Nematocidal Activity of a Variety of Plants Used in Mexico Against Strongyloides venezuelensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction
2.2. Qualitative Phytochemical Tests
2.3. Activity Against S. venezuelensis (L3)
2.4. Antioxidant Activity
2.5. Red Cell Cytotoxicity
2.6. Cytotoxic on Vero Cells
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Analysis
3.2. Anti-Strongyloides Venezuelensis Activity
3.3. Hemolytic, Cytotoxic, and Antioxidant Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Truscott, J.E.; Turner, H.C.; Farrell, S.H.; Anderson, R.M. Soil-Transmitted Helminths. In Advances in Parasitology; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 94, pp. 133–198. [Google Scholar]
- Estrongiloidiasis-Enfermedades Infecciosas-Manual MSD Versión Para Profesionales. Available online: https://www.msdmanuals.com/es/professional/enfermedades-infecciosas/nematodos-gusanos-redondos/estrongiloidiasis (accessed on 13 December 2024).
- Siddiqui, A.A.; Berk, S.L. Diagnosis of Strongyloides Stercoralis Infection. Clin. Infect. Dis. 2001, 33, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Schär, F.; Trostdorf, U.; Giardina, F.; Khieu, V.; Muth, S.; Marti, H.; Vounatsou, P.; Odermatt, P. Strongyloides Stercoralis: Global Distribution and Risk Factors. PLoS Negl. Trop. Dis. 2013, 7, e2288. [Google Scholar] [CrossRef] [PubMed]
- Montes, M.; Sawhney, C.; Barros, N. Strongyloides Stercoralis: There but Not Seen. Curr. Opin. Infect. Dis. 2010, 23, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Toma, H. Strongyloides Venezuelensis Infections in Mice. Int. J. Parasitol. 1990, 20, 57–62. [Google Scholar] [CrossRef]
- Moraes, D.; Levenhagen, M.A.; Costa-Cruz, J.M.; Costa Netto, A.P.D.; Rodrigues, R.M. In Vitro Efficacy of Latex and Purified Papain from Carica Papaya against Strongyloides Venezuelensis Eggs and Larvae. Rev. Inst. Med. Trop. 2017, 59, e7. [Google Scholar] [CrossRef]
- Carvalho, C.O.; Chagas, A.C.S.; Cotinguiba, F.; Furlan, M.; Brito, L.G.; Chaves, F.C.M.; Stephan, M.P.; Bizzo, H.R.; Amarante, A.F.T. The Anthelmintic Effect of Plant Extracts on Haemonchus Contortus and Strongyloides Venezuelensis. Vet. Parasitol. 2012, 183, 260–268. [Google Scholar] [CrossRef]
- Legarda-Ceballos, A.L.; López-Abán, J.; del Olmo, E.; Escarcena, R.; Bustos, L.A.; Rojas-Caraballo, J.; Vicente, B.; Fernández-Soto, P.; San Feliciano, A.; Muro, A. In Vitro and in Vivo Evaluation of 2-Aminoalkanol and 1,2-Alkanediamine Derivatives against Strongyloides Venezuelensis. Parasit. Vectors 2016, 9, 364. [Google Scholar] [CrossRef]
- Thamsborg, S.M.; Ketzis, J.; Horii, Y.; Matthews, J.B. Strongyloides Spp. Infections of Veterinary Importance. Parasitology 2017, 144, 274–284. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Zhou, X.; Li, J.; Yan, G.; James, A.A.; Chen, X. Review: Strongyloidiasis: An Emerging Infectious Disease in China. Am. J. Trop. Med. Hyg. 2013, 88, 420–425. [Google Scholar] [CrossRef]
- Henriquez-Camacho, C.; Gotuzzo, E.; Echevarria, J.; White, A.C.; Terashima, A.; Samalvides, F.; Pérez-Molina, J.A.; Plana, M.N. Ivermectin versus Albendazole or Thiabendazole for Strongyloides Stercoralis Infection. Cochrane Database Syst. Rev. 2016, 2016, CD007745. [Google Scholar] [CrossRef]
