Current Issues in Oral Health: Introduction to the Special Issue
1. Introduction
2. Periodontitis and Alzheimer’s Disease
3. Treatment of Dental Fear
4. Detecting Mucosal Lesions with Artificial Intelligence
5. Doubts on the Use of Chelating Gels in Endodontics
6. Loss of Enamel Volume Following Exposure to Energy Drinks
7. Neutrophil Chemotaxis and Glutathione
8. Odontogenic Infections and Virulent Prevotella
9. Treatment of Molar Incisor Hypomineralization
10. Zirconia Implants
11. Pulpotomy in Mature Posterior Teeth
12. Oral Health Management of Pediatric Patients with Inherited Bleeding Disorders
13. Corticotomy-Assisted Orthodontic Treatment
14. Oral Biosensors for Monitoring Systemic Health
15. Complete Arch Fixed Implant Prosthesis
16. Concluding Remarks
Conflicts of Interest
References
- World Health Organization Bangkok Declaration—No Health Without Oral Health. Available online: https://www.who.int/publications/m/item/bangkok-declaration---no-health-without-oral-health (accessed on 25 March 2025).
- Lundergan, W.; Parthasarathy, K.; Knight, N. Periodontitis and Alzheimer’s disease: Is there a connection? Oral 2024, 4, 61–73. [Google Scholar] [CrossRef]
- Kaye, E.K.; Valencia, A.; Baba, N.; Spiro, A., III; Dietrich, T.; Garcia, R.I. Tooth loss and periodontal disease predict poor cognitive function in older men. J. Am. Geriatr. Soc. 2010, 58, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Gil-Montoya, J.A.; Sanchez-Lara, I.; Carnero-Pardo, C.; Fornieles, F.; Montes, J.; Vilchez, R.; Burgos, J.S.; Gonzalez-Moles, M.A.; Barrios, R.; Bravo, M. Is periodontitis a risk factor for cognitive impairment and dementia? A case-control study. J. Periodontol. 2015, 86, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Ide, M.; Harris, M.; Stevens, A.; Sussams, R.; Hopkins, V.; Culliford, D.; Fuller, J.; Ibbett, P.; Raybould, R.; Thomas, R.; et al. Periodontitis and cognitive decline in Alzheimer’s disease. PLoS ONE 2016, 11, e0151081. [Google Scholar] [CrossRef]
- Iwasaki, M.; Kimura, Y.; Ogawa, H.; Yamaga, T.; Ansai, T.; Wada, T.; Sakamoto, R.; Ishimoto, Y.; Fujisawa, M.; Okumiya, K.; et al. Periodontitis, periodontal inflammation, and mild cognitive impairment: A 5-year cohort study. J. Periodontal Res. 2019, 54, 233–240. [Google Scholar] [CrossRef]
- Chen, L.; Cao, H.; Wu, X.; Xu, X.; Ji, X.; Wang, B.; Zhang, P.; Li, H. Effects of oral health intervention strategies on cognition and microbiota alterations in patients with mild Alzheimer’s disease: A randomized controlled trial. Geriatr. Nurs. 2022, 48, 103–110. [Google Scholar] [CrossRef]
- Sakamoto, S.; Hara, T.; Kurozumi, A.; Oka, M.; Kuroda-Ishimine, C.; Araki, D.; Iida, S.; Minagi, S. Effect of occlusal rehabilitation on spatial memory and hippocampal neurons after long-term loss of molars in rats. J. Oral Rehabil. 2014, 41, 715–722. [Google Scholar] [CrossRef]
- Wang, X.; Hu, J.; Jiang, Q. Tooth loss-associated mechanisms that negatively affect cognitive function: A systematic review of animal experiments based on occlusal support loss and cognitive impairment. Front. Neurosci. 2022, 16, 811335. [Google Scholar] [CrossRef]
- Silveira, E.R.; Cademartori, M.G.; Schuch, H.S.; Armfield, J.A.; Demarco, F.F. Estimated prevalence of dental fear in adults: A systematic review and meta-analysis. J. Dent. 2021, 108, 103632. [Google Scholar] [CrossRef]
- Wide Boman, U.; Carlsson, V.; Westin, M.; Hakeberg, M. Psychological Treatment of Dental Anxiety Among Adults: A Systematic Review. Eur. J. Oral Sci. 2013, 121, 225–234. [Google Scholar] [CrossRef]
