Zn-Pb Dumps, Environmental Pollution and Their Recultivation, Case of Ruda Śląska-Wirek, S Poland
Abstract
:1. Introduction
2. Information from Study Area
3. Materials and Methods
4. Results
4.1. Study of Heap Samples
4.2. Analysis of the Soils Samples
4.3. Results of the Plants Sample Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warchulski, R.; Mendecki, M.; Gawęda, A.; Sołtysiak, M.; Gadowski, M. Rainwater-induced migration of potentially toxic elements from a Zn–Pb slag dump in Ruda Śląska in light of mineralogical, geochemical and geophysical investigations. Appl. Geochem. 2019, 109, 104396. [Google Scholar] [CrossRef]
- Warchulski, R.; Gawęda, A.; Kupczak, K.; Banasik, K.; Krzykawski, T. Slags from Ruda Śląska, Poland as a large-scale laboratory for the crystallization of rare natural rocks: Melilitolites and paralavas. Lithos 2020, 372–373, 105666. [Google Scholar] [CrossRef]
- Tyszka, R.; Pietranik, A.; Potysz, A.; Kierczak, J.; Schulz, B. Experimental simulations of Zn Pb slag weathering and its impact on the environment: Effects of acid rain, soil solution, and microbial activity. J. Geochem. Explor. 2021, 228, 106808. [Google Scholar] [CrossRef]
- Boryczka, A.; Blacha, L. Zinc metallurgy in Silesia until the end of the 19th century. Ores Non-Ferr. Met. 2002, 8, 369–374. (In Polish) [Google Scholar]
- Jończy, I.; Huber, M.; Lata, L. Vitrified metallurgical wastes after zinc and lead production from the dump in Ruda Śląska in the aspect of mineralogical and chemical studies. Miner. Resour. Manag. 2014, 30, 161–174. (In Polish) [Google Scholar] [CrossRef]
- Blicharska, E.; Chmiel, S.; Huber, M.; Lata, L.; Klepka, T.; Muraczyńska, B.; Oszust, K.; Rawski, M. Selected Applications of Optical and Electron Microscopy in Biomedical and Environmental Research; TMKarpinski Publisher: Suchy Las, Poland, 2015. (In Polish) [Google Scholar]
- Huber, M.; Blicharska, E.; Lata, L.; Skupiński, S. The Effect of Substrate on the Metal Content of Selected Plants in Terms of Environmental Protection; Sciences Publisher: Lublin, Poland, 2016; p. 256. (In Polish) [Google Scholar]
- Jonczy, I. Mineralogical and Chemical Characteristics of the Post-Production Waste Heap of the Zinc and Lead Smelter in Ruda Śląska-Wirk and Its Impact on the Environment; Silesian University of Technology Publishing: Gliwice, Poland, 2006. (In Polish) [Google Scholar]
- Ettler, V.; Johan, Z.; Touray, J.C.; Jelínek, E. Zinc partitioning between glass and silicate phases in historical and modern lead–zinc metallurgical slags from the Pribram district, Czech Republic. C. R. Acad. Sci. Paris 2000, 331, 245–250. [Google Scholar] [CrossRef]
- Ettler, V.; Legendre, O.; Bodénan, F.; Touray, J.-C. Primary phases and natural weathering of old lead-zinc pyrometallurgical slag from Pribram Czech Republic. Can. Mineral. 2001, 39, 873–888. [Google Scholar] [CrossRef]
- Ettler, V.; Mihaljevič, M.; Piantone, P.; Touray, J.C. Leaching of polished sections: An integrated approach for studying the liberation of heavy metals from lead–zinc metallurgical slags. Bull. Soc. Geol. Fr. 2002, 173, 161–169. [Google Scholar] [CrossRef]