- Pérez-Molina, J.A.; Díaz-Menéndez, M.; Pérez-Ayala, A.; Ferrere, F.; Monje, B.; Norman, F.; López-Vélez, R. Tratamiento de las enfermedades causadas por parásitos. Enferm. Infecc. Microbiol. Clin. 2010, 28, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Corti, M. Strongyloides Stercoralis in Immunosuppressed Patients. Arch. Clin. Infect. Dis. 2016, 11, e27510. [Google Scholar] [CrossRef]
- von Samson-Himmelstjerna, G. Anthelmintic Resistance in Equine Parasites—Detection, Potential Clinical Relevance and Implications for Control. Vet. Parasitol. 2012, 185, 2–8. [Google Scholar] [CrossRef]
- Parasitol, I.J.; Article, R. Anthelmintics Resistance; How to Overcome It? Iran. J. Parasitol. 2013, 8, 18–32. [Google Scholar]
- Rizk, M.A.; El-Sayed, S.A.E.-S.; Igarashi, I. Effects of Methanolic Extract from Turmeric (Curcuma longa) against the In Vitro Multiplication of Several Babesia Species and Theileria Equi. Parasitologia 2021, 1, 188–196. [Google Scholar] [CrossRef]
- Rodríguez-Garza, N.E.; Gomez-Flores, R.; Quintanilla-Licea, R.; Elizondo-Luévano, J.H.; Romo-Sáenz, C.I.; Marín, M.; Sánchez-Montejo, J.; Muro, A.; Peláez, R.; López-Abán, J. In Vitro Anthelmintic Effect of Mexican Plant Extracts and Partitions Against Trichinella Spiralis and Strongyloides Venezuelensis. Plants 2024, 13, 3484. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.; Patel, P.; Patel, R. Effect of Different Extracts from Celosia Argentea on Calcium and Phosphate Inhibition in Vitro. Int. J. Pharm. Pharm. Sci. 2011, 3, 337–339. [Google Scholar]
- Chang, Y.C.; Chang, F.R.; Khalil, A.T.; Hsieh, P.W.; Wu, Y.C. Cytotoxic Benzophenanthridine and Benzylisoquinoline Alkaloids from Argemone mexicana. Z. Naturforschung-Sect. C J. Biosci. 2003, 58, 521–526. [Google Scholar] [CrossRef]
- Verma, S.; Sharma, D. Berberine: A Pioneer Remedy for Various Ailments. Pharma Innov. 2018, 7, 194–200. [Google Scholar]
- Swayze, E.E.; Griffey, R.H.; Bennett, C.F. Nucleic Acids (Deoxyribonucleic Acid and Ribonucleic Acid). Compr. Med. Chem. II 2007, 2, 1037–1052. [Google Scholar] [CrossRef]
- Bhattacharjee, I.; Chatterjee, S.K.; Chandra, G. Isolation and Identification of Antibacterial Components in Seed Extracts of Argemone mexicana L. (Papaveraceae). Asian Pac. J. Trop. Med. 2010, 3, 547–551. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Garza-Vega, L.M.; Torres-Hernández, Á.D.; Quintanilla-Licea, R.; Chávez-Montes, A. Argemone mexicana (Papaveraceae) y Berberina-Tesoros Ocultos de La Medicina Herbal. Rev. De Cienc. Agroaliment. Y Biotecnología 2024, 1, 5–11. [Google Scholar] [CrossRef]
- Aguilar-Galaviz, L.; Cadena-Iñiguez, J.; Ortega-Amaro, M.A.; García-Flores, D.A.; Loera-Alvarado, G. Sangre de Drago (Jatropha Dioica Sessé) Un Recurso Vegetal Infrautilizado Del Semidesierto Mexicano. Agro-Divulgación 2024, 4, 73–76. [Google Scholar] [CrossRef]
- Bautista-Hernández, I.; Aguilar, C.N.; Martínez-Ávila, G.C.G.; Torres-León, C.; Ilina, A.; Flores-Gallegos, A.C.; Kumar Verma, D.; Chávez-González, M.L. Mexican Oregano (Lippia Graveolens Kunth) as Source of Bioactive Compounds: A Review. Molecules 2021, 26, 5156. [Google Scholar] [CrossRef]
- Sakkas, H.; Papadopoulou, C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 2017, 27, 429–438. [Google Scholar] [CrossRef]