- Berggren, U.; Linde, A. Dental fear and avoidance: A comparison of two modes of treatment. J. Dent. Res. 1984, 63, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Daly, K.A.; Heyman, R.E.; Drew, A.L.; Smith Slep, A.M.; Bubis, R.; Lee, J.; Pearce, V.V.V.; Jones, R.; Ruggiero, M.; Wold, M.S. A pre-adoption assessment of collaborative care approach to dental-fear treatment. Oral 2024, 4, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Shiragur, S.S.; Srinath, S.; Yadav, S.T.; Purushothaman, A.; Chavan, N.V. Spectrum of white lesions in the oral cavity—A review. J. Oral Med. Oral Surg. Oral Pathol. Oral Radiol. 2024, 10, 3–13. [Google Scholar] [CrossRef]
- Müller, S. Frictional keratosis, contact keratosis and smokeless tobacco keratosis: Features of reactive white lesions of the oral mucosa. Head Neck Pathol. 2019, 13, 16–24. [Google Scholar] [CrossRef]
- Villa, A.; Sonis, S. Oral leukoplakia remains a challenging condition. Oral Dis. 2018, 24, 179–183. [Google Scholar] [CrossRef]
- Louisy, A.; Humbert, E.; Samimi, M. Oral lichen planus: An update on diagnosis and management. Am. J. Clin. Dermatol. 2024, 25, 35–53. [Google Scholar] [CrossRef]
- Fortuna, G.; Aria, M.; Schiavo, J.H. Drug-induced oral lichenoid reactions: A real clinical entity? A systematic review. Eur. J. Clin. Pharmacol. 2017, 73, 1523–1537. [Google Scholar] [CrossRef]
- Syrjänen, S. Oral manifestations of human papillomavirus infections. Eur. J. Oral Sci. 2018, 126, 49–66. [Google Scholar] [CrossRef]
- Hellstein, J.W.; Marek, C.L. Candidiasis: Red and white manifestations in the oral cavity. Head Neck Pathol. 2019, 13, 25–32. [Google Scholar] [CrossRef]
- La Mantia, G.; Kiswarday, F.; Pizzo, G.; Giuliana, G.; Oteri, G.; Cimino, M.G.C.A.; Di Fede, O.; Campisi, G. Detection of elementary white mucosal lesions by an AI system: A pilot study. Oral 2024, 4, 557–566. [Google Scholar] [CrossRef]
- Nygaard-Ostby, B. Chelation in root canal therapy. Ethylendiamine tetraacetic acid for cleansing and widening of root canals. Odontol. Tidskr. 1957, 65, 3–11. [Google Scholar]
- Chandler, N.; Chellappa, D. Lubrication during root canal treatment. Aust. Endod. J. 2019, 45, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chang, Y.-C. Effects of liquid-and paste-type EDTA on smear-layer removal during rotary root-canal instrumentation. J. Dent. Sci. 2011, 6, 41–47. [Google Scholar] [CrossRef]
- Wright, P.A.; Diamond, E.S.; Peters, O.A. Usage of chelating gels in root canal preparation: A survey of Australian clinicians. Oral 2024, 4, 315–324. [Google Scholar] [CrossRef]
- Costantino, A.; Maiese, A.; Lazzari, J.; Casula, C.; Turillazzi, E.; Frati, P.; Fineschi, V. The dark side of energy drinks: A comprehensive review of their impact on the human body. Nutrients 2023, 15, 3922. [Google Scholar] [CrossRef]
- Kaur, A.; Yousuf, H.; Ramgobin-Marshall, D.; Jain, R.; Jain, R. Energy drink consumption: A rising public health issue. Rev. Cardiovasc. Med. 2022, 23, 83. [Google Scholar] [CrossRef]
- Silva, J.G.; Martins, J.P.; de Sousa, E.B.; Fernandes, N.L.; Meira, I.A.; Sampaio, F.C.; de Oliveira, A.F.; Pereira, A.M. Influence of energy drinks on enamel erosion: In vitro study using different assessment techniques. J. Clin. Exp. Dent. 2021, 11, e1076–e1082. [Google Scholar] [CrossRef]
- Schulze, K.A.; Santucci, N.M.; Surti, B.; Habelitz, S.; Bhattacharyya, M.; Noble, W. Evaluation of enamel volume loss after exposure to energy drinks. Oral 2024, 4, 101–112. [Google Scholar] [CrossRef]
- Grant, M.M.; Brock, G.R.; Matthews, J.B.; Chapple, I.L. Crevicular fluid glutathione levels in periodontitis and the effect of non-surgical therapy. J. Clin. Periodontol. 2010, 37, 17–23. [Google Scholar] [CrossRef]