- Ettler, V.; Piantone, P.; Touray, J.C. Mineralogical control on inorganic contaminant mobility in leachate from lead–zinc metallurgical slag: Experimental approach and long-term assessment. Mineral. Mag. 2003, 67, 1269–1283. [Google Scholar] [CrossRef]
- Ettler, V.; Johan, Z.; Hradil, D. Natural alteration products of sulphide mattes from primary lead smelting. C. R. Geosci. 2003, 335, 1013–1020. [Google Scholar] [CrossRef]
- Fidancevska, E.; Vassilev, V.; Hristova-Vasileva, T.; Milosevski, M. On a possibility for aplication of industrial wastes of metallurgical slag and tv-glass. J. Univ. Chem. Technol. Metall. 2009, 44, 189–196. [Google Scholar]
- Inegbenebor, A.I.; Thomas, J.H.; Williams, P.A. The chemical stability of mimetite and distribution coefficient for pyromorphite–mimetite solid solutions. Mineral. Mag. 1989, 53, 363–371. [Google Scholar] [CrossRef]
- Manasse, A.; Mellini, M. Archaeometallurgic slags from Kutná Hora. Neues Jahrb. Mineral. Mh. 2002, 8, 369–384. [Google Scholar] [CrossRef]
- Parsons, M.B.; Bird, D.K.; Einaudi, M.T.; Alpers, C.N. Geochemical and mineralogical controls on trace element release from the Penn Mine basemetal slag dump, California. Appl. Geochem. 2001, 16, 1567–1593. [Google Scholar] [CrossRef]
- Paszko, T.; Matysiak, J.; Kamiński, D.; Pasieczna-Patkowska, S.; Huber, M.; Król, B. Adsorption of bentazone in the profiles of mineral soils with low organic matter content. PLoS ONE 2020, 15, e0242980. [Google Scholar] [CrossRef]
- Puziewicz, J.; Zainoun, K.; Bril, H. Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świętochłowice, Upper Silesia, Poland. Can. Mineral. 2007, 45, 1189–1200. [Google Scholar] [CrossRef]
- Sharma, R.; Yadav, A.; Ramteke, S.; Chakradhari, S.; Patel, K.S.; Lata, L.; Huber, M.; Li, P.; Allen, J.; Corns, W. Contamination of arsenic and heavy metals in coal exploitation area. In Environmental Arsenic in a Changing World; Yong-Guan, Z., Huaming, G., Prosun, B., Jochen, B., Arslan, A., Ravi, N., Eds.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 381–385. ISBN 9781351046633. [Google Scholar] [CrossRef]
- Patel, K.S.; Yadav, A.; Sahu, Y.; Sahu, P.K.; Lata, L.; Huber, M.; Corns, W.T.; Martín-Ramos, P. Tree Bark as a Bioindicator for Arsenic and Heavy Metal Air Pollution in Rajnandgaon District, Chhattisgarh, India. J. Hazard. Toxic Radioact. Waste 2020, 24, 05019006. [Google Scholar] [CrossRef]
- Sharma, R.; Yadav, A.; Ramteke, S.; Patel, K.S.; Lata, L.; Huber, M.; Corns, W.T.; Martín-Ramos, P. Heavy Metal Pollution in Surface Soil of Korba Basin, India. J. Hazard. Toxic Radioact. Waste 2019, 23, 05019004. [Google Scholar] [CrossRef]
- Yadav, A.; Patel, K.S.; Lata, L.; Huber, M.; Li, P.; Allen, J.; Corn, W. Contamination of water, soil and plant with arsenic and heavy metals. In Environmental Arsenic in a Changing World; Yong-Guan, Z., Huaming, G., Prosun, B., Jochen, B., Arslan, A., Ravi, N., Eds.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 386–387. ISBN 9781351046633. [Google Scholar] [CrossRef]
- Yadav, A.; Sahu, P.K.; Patel, K.S.; Lata, L.; Huber, M.; Corns, W.T.; Allen, J.; Martín-Ramos, P. Assessment of Arsenic and Heavy Metal Pollution in Chhattisgarh, India. J. Hazard. Toxic Radioact. Waste 2020, 24, 05019008. [Google Scholar] [CrossRef]