- Diniz do Nascimento, L.; Moraes, A.A.B.d.; Costa, K.S.d.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G.d. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Miranda, F.; Pinoargote Véliz, S. Evaluación de Extracto Etanólico de Hojas de Tomillo Thymus Vulgaris Como Inhibidor de Virulencia En Vibrio Parahaemolyticus. Ciencia Unemi 2021, 14, 81–91. [Google Scholar] [CrossRef]
- Strothmann, A.L.; Berne, M.E.A.; Capella, G.d.A.; Moura, M.Q.d.; Terto, W.D.d.S.; Costa, C.M.d.; Pinheiro, N.B. Antiparasitic Treatment Using Herbs and Spices: A Review of the Literature of the Phytotherapy. Braz. J. Vet. Med. 2022, 44, e004722. [Google Scholar] [CrossRef]
- Chávez-Montes, A.; Bazaldúa Rodríguez, A.F.; Larqué-García, H.; Gutiérrez-Soto, G.; Elizondo-Luévano, J.H. Actividad Antiparasitaria In-Vitro Del Extracto Metanólico de Kalanchoe Daigremontiana (Crassulaceae) En Contra de Entamoeba Histolytica (Amoebida: Entamoebidae) y Trichomonas Vaginalis (Trichomonadida: Trichomonadidae). Sci. Agric. Vita 2024, 1, 1–9. [Google Scholar] [CrossRef]
- Zavala, G.A.; van Dulm, E.; Doak, C.M.; García, O.P.; Polman, K.; Campos-Ponce, M. Ascariasis, Amebiasis and Giardiasis in Mexican Children: Distribution and Geographical, Environmental and Socioeconomic Risk Factors. J. Parasit. Dis. 2020, 44, 829–836. [Google Scholar] [CrossRef]
- Vega, J.T.S.; López, R.H.; Galicia, A.E.M.; Fuentes, H.A.C.; Castor, A.C.T.; Aguilar, D.I.S.; Aya, D.A.P. Strongyloidiasis in Mexico: A Neglected Disease. EAS J. Parasitol. Infect. Dis. 2023, 5, 43–51. [Google Scholar] [CrossRef]
- Morales-Espinoza, E.M.; Sánchez-Pérez, H.J.; García-Gil, M.d.M.; Vargas-Morales, G.; Méndez-Sánchez, J.D.; Pérez-Ramírez, M. Intestinal Parasites in Children, in Highly Deprived Areas in the Border Region of Chiapas, Mexico. Salud Publica de Mex. 2003, 45, 379–388. [Google Scholar] [CrossRef]
- Gordon, C.; Kurscheid, J.; Jones, M.; Gray, D.; McManus, D. Soil-Transmitted Helminths in Tropical Australia and Asia. Trop. Med. Infect. Dis. 2017, 2, 56. [Google Scholar] [CrossRef] [PubMed]
- Prayong, P.; Barusrux, S.; Weerapreeyakul, N. Cytotoxic Activity Screening of Some Indigenous Thai Plants. Fitoterapia 2008, 79, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Garza, N.E.; Quintanilla-Licea, R.; Romo-Sáenz, C.I.; Elizondo-Luevano, J.H.; Tamez-Guerra, P.; Rodríguez-Padilla, C.; Gomez-Flores, R. In Vitro Biological Activity and Lymphoma Cell Growth Inhibition by Selected Mexican Medicinal Plants. Life 2023, 13, 958. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of Antiradical Properties of Antioxidants Using DPPH Assay: A Critical Review and Results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Clark-Pérez, D.L.; Romo-Sáenz, C.I.; Ramírez-Villalobos, J.M.; Tamez-Guerra, P.; Caballero-Hernández, D.; Delgado-Miranda, A.L.; García, A.; Elizondo-Luevano, J.H.; Rodríguez-Padilla, C.; Gomez-Flores, R. In Vitro and In Vivo Antitumor Activity of Lophocereus marginatus (DC.) S. Arias & Terrazas Endophytic Aspergillus versicolor and Metarhizium anisopliae Extracts Against the Murine Lymphoma L5178Y-R. Microorganisms 2024, 12, 2310. [Google Scholar] [CrossRef]