- Brock, G.R.; Butterworth, C.J.; Matthews, J.B.; Chapple, I.L. Local and systemic total antioxidant capacity in periodontitis and health. J. Clin. Periodontol. 2004, 31, 515–521. [Google Scholar] [CrossRef]
- Dias, I.H.; Chapple, I.L.; Milward, M.; Grant, M.M.; Hill, E.; Brown, J.; Griffiths, H.R. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro. PLoS ONE 2013, 8, e66407. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.M.; Ling, M.R.; Insall, R.; Kalna, G.; Spengler, J.; Grant, M.M.; Chapple, I.L. Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J. Clin. Periodontol. 2015, 42, 1–11. [Google Scholar] [CrossRef]
- Sham, N.I.B.B.; Grant, M.M. Role of glutathione in neutrophil chemotaxis in periodontitis. Oral 2023, 3, 526–538. [Google Scholar] [CrossRef]
- Ribeiro, E.D.; de Santana, I.H.G.; Viana, M.R.M.; Fan, S.; Mohamed, A.; Dias, J.C.P.; Forte, A.G.; Pereira Júnior, J.M.; Ferreira, A.J.; Sant’Ana, E. Optimal treatment time with systemic antimicrobial therapy in odontogenic infections affecting the jaws: A systematic review. BMC Oral Health 2025, 25, 253. [Google Scholar] [CrossRef]
- Rautemaa, R.; Lauhio, A.; Cullinan, M.P.; Seymour, G.J. Oral infections and systemic disease—An emerging problem in medicine. Clin. Microbiol. Infect. 2007, 13, 1041–1047. [Google Scholar] [CrossRef]
- Ardila, C.M.; Bedoya-García, J.A. Antimicrobial resistance in patients with odontogenic infections: A systematic scoping review of prospective and experimental studies. J. Clin. Exp. Dent. 2022, 14, e834–e845. [Google Scholar] [CrossRef]
- Teoh, L.; Cheung, M.C.; Dashper, S.; James, R.; McCullough, M.J. Oral antibiotic for empirical management of acute aentoalveolar infections–A systematic review. Antibiotics 2021, 10, 240. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Sun, Z.; Ma, H.; Cao, D.; Sun, M.; Wang, Q.; Wang, J.; Zhuo, Q.; Tao, R.; Ying, B.; et al. Odontogenic infections in the antibiotic era: Approach to diagnosis, management, and prevention. Infection 2024, 52, 301–311. [Google Scholar] [CrossRef]
- Nix, N.L.; Zusman, N.T.; Düzgüneş, N. Odontogenic infections resistant to empiric therapy, opportunistic Prevotella, and Metronidazole: A clinical case series and review of the literature. Oral 2025, 5, 17. [Google Scholar] [CrossRef]
- Maestre, J.R.; Bascones, A.; Sánchez, P.; Matesanz, P.; Aguilar, L.; Giménez, M.J.; Pérez-Balcabao, I.; Granizo, J.J.; Prieto, J. Odontogenic bacteria in periodontal disease and resistance patterns to common antibiotics used as treatment and prophylaxis in odontology in Spain. Rev. Esp. Quimioter. 2007, 20, 61–67. [Google Scholar]
- Fosse, T.; Madinier, I.; Hitzig, C.; Charbit, Y. Prevalence of beta-lactamase-producing strains among 149 anaerobic gram-negative rods isolated from periodontal pockets. Oral Microbiol. Immunol. 1999, 14, 352–357. [Google Scholar] [CrossRef]
- Patel, S.; Hanfe, H.; Khurana, A.K.; Bhadade, A.; Nema, S. Unilateral complicated pleural empyema in a patient with bronchial asthma due to clindamycin-resistant Prevotella buccae. Arch. Clin. Cases 2023, 10, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Weerheijm, K.L.; Jalevik, B.; Alaluusua, S. Molar-incisor hypomineralisation. Caries Res. 2001, 35, 390–391. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Elhennawy, K.; Reda, S.; Bekes, K.; Manton, D.J.; Krois, J. Global burden of molar incisor hypomineralization. J. Dent. 2018, 68, 10–18. [Google Scholar] [CrossRef]
