How Reliable Are Global Temperature Reconstructions of the Common Era?
Abstract
:1. Introduction
2. Materials and Methods
3. Comparison of Reconstructions
4. Discussion of Similarities and Possible Reasons for Discrepancies
5. Criteria for Quality Assurance
6. Plausibility of Reconstructions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. First Assessment Report. 1990. Available online: http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml (accessed on 30 January 2022).
- Frank, D.; Esper, J.; Zorita, E.; Wilson, R. A noodle, hockey stick, and spaghetti plate: A perspective on high-resolution paleoclimatology. WIREs Clim. Chang. 2010, 1, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, B.; Ljungqvist, F.C. Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev. Geophys. 2017, 55, 40–96. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Mann, M.E.; Bradley, R.S.; Hughes, M.K. Northern Hemisphere Temperatures during the past Millennium: Inferences, Uncertainties, and Limitations. Geophys. Res. Lett. 1999, 26, 759–762. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Surface Temperature Reconstructions for the Last 2000 Years; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Hegerl, G.; Zwiers, F. Use of models in detection and attribution of climate change. WIREs Clim. Chang. 2011, 2, 570–591. [Google Scholar] [CrossRef]
- Smerdon, J.E. Climate models as a test bed for climate reconstruction methods: Pseudoproxy experiments. WIREs Clim. Chang. 2012, 3, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Smerdon, J.E.; Pollack, H.N. Reconstructing Earth’s surface temperature over the past 2000 years: The science behind the headlines. WIREs Clim. Chang. 2016, 7, 746–771. [Google Scholar] [CrossRef]
- Folland, C.K.; Karl, T.R.; Vinnikov, K.Y. Observed Climate Variations and Change. In Climate Change: The IPCC Scientific Assessment; 1st Assessment Report (AR1); Houghton, J.T., Jenkins, G.J., Ephraums, J.J., Eds.; Cambridge University Press: Cambridge, UK, 1990; Chapter 7; p. 202. [Google Scholar]
- Mann, M.E.; Zhang, Z.; Hughes, M.K.; Bradley, R.S.; Miller, S.K.; Rutherford, S.; Ni, F. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. USA 2008, 105, 13252–13257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljungqvist, F.C. A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geogr. Ann. Ser. A 2010, 92, 339–351. [Google Scholar] [CrossRef]
- PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 2013, 6, 339–346. [Google Scholar] [CrossRef]
- PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 2019, 12, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Büntgen, U.; Arseneault, D.; Boucher, É.; Churakova, O.V.; Gennaretti, F.; Crivellaro, A.; Hughes, M.K.; Kirdyanov, A.V.; Klippel, L.; Krusic, P.J.; et al. Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia 2020, 64, 125757. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Rohling, E.E.; Stager, J.C.; Karlén, W.; Maasch, K.A.; Meeker, L.D.; Meyerson, E.A.; Gasse, F.; van Kreveld, S.; Holmgren, K.; et al. Holocene climate variability. Quat. Res. 2004, 62, 243–255. [Google Scholar] [CrossRef]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lüning, S.; Gałka, M.; Bamonte, F.P.; Rodríguez, F.G.; Vahrenholt, F. The Medieval Climate Anomaly in South America. Quat. Int. 2019, 508, 70–87. [Google Scholar] [CrossRef]
- Lüning, S.; Gałka, M.; Vahrenholt, F. Warming and Cooling: The Medieval Climate Anomaly in Africa and Arabia. Paleoceanography 2017, 32, 1219–1235. [Google Scholar] [CrossRef]
- Lüning, S.; Gałka, M.; García-Rodríguez, F.; Vahrenholt, F. The Medieval Climate Anomaly in Oceania. Environ. Rev. 2020, 28, 45–54. [Google Scholar] [CrossRef]
- Lüning, S.; Gałka, M.; Vahrenholt, F. The Medieval Climate Anomaly in Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 532, 109251. [Google Scholar] [CrossRef]
- Hao, Z.; Wu, M.; Liu, Y.; Zhang, X.; Zheng, J. Multi-scale temperature variations and their regional differences in China during the Medieval Climate Anomaly. J. Geogr. Sci. 2020, 30, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Lüning, S. Google Map of publications on the Medieval Climate Anomaly. 2021. Available online: http://t1p.de/mwp (accessed on 30 January 2022).