- Yeap, S.K.; Alitheen, N.B.; Ali, A.M.; Omar, A.R.; Raha, A.R.; Suraini, A.A.; Muhajir, A.H. Effect of Rhaphidophora Korthalsii Methanol Extract on Human Peripheral Blood Mononuclear Cell (PBMC) Proliferation and Cytolytic Activity toward HepG2. J. Ethnopharmacol. 2007, 114, 406–411. [Google Scholar] [CrossRef]
- Berrington, D.; Lall, N. Anticancer Activity of Certain Herbs and Spices on the Cervical Epithelial Carcinoma (HeLa) Cell Line. Evid.-Based Complement. Altern. Med. 2012, 2012, 564927. [Google Scholar] [CrossRef]
- Troiano, G.; Nante, N. Human Trichinellosis in Italy: An Epidemiological Review since 1989. J. Prev. Med. Hyg. 2019, 60, E71–E75. [Google Scholar] [CrossRef]
- Mirzaei, L.; Ashrafi, K.; Atrkar Roushan, Z.; Mahmoudi, M.R.; Shenavar Masooleh, I.; Rahmati, B.; Saadat, F.; Mirjalali, H.; Sharifdini, M. Strongyloides Stercoralis and Other Intestinal Parasites in Patients Receiving Immunosuppressive Drugs in Northern Iran: A Closer Look at Risk Factors. Epidemiol. Health 2021, 43, e2021009. [Google Scholar] [CrossRef]
- Buonfrate, D.; Rodari, P.; Barda, B.; Page, W.; Einsiedel, L.; Watts, M.R. Current Pharmacotherapeutic Strategies for Strongyloidiasis and the Complications in Its Treatment. Expert. Opin. Pharmacother. 2022, 23, 1617–1628. [Google Scholar] [CrossRef] [PubMed]
- Maestrini, M.; Tava, A.; Mancini, S.; Tedesco, D.; Perrucci, S. In Vitro Anthelmintic Activity of Saponins from Medicago spp. Against Sheep Gastrointestinal Nematodes. Molecules 2020, 25, 242. [Google Scholar] [CrossRef] [PubMed]
- Boyko, O.; Brygadyrenko, V. Survival of Nematode Larvae Strongyloides Papillosus and Haemonchus Contortus under the Influence of Various Groups of Organic Compounds. Diversity 2023, 15, 254. [Google Scholar] [CrossRef]
- da Silva, G.D.; de Lima, H.G.; de Sousa, N.B.; de Jesus Genipapeiro, I.L.; Uzêda, R.S.; Branco, A.; Costa, S.L.; Batatinha, M.J.M.; Botura, M.B. In Vitro Anthelmintic Evaluation of Three Alkaloids against Gastrointestinal Nematodes of Goats. Vet. Parasitol. 2021, 296, 109505. [Google Scholar] [CrossRef] [PubMed]
- Raghav, D.; Ashraf, S.M.; Mohan, L.; Rathinasamy, K. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site. Biochemistry 2017, 56, 2594–2611. [Google Scholar] [CrossRef]
- Laing, R.; Gillan, V.; Devaney, E. Ivermectin—Old Drug, New Tricks? Trends Parasitol. 2017, 33, 463–472. [Google Scholar] [CrossRef]
- Singh, N.; Sharma, B. Toxicological Effects of Berberine and Sanguinarine. Front. Mol. Biosci. 2018, 5, 21. [Google Scholar] [CrossRef]
- Molina-Garza, Z.J.; Bazaldúa-Rodríguez, A.F.; Quintanilla-Licea, R.; Galaviz-Silva, L. Anti-Trypanosoma Cruzi Activity of 10 Medicinal Plants Used in Northeast Mexico. Acta Trop. 2014, 136, 14–18. [Google Scholar] [CrossRef]
- López-Aroche, U.; Salinas-Sánchez, D.O.; Mendoza de Gives, P.; López-Arellano, M.E.; Liébano-Hernández, E.; Valladares-Cisneros, G.; Arias-Ataide, D.M.; Hernández-Velázquez, V. In Vitro Nematicidal Effects of Medicinal Plants from the Sierra de Huautla, Biosphere Reserve, Morelos, Mexico against Haemonchus Contortus Infective Larvae. J. Helminthol. 2008, 82, 25–31. [Google Scholar] [CrossRef]