- Zhao, D.; Dong, B.; Yu, D.; Ren, Q.; Sun, Y. The prevalence of molar incisor hypomineralization: Evidence from 70 studies. Int. J. Paediatr. Dent. 2018, 28, 170–179. [Google Scholar] [CrossRef]
- Lopes, L.B.; Machado, V.; Mascarenhas, P.; Mendes, J.J.; Botelho, J. The prevalence of molar-incisor hypomineralization: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 22405. [Google Scholar] [CrossRef] [PubMed]
- Sezer, B.; Çarikçioğlu, B. Treatment strategies for incisors of children affected by molar incisor hypomineralization: A narrative review. Oral 2024, 4, 74–89. [Google Scholar] [CrossRef]
- Giacaman, R.A.; Maturana, C.A.; Molina, J.; Volgenant, C.M.C.; Fernández, C.E. Effect of casein phosphopeptide-amorphous calcium phosphate added to milk, chewing gum, and candy on dental caries: A systematic review. Caries Res. 2023, 57, 106–118. [Google Scholar] [CrossRef]
- Sezer, B.; Tuğcu, N.; Calışkan, C.; Durmuş, B.; Kupets, T.; Bekiroğlu, N.; Kargül, B.; Bourgeois, D. Effect of casein phosphopeptide amorphous calcium fluoride phosphate and calcium glycerophosphate on incisors with molar-incisor hypomineralization: A cross-over, randomized clinical trial. Bio-Med. Mater. Eng. 2022, 33, 325–335. [Google Scholar] [CrossRef]
- Sezer, B.; Kargül, B. Effect of remineralization agents on molar-oncisor hypomineralization-affected incisors: A randomized controlled clinical trial. J. Clin. Pediatr. Dent. 2022, 46, 192–198. [Google Scholar] [CrossRef]
- Howe, M.S.; Keys, W.; Richards, D. Long-term (10-year) dental implant survival: A systematic review and sensitivity meta-analysis. J. Dent. 2019, 84, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Wang, F.; Wilson, T.G.; Palmer, K.; Valderrama, P.; Rodrigues, D.C. The role of bacterial biofilm and mechanical forces in modulating dental implant failures. J. Mech. Behav. Biomed. Mater. 2019, 92, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Sadowsky, S.J. Zirconia implants: A mapping review. Oral 2024, 4, 9–22. [Google Scholar] [CrossRef]
- Parithimarkalaignan, S.; Padmanabhan, T.V. Osseointegration: An update. J. Indian Prosthodont. Soc. 2013, 13, 2–6. [Google Scholar] [CrossRef]
- Noro, A.; Kaneko, M.; Murata, I.; Yoshinari, M. Influence of surface topography and surface physicochemistry on wettability of zirconia (tetragonal zirconia polycrystal). J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101, 355–363. [Google Scholar] [CrossRef]
- Watanabe, H.; Saito, K.; Kokubun, K.; Sasaki, H.; Yoshinari, M. Change in surface properties of zirconia and initial attachment of osteoblastlike cells with hydrophilic treatment. Dent. Mater. J. 2012, 31, 806–814. [Google Scholar] [CrossRef]
- Zhang, F.; Spies, B.C.; Willems, E.; Inokoshi, M.; Wesemann, C.; Cokic, S.M.; Hache, B.; Kohal, R.J.; Altmann, B.; Vleugels, J.; et al. 3D printed zirconia dental implants with integrated directional surface pores combine mechanical strength with favorable osteoblast response. Acta Biomater. 2022, 150, 427–441. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, T.; Zhao, D.; Haapasalo, M.; Shen, Y. Characteristics of endodontic emergencies during coronavirus disease 2019 outbreak in Wuhan. J. Endod. 2020, 46, 730–735. [Google Scholar] [CrossRef]
- Currie, C.C.; Stone, S.J.; Durham, J. Pain and problems: A prospective cross-sectional study of the impact of dental emergencies. J. Oral Rehabil. 2015, 42, 883–889. [Google Scholar] [CrossRef]
- Edwards, D.; Rasaiah, S.; Hamzah Ahmed, S.; Breckons, M.; Stone, S.J.; Currie, C.C.; Durham, J.; Whitworth, J. The financial and quality of life impact of urgent dental presentations: A cross-sectional study. Int. Endod. J. 2023, 56, 697–709. [Google Scholar] [CrossRef]
