Long-Term Sensitivity Analysis of Palmer Drought Severity Index (PDSI) through Uncertainty and Error Estimation from Plant Productivity and Biophysical Parameters †
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Dataset
3.2. Methodology
3.2.1. Development of PDSI
3.2.2. Development of Vegetation Parameters
3.2.3. Data Conversion
3.2.4. Statistical Measurements
4. Result and Discussion
4.1. Interpretation of Pearson’s Correlation Analysis
4.2. Interpretation of Error Estimation Analysis
4.3. Interpretation of Uncertainty Analysis
4.4. Sensitivity Ranking for the PDSI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameters | 2015 | 2016 | 2017 | 2018 | 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | SEE | RMSE (%) | r | SEE | RMSE (%) | r | SEE | RMSE (%) | r | SEE | RMSE (%) | r | SEE | RMSE (%) | |
GPP | −0.86 | 97.12 | 4.73 | −0.74 | 105.98 | 4.55 | −0.85 | 84.3 | 4.89 | −0.05 | 85 | 3.95 | −0.64 | 70.1 | 3.86 |
LAI | −0.74 | 12.47 | 3.45 | −0.74 | 18.01 | 3.09 | −0.84 | 14.99 | 3.23 | −0.38 | 14.7 | 2.79 | −0.4 | 11.23 | 1.89 |
fAPAR | −0.91 | 16.85 | 3.7 | −0.72 | 18.11 | 3.31 | −0.98 | 9.07 | 3.56 | 0.48 | 14.64 | 3.09 | −0.36 | 16.35 | 1.89 |
NDVI | −0.93 | 0.21 | 3.01 | −0.71 | 0.21 | 2.63 | −0.94 | 0.18 | 2.82 | 0.11 | 0.26 | 2.39 | 0.066 | 0.22 | 2.32 |
EVI | 0.5 | 0.11 | 3.01 | −0.87 | 0.07 | 2.63 | −0.68 | 0.12 | 2.82 | −0.81 | 0.07 | 2.39 | −0.63 | 0.07 | 2.58 |
References
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; U.S. Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Guttman, N.B.; Wallis, J.R.; Hosking, J.R.M. Spatial Comparability of the Palmer Drought Severity Index. J. Am. Water Resour. Assoc. 1992, 28, 1111–1119. [Google Scholar] [CrossRef]
- Graw, V.; Ghazaryan, G.; Dall, K.; Gómez, A.D.; Abdel-Hamid, A.; Jordaan, A.; Piroska, R.; Post, J.; Szarzynski, J.; Walz, Y.; et al. Drought dynamics and vegetation productivity in different land management systems of Eastern Cape, South Africa-A remote sensing perspective. Sustainability 2017, 9, 1728. [Google Scholar] [CrossRef]
- Wang, H.; He, B.; Zhang, Y.; Huang, L.; Chen, Z.; Liu, J. Response of ecosystem productivity to dry/wet conditions indicated by different drought indices. Sci. Total Environ. 2018, 612, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Li, A.; Tan, J.; Lei, G.; Jin, H.; Zhang, Z. Uncertainty analysis of multiple global GPP datasets in characterizing the lagged effect of drought on photosynthesis. Ecol. Indic. 2020, 113, 106224. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- He, M.; Kimball, J.S.; Running, S.; Ballantyne, A.; Guan, K.; Huemmrich, F. Satellite detection of soil moisture related water stress impacts on ecosystem productivity using the MODIS-based photochemical reflectance index. Remote Sens. Environ. 2016, 186, 173–183. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, J.; Liu, S.; Rentch, J.S.; Sun, P.; Lu, C. Global gross primary productivity and water use efficiency changes under drought stress. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Vicca, S.; Balzarolo, M.; Filella, I.; Granier, A.; Herbst, M.; Knohl, A.; Longdoz, B.; Mund, M.; Nagy, Z.; Pintér, K.; et al. Remotely-sensed detection of effects of extreme droughts on gross primary production. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef]
- Zscheischler, J.; Reichstein, M.; Harmeling, S.; Rammig, A.; Tomelleri, E.; Mahecha, M.D. Extreme events in gross primary production: A characterization across continents. Biogeosciences 2014, 11, 2909–2924. [Google Scholar] [CrossRef]
- Zhang, L.; Qiao, N.; Huang, C.; Wang, S. Monitoring Drought Effects on Vegetation Productivity Using Satellite Solar-Induced Chlorophyll Fluorescence. Remote Sens. 2019, 11, 378. [Google Scholar] [CrossRef]
- Diodato, N.; Bellocchi, G. Modelling vegetation greenness responses to climate variability in a Mediterranean terrestrial ecosystem. Environ. Monit. Assess. 2008, 143, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys. Res. Lett. 2008, 35, L22401. [Google Scholar] [CrossRef]
- Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C. The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation. GISci. Remote Sens. 2008, 45, 16–46. [Google Scholar] [CrossRef]
- Peters, A.J.; Walter-Shea, E.A.; Ji, L.; Viña, A.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based Standardized Vegetation Index. Photogramm. Eng. Remote Sens. 2002, 68, 71–75. [Google Scholar]
- Rousta, I.; Olafsson, H.; Moniruzzaman, M.; Zhang, H.; Liou, Y.A.; Mushore, T.D.; Gupta, A. Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sens. 2020, 12, 2433. [Google Scholar] [CrossRef]
- Wang, P.X.; Wan, Z.M.; Gong, J.Y.; Li, X.W.; Di, W.J. Advances in drought monitoring by using remotely sensed normalized difference vegetation index and land surface temperature products. Adv. Earth Sci. 2003, 18, 527–533. [Google Scholar]
- Chen, W.; Xiao, Q.; Sheng, Y. Application of the Anomaly Vegetation Index to Monitoring Heavy Drought in 1992. J. Remote Sens. 1994, 9, 106–112. [Google Scholar]
- Forest Survey of India. India State of Forest Report 2019; Forest Survey of India (Ministry of Environment, Forest & Climate Change, Government of India): Dehradun, India, 2019; Volumes I and II, ISBN 9788194101802. [Google Scholar]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Martinović, M.; Stoić, M.; Duspara, M.; Samardžić, I.; Stoić, A. Algorithmic conversion of data displayed on a weekly basis to the monthly level using the spreadsheet. Procedia Eng. 2016, 149, 288–296. [Google Scholar] [CrossRef]
- McHugh, M.L. Standard error: Meaning and interpretation. Biochem. Medica 2007, 17, 7–13. [Google Scholar] [CrossRef]
- PTI Heavy Rains Trigger Flood-Like Situation in Arunachal Pradesh. Available online: https://economictimes.indiatimes.com/news/politics-and-nation/heavy-rains-trigger-flood-like-situation-in-arunachal-pradesh/articleshow/48743001.cms (accessed on 5 October 2020).
- Bandopadhyay, S.; Rastogi, A.; Juszczak, R. Review of Top-of-Canopy Sun-Induced Fluorescence (SIF) Studies from Ground, UAV, Airborne to Spaceborne Observations. Sensors 2020, 20, 1144. [Google Scholar] [CrossRef] [PubMed]
YEAR | PDSI-GPP | PDSI-LAI | PDSI-fAPAR | PDSI-NDVI | PDSI-EVI |
---|---|---|---|---|---|
2019 | 70.10047 | 11.23408 | 16.35537 | 0.22529 | 0.07128 |
2018 | 85.00281 | 14.707568 | 14.64304 | 0.26018 | 0.07962 |
2017 | 84.30856 | 14.99181 | 9.07160 | 0.18792 | 0.12114 |
2016 | 105.98472 | 18.01153 | 18.11280 | 0.21312 | 0.07426 |
2015 | 97.12000 | 12.47910 | 16.85542 | 0.21665 | 0.11117 |
Analysis | Overall Most Sensitive Parameters |
---|---|
Pearson’s Correlation | EVI |
Error Estimation | EVI |
Uncertainty | NDVI, EVI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Bandopadhyay, S.; Sánchez, D.A.C. Long-Term Sensitivity Analysis of Palmer Drought Severity Index (PDSI) through Uncertainty and Error Estimation from Plant Productivity and Biophysical Parameters. Environ. Sci. Proc. 2021, 3, 57. https://doi.org/10.3390/IECF2020-07956
Ghosh S, Bandopadhyay S, Sánchez DAC. Long-Term Sensitivity Analysis of Palmer Drought Severity Index (PDSI) through Uncertainty and Error Estimation from Plant Productivity and Biophysical Parameters. Environmental Sciences Proceedings. 2021; 3(1):57. https://doi.org/10.3390/IECF2020-07956
Chicago/Turabian StyleGhosh, Subhasis, Subhajit Bandopadhyay, and Dany A. Cotrina Sánchez. 2021. "Long-Term Sensitivity Analysis of Palmer Drought Severity Index (PDSI) through Uncertainty and Error Estimation from Plant Productivity and Biophysical Parameters" Environmental Sciences Proceedings 3, no. 1: 57. https://doi.org/10.3390/IECF2020-07956
APA StyleGhosh, S., Bandopadhyay, S., & Sánchez, D. A. C. (2021). Long-Term Sensitivity Analysis of Palmer Drought Severity Index (PDSI) through Uncertainty and Error Estimation from Plant Productivity and Biophysical Parameters. Environmental Sciences Proceedings, 3(1), 57. https://doi.org/10.3390/IECF2020-07956