- Olmedo-Juárez, A.; Delgado-Núñez, E.J.; Bahena-Vicencio, A.; Villa-Mancera, A.; Zamilpa, A.; González-Cortazar, M.; Rivero-Pérez, N.; Flores-Franco, G.; López-Arellano, M.E.; Mendoza de Gives, P. In Vitro Nematocidal Properties from Two Extracts: Lippia Graveolens Leaves and Delonix Regia Flowers Against Eggs and Infective Larvae of Haemonchus Contortus. J. Med. Food 2022, 25, 329–337. [Google Scholar] [CrossRef]
- Quintanilla-Licea, R.; Mata-Cárdenas, B.; Vargas-Villarreal, J.; Bazaldúa-Rodríguez, A.; Kavimngeles-Hernández, I.; Garza-González, J.; Hernández-García, M. Antiprotozoal Activity against Entamoeba Histolytica of Plants Used in Northeast Mexican Traditional Medicine. Bioactive Compounds from Lippia Graveolens and Ruta Chalepensis. Molecules 2014, 19, 21044–21065. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla-Licea, R.; Vargas-Villarreal, J.; Verde-Star, M.J.; Rivas-Galindo, V.M.; Torres-Hernández, Á.D. Antiprotozoal Activity against Entamoeba Histolytica of Flavonoids Isolated from Lippia Graveolens Kunth. Molecules 2020, 25, 2464. [Google Scholar] [CrossRef] [PubMed]
- Boyko, O.; Brygadyrenko, V. Survival of Nematode Larvae after Treatment with Eugenol, Isoeugenol, Thymol, and Carvacrol. Front. Biosci. (Elite Ed.) 2023, 15, 25. [Google Scholar] [CrossRef]
- Criollo-Mendoza, M.S.; Ramos-Payán, R.; Contreras-Angulo, L.A.; Gutiérrez-Grijalva, E.P.; León-Félix, J.; Villicaña, C.; Angulo-Escalante, M.A.; Heredia, J.B. Cytotoxic Activity of Polyphenol Extracts from Three Oregano Species: Hedeoma Patens, Lippia Graveolens and Lippia Palmeri, and Antiproliferative Potential of Lippia Graveolens against Two Types of Breast Cancer Cell Lines (MDA-MB-231 and MCF-7). Molecules 2022, 27, 5240. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.M.; Fonseca, F.S.A.; Silva, J.C.R.L.; Silva, A.M.; Silva, J.R.; Martins, E.R. Essential Oil Composition in Natural Population of Lippia Origanoides (Verbenaceae) during Dry and Rainy Seasons. Rev. Biol. Trop. 2019, 67, 278–285. [Google Scholar] [CrossRef]
- Soto-Domínguez, A.; García-Garza, R.; Ramírez-Casas, Y.; Morán-Martínez, J.; Serrano-Gallardo, L.B. El Extracto Acuoso de Orégano (Lippia Graveolens HBK) Del Norte de México Tiene Actividad Antioxidante Sin Mostrar Un Efecto Tóxico in Vitro e in Vivo. Int. J. Morphol. 2012, 30, 937–944. [Google Scholar] [CrossRef]
- Aranda-López, Y.; López-López, L.; Castro, K.E.N.; Ponce-Regalado, M.D.; Becerril-Villanueva, L.E.; Girón-Pérez, M.I.; Del Río-Araiza, V.H.; Morales-Montor, J. Cysticidal Effect of a Pure Naphthoquinone on Taenia Crassiceps Cysticerci. Parasitol. Res. 2021, 120, 3783–3794. [Google Scholar] [CrossRef]
- Silva-Belmares, Y.; Rivas-Morales, C.; Viveros-Valdez, E.; de la Cruz-Galicia, M.G.; Carranza-Rosales, P. Antimicrobial and Cytotoxic Activities from Jatropha Dioica Roots. Pak. J. Biol. Sci. 2014, 17, 748–750. [Google Scholar] [CrossRef]
- Fernández-Villascan, C.; Patiño-Herrera, R.; Patino, I.; Octavio Sánchez Vargas, L.; Salado-Leza, D.; Pérez, E. Invasive Candidiasis: A Promising Approach Using Jatropha Dioica Extracts and Nanotechnology. Chem. Biodivers. 2024, 22, e202402339. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Castro-Ríos, R.; Sánchez-García, E.; Hernández-García, M.E.; Vargas-Villarreal, J.; Rodríguez-Luis, O.E.; Chávez-Montes, A. In Vitro Study of Antiamoebic Activity of Methanol Extracts of Argemone mexicana on Trophozoites of Entamoeba Histolytica HM1-IMSS. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 7453787. [Google Scholar] [CrossRef]