- Seim, A.; Büntgen, U.; Fonti, P.; Haska, H.; Herzig, F.; Tegel, W.; Trouet, V.; Treydte, K. Climate sensitivity of a millennium-long pine chronology from Albania. Clim. Res. 2012, 51, 217–228. [Google Scholar] [CrossRef]
- Büntgen, U.; Frank, D.; Neuenschwander, T.; Esper, J. Fading temperature sensitivity of Alpine tree growth at its Mediterranean margin and associated effects on large-scale climate reconstructions. Clim. Chang. 2012, 114, 651–666. [Google Scholar] [CrossRef] [Green Version]
- Lüning, S.; Schulte, L.; Garcés-Pastor, S.; Danladi, I.B.; Gałka, M. The Medieval Climate Anomaly in the Mediterranean Region. Paleoceanogr. Paleoclimatol. 2019, 34, 1625–1649. [Google Scholar] [CrossRef]
- McShane, B.B.; Wyner, A.J. A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable? Ann. Appl. Stat. 2011, 5, 5–44. [Google Scholar]
- McShane, B.B.; Wyner, A.J. Rejoinder. Ann. Appl. Stat. 2011, 5, 99–123. [Google Scholar] [CrossRef]
- McIntyre, S.; McKitrick, R. Corrections to the Mann et al. (1988) proxy data base and northern hemispheric average temperature series. Energy Environ. 2003, 14, 751–771. [Google Scholar] [CrossRef]
- Zuckerberg, B.; Strong, C.; LaMontagne, J.M.; George, S.S.; Betancourt, J.L.; Koenig, W.D. Climate Dipoles as Continental Drivers of Plant and Animal Populations. Trends Ecol. Evol. 2020, 35, 440–453. [Google Scholar] [CrossRef] [PubMed]
- Connolly, R.; Connolly, M. Global temperature changes of the last millennium. Open Peer Rev. J. 2014, 2014, 16. [Google Scholar]
- Wilson, R.; Anchukaitis, K.; Briffa, K.R.; Büntgen, U.; Cook, E.; D’Arrigo, R.; Davi, N.; Esper, J.; Frank, D.; Gunnarson, B.; et al. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quat. Sci. Rev. 2016, 134, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Xing, P.; Chen, X.; Luo, Y.; Nie, S.; Zhao, Z.; Huang, J.; Wang, S. The Extratropical Northern Hemisphere Temperature Reconstruction during the Last Millennium Based on a Novel Method. PLoS ONE 2016, 11, e0146776. [Google Scholar] [CrossRef] [Green Version]
- Schneider, L.; Smerdon, J.E.; Büntgen, U.; Wilson, R.J.S.; Myglan, V.S.; Kirdyanov, A.V.; Esper, J. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophys. Res. Lett. 2015, 42, 4556–4562. [Google Scholar] [CrossRef] [Green Version]
T2k Composite, Ref. | Short | Regional Coverage | Number of Proxy Series | Number of Proxies @ MCA | Proxy Types |
---|---|---|---|---|---|
IPCC 1st Assessment Report [10] | AR1 | ‘Global’ | schematic | schematic | schematic |
Mann et al., 1999 [5] | MM99 | Northern Hemisphere | 100+ | 12 | multi-proxy |
Mann et al., 2008 [11] | MM08 | Northern Hemisphere | 1000+ | 53 | multi-proxy |
Ljungqvist 2010 [12] | LJU10 | Extratropical Northern Hemisphere | 30 | 30 | multi-proxy |
PAGES2k 2013 [13] | PA13 | Global | 511 | ~100 | multi-proxy |
PAGES2k 2019 [14] | PA19 | Global | ~250 | ~50 | multi-proxy |
Büntgen et al., 2020 [15] | BÜ20 | Eurasia, North Atlantic region | 9 | 9 | tree-ring width |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lüning, S.; Lengsfeld, P. How Reliable Are Global Temperature Reconstructions of the Common Era? Earth 2022, 3, 401-408. https://doi.org/10.3390/earth3010024
Lüning S, Lengsfeld P. How Reliable Are Global Temperature Reconstructions of the Common Era? Earth. 2022; 3(1):401-408. https://doi.org/10.3390/earth3010024
Chicago/Turabian StyleLüning, Sebastian, and Philipp Lengsfeld. 2022. "How Reliable Are Global Temperature Reconstructions of the Common Era?" Earth 3, no. 1: 401-408. https://doi.org/10.3390/earth3010024
APA StyleLüning, S., & Lengsfeld, P. (2022). How Reliable Are Global Temperature Reconstructions of the Common Era? Earth, 3(1), 401-408. https://doi.org/10.3390/earth3010024