- Jonczy, I. Chemical composition of metallurgical sludge from the heap of the Kościuszko Steelworks in Chorzów. In Proceedings of the First Polish Geological Congress, Cracow, Poland, 26–28 June 2008; Polish Geological Society Publishing House: Katowice, Poland, 2008; p. 44. (In Polish). [Google Scholar]
- Umoren, I.U.; Udoh, A.P.; Udousoro, I.I. Concentration and chemical speciation for the determination of Cu, Zn, Ni, Pb and Cd from refuse dump soils using the optimized BCR sequential extraction procedure. Environmentalist 2007, 27, 241–252. [Google Scholar] [CrossRef]
- Smuda, J.; Dold, B.; Friese, K.; Morgenstern, P.; Glaesser, W. Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit, Cerro de Pasco, Peru. J. Geochem. Explor. 2007, 92, 97–110. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Seal, R.R., II; Meier, A.L.; Kornfeld, J.M. Secondary sulfate minerals associated with acid drainage in the eastern U.S.: Recycling of metal and acidity in surficial environments. Chem. Geol. 2005, 215, 407–432. [Google Scholar] [CrossRef]
- Cabała, J.; Zogala, B.; Dubiel, R. Geochemical and Geophysical Study of Historical Zn-Pb Ore Processing Waste Dump Areas (Southern Poland). Pol. J. Environ. Stud. 2008, 17, 693–700. [Google Scholar]
- Florkowska, L. Damage to buildings and land deformation caused by mining exploitation in the heavily disturbed rock mass in the district in Ruda Śląska Wirek. Min. Geoengin. 2010, 34, 265–273. (In Polish) [Google Scholar]
- Jiang, X.; Lu, W.X.; Zhao, H.Q.; Yang, Q.C.; Yang, Z.P. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Nat. Hazards Earth Syst. Sci. 2014, 14, 1599–1610. [Google Scholar] [CrossRef]
- Tumuklu, A.; Yalcin, M.G.; Sonmez, M. Detection of Heavy Metal Concentrations in Soil Caused by Nigde City Garbage Dump. Pol. J. Environ. Stud. 2007, 16, 651–658. [Google Scholar]
- Kanmani, S.; Gandhimathi, R. Investigation of physicochemical characteristics and heavy metal distribution profile in groundwater system around the open dump site. Appl. Water Sci. 2013, 3, 387–399. [Google Scholar] [CrossRef]
- Leopold, I.; Guenther, D.; Schmidt, J.; Neumann, D. Phytochelatins and heavy metal tolerance. Phytochemistry 1999, 50, 1323–1328. [Google Scholar] [CrossRef]
- Opaluwa, O.D.; Aremu, M.O.; Ogbo, L.O.; Abiola, K.A.; Odiba, I.E.; Abubakar, M.M.; Nweze, N.O. Heavy metal concentrations in soils, plant leaves and crops grown around dump sites in Lafia Metropolis, Nasarawa State, Nigeria. Adv. Appl. Sci. Res. 2012, 3, 780–784. [Google Scholar]
- Hornere, J.M. Environmental Health Implications of Heavy Metal Pollution from Car Tires. Rev. Environ. Health 1996, 4, 175–178. [Google Scholar] [CrossRef]
- Lin, Z.; Herbert, R.B., Jr. Heavy metal retention in secondary precipitates from a mine rock dump and underlying soil, Dalarna, Sweden. Environ. Geol. 1997, 33, 1–12. [Google Scholar] [CrossRef]
- Richardson, C.A.; Chenery, S.R.N.; Cook, J.M. Assessing the history of trace metal (Cu, Zn, Pb) contamination in the North Sea through laser ablation—ICP-MS of horse mussel Modiolus modiolus shells. Mar. Ecol. Prog. Ser. 2001, 211, 157–167. [Google Scholar] [CrossRef]
