Disturbances to the Ground and to the Stand in Beech Forests Due to Thinning Treatments Performed by Different Levels of Mechanization †
Abstract
:1. Introduction
- to investigate the impact of silvicultural treatment on soil conditions;
- to find out how both silvicultural treatment and forest operations influence soil characteristics;
- to investigate the impact on soil conditions and remaining stand due to different levels of mechanization.
2. Material and Method
2.1. Site Description
2.2. Treatment and Logging Methods
2.3. Analytical Methods
2.4. Statistics
3. Results
3.1. Impacted Surface
3.2. Stand Damage
- 39.6% of the site Camporotondo extraction involved using the tractor;
- 38.0% of the site Camporotondo extraction involved using mules;
- 45.6% of the site Vallepietra extraction involved using mules;
- 32.8% of the site Vallepietra extraction involved using the tractor.
3.3. Soil Physical and Chemical Features
4. Discussion and Conclusions
4.1. Applied Sylviculture
4.2. Forest Operations
4.3. Conclusions and Comments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nikooy, M.; Tavankar, F.; Naghdi, R.; Ghorbani, A.; Jourgholami, M.; Picchio, R. Soil impacts and residual stand damage from thinning operations. Int. J. For. Eng. 2020, 31, 126–137. [Google Scholar] [CrossRef]
- Boncina, A.; Kadunc, A.; Robic, D. Effects of selective thinning on growth and development of beech (Fagus sylvatica L.) forest stands in south-eastern Slovenia. Ann. For. Sci. 2007, 64, 47–57. [Google Scholar] [CrossRef]
- Emmingham, W.H.; Elwood, N.E. Thinning-An Important Timber Management Tool, p. 8. Pacific Northwest Extension Publication 184; Oregon State University: Corvallis, OR, USA, 1983. [Google Scholar]
- Frey, B.; Niklaus, P.A.; Kremer, J.; Lüscher, P.; Zimmermann, S. Heavy-machinery traffic impacts methane emissions as well as methanogen abundance and community structure in oxic forest soils. Appl. Environ. Microbiol. 2011, 77, 6060–6068. [Google Scholar] [CrossRef] [PubMed]
- Picchio, R.; Magagnotti, N.; Sirna, A.; Spinelli, R. Improved winching technique to reduce logging damage. Ecol. Eng. 2012, 47, 83–86. [Google Scholar] [CrossRef]
- Picchio, R.; Neri, F.; Petrini, E.; Verani, S.; Marchi, E.; Certini, G. Machinery-induced soil compaction in thinning two pine stands in central Italy. For. Ecol. Manag. 2012, 285, 38–43. [Google Scholar] [CrossRef]
- Korb, J.E.; Fulé, P.Z.; Gideon, B. Different restoration thinning treatments affect level of soil disturbance in ponderosa pine forests of Northern Arizona, USA. Ecol. Restor. 2007, 25, 43–49. [Google Scholar] [CrossRef]
- Klvaˇc, R.; Vrána, P.; Jiroušek, R. Possibilities of using the portable falling weight deflectometer to measure the bearing capacity and compaction of forest soils. J. For. Sci. 2010, 56, 130–136. [Google Scholar] [CrossRef]
- Williamson, J.R.; Neilsen, W.A. The influence of forest site on rate and extent of soil compaction and profile disturbance of skid trails during ground-based harvesting. Can. J. For. Res. 2000, 30, 1196–1205. [Google Scholar] [CrossRef]
- Grigal, D.F. Effects of extensive forest management on soil productivity. For. Ecol. Manag. 2000, 138, 167–185. [Google Scholar] [CrossRef]
- Olajuyigbe, S.; Tobin, B.; Saunders, M.; Nieuwenhuis, M. Forest thinning and soil respiration in a Sitka spruce forest in Ireland. Agric. For. Meteorol. 2012, 157, 86–95. [Google Scholar] [CrossRef]
- Convention on Biological Diversity (CBD). CBD COP 10 Decision X/2 Strategic Plan for Biodiversity 2011–2020; CBD: Nagoya, Japan, 2010. [Google Scholar]
- CEC European Community Biodiversity Strategy. 1998. Available online: https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=LEGISSUM%3Al28183 (accessed on 15 February 2018).
