Teselkin, V.A.; Guseinov, S.L.; Storozhenko, P.A.; Fortov, V.E. Promising Energetic Materials Composed of Nanosilicon and Solid Oxidizers. Russ. J. Phys. Chem. B 2012, 6, 523–530. [Google Scholar] [CrossRef]
- Zegrya, G.G.; Savenkov, G.G.; Zegrya, A.G.; Bragin, V.A.; Os’kin, I.A.; Poberezhnaya, U.M. Laser Initiation of Energy-Saturated Composites Based on Nanoporous Silicon. Tech. Phys. 2020, 65, 1636–1642. [Google Scholar] [CrossRef]
- Dolgoborodov, A.Y.; Kirilenko, V.G.; Brazhnikov, M.A.; Grishin, L.I.; Kuskov, M.L.; Valyano, G.E. Ignition of nanothermites by a laser diode pulse. Def. Technol. 2022, 18, 194–204. [Google Scholar] [CrossRef]
- Collard, D.N.; Uhlenhake, K.E.; Örnek, M.; Rhoads, J.F.; Son, S.F. Photoflash and laser ignition of Al/PVDF films and additively manufactured igniters for solid propellant. Combust. Flame 2022, 244, 112252–112262. [Google Scholar] [CrossRef]
- Sterletskii, A.N.; Dolgobrodov, A.Y.; Kolbanev, I.V.; Makhov, M.N.; Lomaeva, S.F.; Borunova, A.B.; Fortov, V.E. Structure of Mechanically Activated High-EnergyAl + Polytetrafluoroethylene Nanocomposites. Colloid J. 2009, 71, 852–860. [Google Scholar] [CrossRef]
- Voznyakovskii, A.; Vozniakovskii, A.; Kidalov, S. New Way of Synthesis of Few-Layer Graphene Nanosheets by the Self Propagating High-Temperature Synthesis Method from Biopolymers. Nanomaterials 2022, 12, 657. [Google Scholar] [CrossRef]
- Voznyakovskii, A.; Neverovskaya, A.; Vozniakovskii, A.; Kidalov, S. A Quantitative Chemical Method for Determining the Surface Concentration of Stone–Wales Defects for 1D and 2D Carbon Nanomaterials. Nanomaterials 2022, 12, 883. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.W.; Jung, W.G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Wang, K.; Sun, X.; Liu, G.; Li, J.; Ma, Y. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability. Adv. Mater. 2017, 29, 1604690. [Google Scholar] [CrossRef]
- Ji, Q.; Wang, B.; Zheng, Y.; Zeng, F.; Lu, B. Field emission performance of bulk graphene. Diam. Relat. Mater. 2022, 124, 108940. [Google Scholar] [CrossRef]
- Mao, L.F. Thermionic emission current in graphene-based electronic devices. Appl. Phys. A 2019, 125, 325. [Google Scholar] [CrossRef]
- Rudi, S.G.; Faez, R.; Moravvej-Farshi, M.K. Effects of Stone-Wales defect on the electronic and transport properties of bilayer armchair graphene nanoribbons. Superlattices Microstruct. 2016, 100, 739–748. [Google Scholar] [CrossRef]
- Voznyakovskii, A.P.; Fursei, G.; Vozniakovskii, A.A.; Polyakov, M.; Neverovskaya, A.; Zakirov, I. Low-threshold field electron emission from graphene nanostructures. Fuller. Nanotub. Carbon Nanostructures 2022, 30, 53–58. [Google Scholar] [CrossRef]
- Fahd, A.; Dubois, C.; Chaouki, J.; Wen, J.Z. Nanothermites: Developments and Future Perspectives. In Nano and Micro-Scale Energetic Materials: Propellants and Explosives; Pang, W., DeLuca, L.T., Eds.; Part III Metal-based Pyrotechnic Nanocomposites. Chapter 8. Weinheim (FRG): Wiley-VCH 2023; Wiley: Hoboken, NJ, USA, 2023; Volume 1, pp. 219–251. [Google Scholar] [CrossRef]
- Ilyushin, M.A.; Vedernikov, Y.N.; Voznyakovskii, A.P.; Shugalei, I.V.; Smirnov, A.V.; Kovalenko, A.I.; Butenko, V.G.; Kulagin, Y.A. 2D Graphene Structures Photoelectric Effect on Initiation of Cobalt (III) Perchlorate Complex Explosive Decomposition. Ross. Khimicheskiy Zhurnal 2021, 65, 24–29. (In Russian) [Google Scholar] [CrossRef]
Nanocarbon | Specific Surface Area, m2/g | Stone–Wales Defects, CSW × 105 (mol/m2) |
---|---|---|
SWCNT | 300 | 1.1 |
FLG | 320 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilyushin, M.A.; Voznyakovskii, A.P.; Shugalei, I.; Vozniakovskii, A.A. Carbonization of Biopolymers as a Method for Producing a Photosensitizing Additive for Energy Materials. Nanomanufacturing 2023, 3, 167-176. https://doi.org/10.3390/nanomanufacturing3020011
Ilyushin MA, Voznyakovskii AP, Shugalei I, Vozniakovskii AA. Carbonization of Biopolymers as a Method for Producing a Photosensitizing Additive for Energy Materials. Nanomanufacturing. 2023; 3(2):167-176. https://doi.org/10.3390/nanomanufacturing3020011
Chicago/Turabian StyleIlyushin, Mikhail Alekseevich, Alexander Petrovich Voznyakovskii, Irina Shugalei, and Aleksei Alexandrovich Vozniakovskii. 2023. "Carbonization of Biopolymers as a Method for Producing a Photosensitizing Additive for Energy Materials" Nanomanufacturing 3, no. 2: 167-176. https://doi.org/10.3390/nanomanufacturing3020011
APA StyleIlyushin, M. A., Voznyakovskii, A. P., Shugalei, I., & Vozniakovskii, A. A. (2023). Carbonization of Biopolymers as a Method for Producing a Photosensitizing Additive for Energy Materials. Nanomanufacturing, 3(2), 167-176. https://doi.org/10.3390/nanomanufacturing3020011