- Murdoch-Kinch, C.A.; McLean, M.E. Minimally invasive dentistry. J. Am. Dent. Assoc. 2003, 134, 87–95. [Google Scholar] [CrossRef]
- Santos, J.M.; Pereira, J.F.; Marques, A.; Sequeira, D.B.; Friedman, S. Vital pulp therapy in permanent mature posterior teeth with symptomatic irreversible pulpitis: A systematic review of treatment outcomes. Medicina 2021, 57, 573. [Google Scholar] [CrossRef] [PubMed]
- Philip, N.; Suneja, B. Minimally invasive endodontics: A new era for pulpotomy in mature permanent teeth. Br. Dent. J. 2022, 233, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.S.S.; Yew, Y.Q.; Lee, H.Y.; Low, T.; Pillai, M.P.M.; Laer, T.S.; Wafa, S.W.W.S.S.T. Is pulpotomy a promising modality in treating permanent teeth? An umbrella review. Odontology 2022, 110, 393–409. [Google Scholar] [CrossRef]
- Almutairi, N. Pulpotomy of mature teeth: A systematic analysis of the failed cases. Saudi Dent. J. 2024, 36, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Igna, A. Vital pulp therapy in primary pentition: Pulpotomy—A 100-year challenge. Children 2021, 8, 841. [Google Scholar] [CrossRef]
- Duncan, H.F. Present status and future directions-Vital pulp treatment and pulp preservation strategies. Int. Endod. J. 2022, 55, 497–511. [Google Scholar] [CrossRef]
- McHugh, H.; Wright, P.P.; Peters, C.I.; Peters, O.A. Diagnostic and prognostic predictors for the success of pulpotomy in permanent mature posterior teeth with moderate to severe pulpitis: A scoping review. Oral 2023, 3, 545–571. [Google Scholar] [CrossRef]
- Vujkov, S.; Bajkin, B.; Blagojević, D.; Nešković, I.; Komšić, J.; Tadić, A.; Petrović, B. Dental considerations in children with inherited bleeding disorders and inhibitors: A systematic review. J. Clin. Med. 2024, 13, 7743. [Google Scholar] [CrossRef]
- de Azevedo Kinalski, M.; Sarkis-Onofre, R.; Dos Santos, M.B.F. Inherited bleeding disorders in oral procedures. Assessment of prophylactic and therapeutic protocols: A scoping review. Aust. Dent. J. 2021, 66, 150–158. [Google Scholar] [CrossRef]
- Landart, C.; Barbay, V.; Chamouni, P.; Trost, O. Management of patients with inherited bleeding disorders in oral surgery: A 13-year experience. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, e405–e410. [Google Scholar] [CrossRef] [PubMed]
- Kumbargere Nagraj, S.; Prashanti, E.; Aggarwal, H.; Lingappa, A.; Muthu, M.S.; Kiran Kumar Krishanappa, S.; Hassan, H. Interventions for treating post-extraction bleeding. Cochrane Database Syst. Rev. 2018, 3, CD011930. [Google Scholar] [CrossRef] [PubMed]
- Raikuna, A.F.V.; Prabhu, N. Protocols for oral health management of paediatric patients with inherited bleeding disorders: A narrative review. Oral 2023, 3, 462–476. [Google Scholar] [CrossRef]
- Samuelson Bannow, B.; Recht, M.; Négrier, C.; Hermans, C.; Berntorp, E.; Eichler, H.; Mancuso, M.E.; Klamroth, R.; O’Hara, J.; Santagostino, E.; et al. Factor VIII: Long-Established role in haemophilia A and emerging evidence beyond haemostasis. Blood Rev. 2019, 35, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Valera, M.C.; Kemoun, P.; Cousty, S.; Sie, P.; Payrastre, B. Inherited platelet disorders and oral health. J. Oral Pathol. Med. 2013, 42, 115–124. [Google Scholar] [CrossRef]
- van Galen, K.P.; Engelen, E.T.; Mauser-Bunschoten, E.P.; van Es, R.J.; Schutgens, R.E. Antifibrinolytic therapy for preventing oral bleeding in patients with haemophilia or Von Willebrand disease undergoing minor oral surgery or dental extractions. Cochrane Database Syst Rev. 2019, 4, CD011385. [Google Scholar] [CrossRef]