- Sebek, P.; Bace, R.; Bartos, M.; Benes, J.; Chlumska, Z.; Dolezal, J.; Dvorsky, M.; Cizek, L. Does a minimal intervention approach threaten the biodiversity of protected areas? A multi-taxa short-term response to intervention in temperate oak-dominated forests. For. Ecol. Manag. 2015, 358, 80–89. [Google Scholar] [CrossRef]
- Sutherland, W.J.; Pullin, A.S.; Dolman, P.M.; Knight, T.M. The need for evidence-based conservation. Trends Ecol. Evol. 2004, 19, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Corona, P.; Chirici, G.; McRoberts, R.E.; Winter, S.; Barbati, A. Contribution of large-scale forest inventories to biodiversity assessment and monitoring. For. Ecol. Manag. 2011, 262, 2061–2069. [Google Scholar] [CrossRef]
- Mattioli, W.; Mancini, L.D.; Portoghesi, L.; Corona, P. Biodiversity conservation and forest management: The case of the sweet chestnut coppice stands in Central Italy. Plant Biosyst. 2016, 150, 592–600. [Google Scholar] [CrossRef]
- Sirén, M. Tree damage in single-grip harvester thinning operations. J. For. Eng. 2001, 1, 29–38. [Google Scholar]
- Suzuki, Y. Damage to Residual Stands from Thinning with Short-span Tower Yarders: Rexamination of Wounds after Five Years. J. For. Res. 2000, 5, 201–204. [Google Scholar] [CrossRef]
- Picchio, R.; Neri, F.; Maesano, M.; Savelli, S.; Sirna, A.; Blasi, S.; Baldini, S.; Marchi, E. Growth effects of thinning damage in a Corsican pine (Pinus laricio Poiret) stand in central Italy. For. Ecol. Manag. 2011, 262, 237–243. [Google Scholar] [CrossRef]
- Picchio, R.; Spina, R.; Maesano, M.; Carbone, F.; Lo Monaco, A.; Marchi, E. Stumpage value in the short wood system for the conversion into high forest of an oak coppice. For. Stud. China 2011, 13, 252–262. [Google Scholar] [CrossRef]
- Laschi, A.; Marchi, E.; González-García, S. Forest operations in coppice: Environmental assessment of two different logging methods. Sci. Total Environ. 2016, 562, 493–503. [Google Scholar] [CrossRef]
- Muscolo, A.; Bagnato, S.; Sidari, M.; Mercurio, R. A review of the roles of forest canopy gaps. J. For. Res. 2014, 25, 725–736. [Google Scholar] [CrossRef]
- Bertolotto, P.; Calienno, L.; Conforti, M.; D’Andrea, E.; Lo Monaco, A.; Magnani, E.; Marinšek, A.; Venanzi, R. Assessing indicators of forest ecosystem health. Ann. Silvi. Res. 2016, 40, 64–69. [Google Scholar]
- Picchio, R.; Spina, R.; Calienno, L.; Venanzi, R.; Lo Monaco, A. Forest operations for implementing silvicultural treatments for multiple purposes. Ital. J. Agron. 2016, 11, 156–161. [Google Scholar]
- Sohrabi, H.; Jourgholami, M.; Tavankar, F.; Venanzi, R.; Picchio, R. Post-harvest evaluation of soil physical properties and natural regeneration growth in steep-slope terrains. Forests 2019, 10, 1034. [Google Scholar] [CrossRef]
- Marchi, E.; Picchio, R.; Mederski, P.S.; Vusi’c, D.; Perugini, M.; Venanzi, R. Impact of silvicultural treatment and forest operation on soil and regeneration in Mediterranean Turkey oak (Quercus cerris L.) coppice with standards. Ecol. Eng. 2016, 95, 475–484. [Google Scholar] [CrossRef]