- Benna, P.; Tribaudino, M.; Bruno, E. The structure of ordered and disordered Pb feldspar (PbAl2Si2O8). Am. Mineral. 1996, 81, 1337–1343. [Google Scholar] [CrossRef]
- Biswas, A.K.; Davenport, W.G. Extractive Metallurgy of Copper; Pergamon Press: Oxford, UK, 1976. [Google Scholar]
- Kasikov, A.; Neradovsky, Y.; Huber, M.; Mayorova, Y.; Rakitina, E.; Grishin, N. Heterogeneity of glass components in slag after nickel acquisition process from Kola Peninsula (Russia). Metall. Foundry Eng. 2017, 43, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, M.C.F.; Pedrosa de Jesus, J.D.; Williams, P.A. The chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II) and Pb(II). Mineral. Mag. 1988, 52, 679–690. [Google Scholar] [CrossRef]
- Iacobescu, R.I.; Koumpouri, D.; Pontikes, Y.; Saban, R.; Angelopoulos, G. Utilization of EAF metallurgical slag in “GREEN” belite cement. U.P.B. Sci. Bull. 2011, 73B, 1454–2331. [Google Scholar]
- Sáez, R.; Nocete, F.; Nieto, J.M.; Capitán, M.A.; Rovira, S. The extractive metallurgy of copper from Cabezo Juré, Huelva, Spain: Chemical and mineralogical study of slags dated to the third millenium B.C. Can. Mineral. 2003, 41, 627–638. [Google Scholar] [CrossRef]
- Seignez, N.; Gauthier, A.; Bulteel, D.; Buatier, M.; Recourt, P.; Damidot, D.; Potdevin, J.L. Effect of Pb-rich and Fe-rich entities during alteration of a partially vitrified metallurgical waste. J. Hazard. Mater. 2007, 149, 418–431. [Google Scholar] [CrossRef]
- Van Gerven, T.; Geysen, D.; Stoffels, L.; Jaspers, M.; Wauters, G.; Vandecasteele, C. Management of incineration residues in Flanders (Belgium) and In neighbouring countries. A comparison. Waste Manag. 2005, 25, 75–87. [Google Scholar]
- Kończak, M.; Huber, M. Application of the engineered sewage sludge-derived biochar to minimize water eutrophication by removal of ammonium and phosphate ions from water. J. Clean. Prod. 2022, 331, 129994. [Google Scholar] [CrossRef]
- Ettler, V.; Johan, Z. Mineralogy of metallic phases in sulphide mattes from primary lead smelting. C. R. Geosci. 2003, 335, 1005–1012. [Google Scholar] [CrossRef]
- Ballantyne, R.; Fien, J.; Packer, J. Program Effectiveness in Facilitating Intergenerational Influence in Environmental Education: Lessons from the Field. J. Environ. Educ. 2001, 32, 8–15. [Google Scholar] [CrossRef]
- Boca, G.D.; Saracli, S. Environmental Education and Student’s Perception, for Sustainability. Sustainability 2019, 11, 1553. [Google Scholar] [CrossRef]
- Liu, S.; Guo, L. Based on Environmental Education to Study the Correlation between Environmental Knowledge and Environmental Value. Eur. J. Math. Sci. Technol. Educ. 2018, 14, 3311–3319. [Google Scholar] [CrossRef]
- Jadhav, A.S.; Jadhav, V.V.; Raut, P. Role of Higher Education Institutions in Environmental Conservation and Sustainable Development: A case study of Shivaji University, Maharashtra, India. J. Environ. Earth Sci. 2014, 4, 17–29. [Google Scholar]
- McKeown-Ice, R. Environmental Education in the United States: A Survey of Preservice Teacher Education Programs. J. Environ. Educ. 2000, 32, 4–11. [Google Scholar] [CrossRef]