- Cano, J.; Campo, J.; Bonilla, E.; Colmenero, C. Corticotomy-assisted orthodontics. J. Clin. Exp. Dent. 2012, 4, e54–e59. [Google Scholar] [CrossRef]
- Zawawi, K.H. Patients’ acceptance of corticotomy-assisted orthodontics. Patient Prefer. Adherence 2015, 9, 1153–1158. [Google Scholar] [CrossRef]
- Patatou, A.; Iacovou, N.; Zaxaria, P.; Vasoglou, M.; Vasoglou, G. Corticotomy-assisted orthodontic treatment: A literature review. Oral 2023, 3, 389–401. [Google Scholar] [CrossRef]
- Sulewska, M.E.; Baczewska, A.; Bugała-Musiatowicz, B.; Waszkiewicz-Sewastianik, E.; Pietruski, J.K.; Pietruska, M. Long-term assessment of periodontal tissues after corticotomy-assisted orthodontic arch expansion. J. Clin. Med. 2021, 10, 5588. [Google Scholar] [CrossRef]
- Wang, B.; Xi, W.; Chen, H.; Shao, J.; Song, A.; Zhang, F. Periodontal effect of augmented corticotomy-assisted orthodontics versus conventional orthodontics in treatment of adult patients with bialveolar protrusion. BMC Oral Health 2022, 22, 81. [Google Scholar] [CrossRef] [PubMed]
- Roi, A.; Rusu, L.C.; Roi, C.I.; Luca, R.E.; Boia, S.; Munteanu, R.I. A new approach for the diagnosis of systemic and oral diseases based on salivary biomolecules. Dis. Markers 2019, 2019, 8761860. [Google Scholar] [CrossRef]
- Malamud, D.; Rodriguez-Chavez, I.R. Saliva as a diagnostic fluid. Dent. Clin. N. Am. 2011, 55, 159–178. [Google Scholar] [CrossRef]
- Kaczor-Urbanowicz, K.E.; Martin Carreras-Presas, C.; Aro, K.; Tu, M.; Garcia-Godoy, F.; Wong, D.T.W. Saliva diagnostics—Current views and directions. Exp. Biol. Med. 2017, 242, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, T.; Wong, D.T.W. Saliva diagnostics: Salivaomics, saliva exosomics, and saliva liquid biopsy. J. Am. Dent. Assoc. 2023, 154, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Archer, N.; Ladan, S.; Lancashire, H.T.; Petridis, H. Use of biosensors within the oral environment for systemic health monitoring—A systematic review. Oral 2024, 4, 148–162. [Google Scholar] [CrossRef]
- Szczesio-Wlodarczyk, A.; Domarecka, M.; Kopacz, K.; Sokolowski, J.; Bociong, K. An evaluation of the properties of urethane dimethacrylate-based dental resins. Materials 2021, 14, 2727. [Google Scholar] [CrossRef]
- Lemon, M.T.; Jones, M.S.; Stansbury, J.W. Hydrogen bonding interactions in methacrylate monomers and polymers. J. Biomed. Mater. Res. Part A 2007, 83, 734–746. [Google Scholar] [CrossRef]
- Wesemann, C.; Spies, B.C.; Sterzenbach, G.; Beuer, F.; Kohal, R.; Wemken, G.; Krügel, M.; Pieralli, S. Polymers for conventional, subtractive, and additive manufacturing of occlusal devices differ in hardness and flexural properties but not in wear resistance. Dent. Mater. 2021, 37, 432–442. [Google Scholar] [CrossRef]
- Sadowsky, S.J.; Stansbury, J.W. A completely digital workflow of an interim complete arch fixed implant prosthesis using a novel high-performance 3D printed polymer. Oral 2023, 3, 477–486. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Düzgüneş, N. Current Issues in Oral Health: Introduction to the Special Issue. Oral 2025, 5, 40. https://doi.org/10.3390/oral5020040
Düzgüneş N. Current Issues in Oral Health: Introduction to the Special Issue. Oral. 2025; 5(2):40. https://doi.org/10.3390/oral5020040
Chicago/Turabian StyleDüzgüneş, Nejat. 2025. "Current Issues in Oral Health: Introduction to the Special Issue" Oral 5, no. 2: 40. https://doi.org/10.3390/oral5020040
APA StyleDüzgüneş, N. (2025). Current Issues in Oral Health: Introduction to the Special Issue. Oral, 5(2), 40. https://doi.org/10.3390/oral5020040