- Venanzi, R.; Picchio, R.; Grigolato, S.; Latterini, F. Soil and forest regeneration after different extraction methods in coppice forests. For. Ecol. Manag. 2019, 454, 117666. [Google Scholar] [CrossRef]
- Venanzi, R.; Picchio, R.; Spinelli, R.; Grigolato, S. Soil disturbance and recovery after coppicing a Mediterranean oak stand: The effects of silviculture and technology. Sustainability 2020, 12, 4074. [Google Scholar] [CrossRef]
- Venanzi, R.; Picchio, R.; Piovesan, G. Silvicultural and logging impact on soil characteristics in Chestnut (Castanea sativa Mill.) Mediterranean coppice. Ecol. Eng. 2016, 92, 82–89. [Google Scholar] [CrossRef]
- Hartsough, B. Economics of harvesting to maintain high structural diversity and resulting damage to residual trees. West J. Appl. For. 2003, 18, 133–142. [Google Scholar] [CrossRef]
- Majnounian, B.; Jourgholami, M.; Zobeiri, M.; Feghhi, J. Assessment of forest harvesting damage to residual stands and regenerations—A case study of Namkhaneh District in Kheyrud forest. J. Environ. Sci. 2009, 7, 33–44. [Google Scholar]
- Marchi, E.; Picchio, R.; Spinelli, R.; Verani, S.; Venanzi, R.; Certini, G. Environmental impact assessment of different logging methods in pine forest thinning. Ecol. Eng. 2014, 70, 429–436. [Google Scholar] [CrossRef]
- Tavankar, F.; Majnounian, B.; Bonyad, A. Felling and skidding damage to residual trees following selection cutting in Caspian forests of Iran. J. For. Sci. 2013, 59, 196–203. [Google Scholar] [CrossRef]
- Vossbrink, J.; Horn, R. Modern forestry vehicles and their impact on soil physical properties. Eur. J. For. Res. 2004, 123, 259–267. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and how much, do harvesting activities affect forest soil, regeneration and stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef]
- Lotfalian, M.; Parsakho, A.; Majnounian, B. A method for economic evaluation of forest logging damages on regeneration and stand (Case study: Alandan and Waston Serries). J. Environ. Sci. Tech. 2008, 10, 51–62. [Google Scholar]
- Naghdi, R.; Bagheri, I.; Taheri, K.; Akef, M. Residual stand damage during cut to length harvesting method in Shafaroud forest of Guilan province. Iran. J. Environ. Sci. 2009, 60, 931–947. [Google Scholar]
- Nikooy, M.; Rashidi, R.; Kocheki, G. Residual trees injury assessment after selective cutting in broadleaf forest in Shafaroud. Casp. J. Environ. Sci 2010, 8, 173–179. [Google Scholar]
- Tavankar, F.; Bonyad, A.; Majnounian, B. Affective factors on residual tree damage during selection cutting and cable-skidder logging in the Caspian forests, Northern Iran. Ecol. Eng. 2015, 83, 505–512. [Google Scholar] [CrossRef]
- Bettinger, P.; Kellogg, L.D. Residual stand damage from cut-to-length thinning of second growth timber in the Cascade Range of western Oregon. For. Prod. J. 1993, 43, 59–64. [Google Scholar]
- Solgi, A.; Najafi, A. Investigation of residual tree damage during ground-based kidding. Pak. J. Bio. Sci. 2007, 10, 1755–1758. [Google Scholar] [CrossRef]
- Jourgholami, M. Operational impacts to residual stands following ground-based skidding in Hyrcanian Forest, northern Iran. J. For. Res. 2012, 23, 333–337. [Google Scholar] [CrossRef]