- Elizondo-Luevano, J.H.; Verde-Star, J.; González-Horta, A.; Castro-Ríos, R.; Hernández-García, M.E.; Chávez-Montes, A. In Vitro Effect of Methanolic Extract of Argemone mexicana against Trichomonas Vaginalis. Korean J. Parasitol. 2020, 58, 135–145. [Google Scholar] [CrossRef]
- Singh, L.; Gupta, S. Ethnopharmacological Aspects of Argemone mexicana Linn., a Significant Plant Species, in Traditional System of Medicine. Int. Arch. Appl. Sci. Technol. 2019, 10, 143–150. [Google Scholar]
- Elizondo-Luévano, J.H.; Castro-Ríos, R.; Vicente, B.; Fernández-Soto, P.; López-Aban, J.; Muro, A.; Chávez-Montes, A. In Vitro Antischistosomal Activity of the Argemone mexicana Methanolic Extract and Its Main Component Berberine. Iran. J. Parasitol. 2021, 16, 91–100. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Hernández-García, M.E.; Pérez-Narváez, O.A.; Castro-Ríos, R.; Chávez-Montes, A. Berberina, Curcumina y Quercetina Como Potenciales Agentes Con Capacidad Antiparasitaria. Rev. Biol. Trop. 2020, 68, 1241–1249. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Darwish, N.H.E.; Sudha, T.; Bahlouli, S.; Kellou, D.; Benelmouffok, A.B.; Chader, H.; Rajabi, M.; Benali, Y.; Mousa, S.A. In Vitro Antifungal and Topical Anti-Inflammatory Properties of Essential Oil from Wild-Growing Thymus Vulgaris (Lamiaceae) Used for Medicinal Purposes in Algeria: A New Source of Carvacrol. Sci. Pharm. 2020, 88, 33. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Pérez-Narváez, O.A.; Sánchez-García, E.; Castro-Ríos, R.; Hernández-García, M.E.; Chávez-Montes, A. In-Vitro Effect of Kalanchoe Daigremontiana and Its Main Component, Quercetin against Entamoeba Histolytica and Trichomonas Vaginalis. Iran. J. Parasitol. 2021, 16, 394–401. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Gomez-Flores, R.; Verde-Star, M.J.; Tamez-Guerra, P.; Romo-Sáenz, C.I.; Chávez-Montes, A.; Rodríguez-Garza, N.E.; Quintanilla-Licea, R. In Vitro Cytotoxic Activity of Methanol Extracts of Selected Medicinal Plants Traditionally Used in Mexico against Human Hepatocellular Carcinoma. Plants 2022, 11, 2862. [Google Scholar] [CrossRef]
- De La Cruz-Jiménez, L.; Hernández-Torres, M.A.; Monroy-García, I.N.; Rivas-Morales, C.; Verde-Star, M.J.; Gonzalez-Villasana, V.; Viveros-Valdez, E. Biological Activities of Seven Medicinal Plants Used in Chiapas, Mexico. Plants 2022, 11, 1790. [Google Scholar] [CrossRef]
- Olounladé, P.A.; Azando, E.V.B.; Hounzangbé-Adoté, M.S.; Ha, T.B.T.; Leroy, E.; Moulis, C.; Fabre, N.; Magnaval, J.F.; Hoste, H.; Valentin, A. In Vitro Anthelmintic Activity of the Essential Oils of Zanthoxylum Zanthoxyloides and Newbouldia Laevis against Strongyloides Ratti. Parasitol. Res. 2012, 110, 1427–1433. [Google Scholar] [CrossRef]
- Aderogba, M.A.; McGaw, L.J.; Bagla, V.P.; Eloff, J.N.; Abegaz, B.M. In Vitro Antifungal Activity of the Acetone Extract and Two Isolated Compounds from the Weed, Pseudognaphalium Luteoalbum. S. Afr. J. Bot. 2014, 94, 74–78. [Google Scholar] [CrossRef]
* Species | ** Family | Popular Name | Hv |
---|---|---|---|
A. mexicana L. 1753 | Papaveraceae | Chicalote or Mexican poppy | 29,127 |