- Leeming, F.C.; Dwyer, W.O.; Porter, B.E.; Cobern, M.K. Outcome Research in Environmental Education: A Critical Review. J. Environ. Educ. 2010, 24, 8–21. [Google Scholar] [CrossRef]
Sample | Fe | Mn | Cu | Pb | Cr | Ni | Cd |
---|---|---|---|---|---|---|---|
01Z | 47.7 * | 2.79 * | 0.19 * | 0.03 * | 47.34 | < | < |
02Z | 25.2 * | 184.7 | 0.02 * | 0.44 * | 25.74 | < | < |
03Z | 19.3 * | 0.28* | 0.14 * | 0.27 * | 40.81 | 60.9 | < |
04Z | 17.3 * | 4.30 * | 0.18 * | 0.20 * | 53.53 | 32.7 | < |
05Z | 8.85 * | 3.97 * | 0.17 * | 0.38 * | 52.39 | 53.6 | 19.6 |
06Z | 9.87 * | 831.4 | 0.10 * | 1.42 * | 22.91 | 33.3 | 51.4 |
07Z | 13.8 * | 269.5 | 0.03 * | 0.93 * | 53.83 | 16.1 | 59.4 |
08Z | 25.2 * | 651.2 | 0.15 * | 1.43 * | 57.51 | 80.3 | 49.7 |
09Z | 11.9 * | 1.32 * | 5.20 * | 0.11 * | 64.05 | 53.6 | 1.77 |
10Z | 7.20 * | 0.10 | 1.66 * | 2.53 * | 29.52 | 21.7 | 12.6 |
Average contents: | 18.63 * | 1.29 * | 0.78 * | 0.74 * | 44.76 | 44.02 | 32.41 |
Sample | Fe | Mn | Cu | Zn | Pb | Cr | Ti | Ni | As | Cd | Hg |
---|---|---|---|---|---|---|---|---|---|---|---|
1G | 4548 | 2.72 * | 61.85 | 69.12 | 31.39 | 40.55 | 312 | 3.98 | 13.25 | 0.74 | 0.04 |
2G | 2796 | 1.72 * | 40.82 | 18.06 | 3.82 | 20.96 | 252.8 | 4.15 | 10.11 | 0.59 | 0.04 |
3G | 3427 | 1.96 * | 57.05 | 73.16 | 38.73 | 28.92 | 274.3 | 3.19 | 11.22 | 0.75 | 0.03 |
4G | 8207 | 2.96 * | 176.90 | 57.32 | 31.62 | 45.73 | 264.9 | 7.05 | 13.56 | 0.81 | 0.23 |
5G | 4105 | 2.94 * | 57.56 | 26.73 | 7.60 | 37.88 | 262.1 | 3.39 | 13.93 | 0.57 | 0.02 |
Sample | Zn | Mn | Ni | Cu | Cd | Fe | Pb | As | Ti |
---|---|---|---|---|---|---|---|---|---|
1P | 404 | 65.5 | 25.8 | 20.2 | 1.55 | 1248 | 66.23 | 6.95 | 159 |
3P | 955 | 146.0 | 22.4 | 38.4 | 3.95 | 4104 | 384.00 | 71.90 | 235 |
3PL* | 862 | 184.0 | 33.5 | 93.1 | 15.60 | 25,000 | 1258.00 | 893.00 | 981 |
5P | 923 | 492.0 | 60.8 | 426.0 | 17.80 | 42,267 | 3645.00 | 508.00 | 1863 |
6P | 832 | 373.0 | 35.9 | 81.5 | 5.42 | 11,617 | 111.00 | 209.00 | 804 |
7P | 771 | 256.0 | 24.5 | 26.1 | 3.03 | 10,639 | 317.10 | 88.50 | 625 |
8P | 1486 | 1054.0 | 97.9 | 124 | 8.11 | 28,551 | 1199.00 | 172.00 | 1588 |
9P | 231 | 69.4 | 26.3 | 35.4 | 1.44 | 1670 | 79.80 | 14.20 | 273 |
10P | 1440 | 784.0 | 49.5 | 80.7 | 8.91 | 14,846 | 481.80 | 117.00 | 918 |
11P | 1082 | 63.6 | 32.4 | 59.6 | 10.10 | 3184 | 896.10 | 34.90 | 249 |
03RS | 810 | 809.0 | 38.6 | 42.2 | 4.29 | 10,573 | 536.40 | 31.50 | 693 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huber, M.; Iakovleva, O. Zn-Pb Dumps, Environmental Pollution and Their Recultivation, Case of Ruda Śląska-Wirek, S Poland. Mining 2022, 2, 616-628. https://doi.org/10.3390/mining2030033
Huber M, Iakovleva O. Zn-Pb Dumps, Environmental Pollution and Their Recultivation, Case of Ruda Śląska-Wirek, S Poland. Mining. 2022; 2(3):616-628. https://doi.org/10.3390/mining2030033
Chicago/Turabian StyleHuber, Miłosz, and Olga Iakovleva. 2022. "Zn-Pb Dumps, Environmental Pollution and Their Recultivation, Case of Ruda Śląska-Wirek, S Poland" Mining 2, no. 3: 616-628. https://doi.org/10.3390/mining2030033
APA StyleHuber, M., & Iakovleva, O. (2022). Zn-Pb Dumps, Environmental Pollution and Their Recultivation, Case of Ruda Śląska-Wirek, S Poland. Mining, 2(3), 616-628. https://doi.org/10.3390/mining2030033