- Tavankar, F.; Bonyad, A. Long-term effects of logging damages on quality of residual trees in the Asalem Nav Forest. J. Environ. Stud. 2014, 40, 39–50. [Google Scholar]
- Picchio, R.; Maesano, M.; Savelli, S.; Marchi, E. Productivity and energy balance in conversion of a Quercus cerris L. coppice stand into high forest in Central Italy. Croat. J. For. Eng. 2009, 30, 15–26. [Google Scholar]
- Mercuri, E. Impatto Delle Utilizzazioni Sulle Caratteristiche del Suolo e del Soprassuolo Nei Cedui Quercini Invecchiati. Master’s Thesis, Tuscia University, Viterbo, Italy, 2016. [Google Scholar]
- Pellicori, D.V. Interventi di Diradamento in Fustaie di Faggio, Valutazione Degli Impatti al Suolo e Delle sue Potenzialità di Recupero. Master’s Thesis, Tuscia University, Viterbo, Italy, 2017. [Google Scholar]
Site | Extaction System | p-Value | Tukey’s Test | Impacted Surface | Not Impacted Surface |
---|---|---|---|---|---|
Camporotondo | Tractor | >0.05 | - | 24.2 ± 4.5% | 75.8% |
Camporotondo | Mule | - | 27.8 ± 8.3% | 72.2% | |
Vallepietra | Mule | <0.05 | a | 11.1 ± 3.2% | 88.9% |
Vallepietra | Tractor | b | 23.0 ± 2.8% | 77.0% |
Description | Unit of Measure | Camporotondo | Vallepietra | p-Value | ||
---|---|---|---|---|---|---|
Tractor | Mule | Mule | Tractor | |||
Damaged trees | % | 39.6 a | 38.0 a | 45.6 b | 32.8 c | <0.05 |
Diameter | cm | 38.8 | 42.9 | 39.2 | 40.8 | >0.05 |
Hierarchical Position | Index | Co-dominant | Co-dominant | Dominant | Co-dominant | >0.05 |
Localization | Index | Tree collar | Tree collar | Tree collar | Tree collar | >0.05 |
Extension | Index | 10–50 cm2 | 10–50 cm2 | <10 cm2 | 10–50 cm2 | >0.05 |
Affected Tissue | Index | Bark | Bark | Bark | Bark | >0.05 |
Severity of injury | Index | Moderate | Moderate | Non-invasive | Moderate | >0.05 |
Cause | Index | Extraction 57% | Extraction 58% | Extraction 54% | Extraction 52% | >0.05 |
Distance from forest tracks | Index | 0–2 m | 0–2 m | 0–2 m | 2–4 m | >0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venanzi, R.; Barbona, L.; Latterini, F.; Picchio, R. Disturbances to the Ground and to the Stand in Beech Forests Due to Thinning Treatments Performed by Different Levels of Mechanization. Environ. Sci. Proc. 2021, 3, 58. https://doi.org/10.3390/IECF2020-08090
Venanzi R, Barbona L, Latterini F, Picchio R. Disturbances to the Ground and to the Stand in Beech Forests Due to Thinning Treatments Performed by Different Levels of Mechanization. Environmental Sciences Proceedings. 2021; 3(1):58. https://doi.org/10.3390/IECF2020-08090
Chicago/Turabian StyleVenanzi, Rachele, Loredana Barbona, Francesco Latterini, and Rodolfo Picchio. 2021. "Disturbances to the Ground and to the Stand in Beech Forests Due to Thinning Treatments Performed by Different Levels of Mechanization" Environmental Sciences Proceedings 3, no. 1: 58. https://doi.org/10.3390/IECF2020-08090
APA StyleVenanzi, R., Barbona, L., Latterini, F., & Picchio, R. (2021). Disturbances to the Ground and to the Stand in Beech Forests Due to Thinning Treatments Performed by Different Levels of Mechanization. Environmental Sciences Proceedings, 3(1), 58. https://doi.org/10.3390/IECF2020-08090