J. dioica Sessé 1887 | Euphorbiaceae | Sangre de Drago | 30,648 |
L. graveolens Kunth. 1818 | Verbenaceae | Mexican oregano | 25,554 |
T. vulgaris L. 1753 | Lamiaceae | Tomillo or thyme | 20,888 |
K. daigremontiana Raym.-Hamet & H. Perrier 1913 | Crassulaceae | Aranto | 29,130 |
Plant | Yield % | Chemical Group | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Species | Uns | Car | Str | Flv | Cou | Sql | Sap | Qns | Tan | Alk | |
A. mexicana | 11.30 | + | − | + | + | + | + | − | − | − | + |
J. dioica | 15.99 | + | + | + | − | + | + | − | + | − | − |
L. graveolens | 43.33 | + | + | + | + | + | + | + | + | + | − |
T. vulgaris | 11.36 | + | + | + | + | − | − | + | − | + | − |
K. daigremontiana | 10.04 | + | + | + | + | − | − | + | − | + | − |
Plant Extract | LC50 in µg/mL | |||
---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | |
A. mexicana | >250 | <250 | <250 | <200 |
J. dioica | >500 | >500 | <200 | <200 |
L. graveolens | >500 | >250 | <100 | <100 |
T. vulgaris | >500 | >500 | <250 | <200 |
K. daigremontiana | >1000 | >1000 | >500 | >500 |
Plant Extract | IC50 (LL − UL) in µg/mL | IC50 (LL − UL) in µg/mL | EC50 (LL − UL) in µg/mL |
---|---|---|---|
Red-Cells | Vero Cells | DPPH | |
A. mexicana | >1000 e | 202.99 (187.74–218.26) b | 565.98 (526.77–605.19) d |
J. dioica | 565.80 (518.74–612.86) c | >1000 d | 116.80 (93.28–140.32) b |
L. graveolens | 432.60 (412.52–452.68) b | ND | 19.80 (15.77–23.83) a |
T. vulgaris | 229.77 (217.60–241.95) a | 404.52 (369.56–438.82) c | 418.72 (377.33–460.06) c |
K. daigremontiana | 671.81 (658.18–685.49) d | 111.39 (102.12–120.66) a | 699.05 (660.59–737.51) e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elizondo-Luévano, J.H.; Chávez-Montes, A.; Muro, A.; Vicente-Santiago, B.; Kačániová, M.; García-Hernández, D.G.; Bazaldúa-Rodríguez, A.F.; Larqué-García, H.; Castillo-Velázquez, U.; López-Abán, J. Nematocidal Activity of a Variety of Plants Used in Mexico Against Strongyloides venezuelensis. Parasitologia 2025, 5, 18. https://doi.org/10.3390/parasitologia5020018
Elizondo-Luévano JH, Chávez-Montes A, Muro A, Vicente-Santiago B, Kačániová M, García-Hernández DG, Bazaldúa-Rodríguez AF, Larqué-García H, Castillo-Velázquez U, López-Abán J. Nematocidal Activity of a Variety of Plants Used in Mexico Against Strongyloides venezuelensis. Parasitologia. 2025; 5(2):18. https://doi.org/10.3390/parasitologia5020018
Chicago/Turabian StyleElizondo-Luévano, Joel H., Abelardo Chávez-Montes, Antonio Muro, Belén Vicente-Santiago, Miroslava Kačániová, David G. García-Hernández, Aldo F. Bazaldúa-Rodríguez, Horacio Larqué-García, Uziel Castillo-Velázquez, and Julio López-Abán. 2025. "Nematocidal Activity of a Variety of Plants Used in Mexico Against Strongyloides venezuelensis" Parasitologia 5, no. 2: 18. https://doi.org/10.3390/parasitologia5020018
APA StyleElizondo-Luévano, J. H., Chávez-Montes, A., Muro, A., Vicente-Santiago, B., Kačániová, M., García-Hernández, D. G., Bazaldúa-Rodríguez, A. F., Larqué-García, H., Castillo-Velázquez, U., & López-Abán, J. (2025). Nematocidal Activity of a Variety of Plants Used in Mexico Against Strongyloides venezuelensis. Parasitologia, 5(2), 18. https://doi.org/10.3390/parasitologia5020018