Monitoring Subaquatic Vegetation Using Sentinel-2 Imagery in Gallocanta Lake (Aragón, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Dataset and Processing
3. Results
3.1. Vegetation Distribution
3.2. Image Analysis
3.3. Time Series of Vegetated Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
1. S2A_MSIL1C_20150729T110026_N0204_R094_T30TXL_20150729T110648 * |
2. S2A_MSIL1C_20150825T105046_N0204_R051_T30TXL_20150825T105942 * |
3. S2A_MSIL1C_20150924T105046_N0204_R051_T30TXL_20150924T105656 * |
4. S2A_MSIL1C_20151116T110322_N0204_R094_T30TXL_20151116T110736 * |
5. S2A_OPER_MSI_L1C_TL_SGS__20160112T162938_A002908_T30TXL_N02 |
6. S2A_OPER_MSI_L1C_TL_SGS__20160125T164509_A003094_T30TXL_N02 * |
7. S2A_OPER_MSI_L1C_TL_SGS__20160204T150456_A003237_T30TXL_N02 |
8. S2A_OPER_MSI_L1C_TL_SGS__20160401T180421_A004052_T30TXL_N02 * |
9. S2A_OPER_MSI_L1C_TL_SGS__20160414T162250_A004238_T30TXL_N02 |
10. S2A_OPER_MSI_L1C_TL_SGS__20160501T144220_A004481_T30TXL_N02 * |
11. S2A_OPER_MSI_L1C_TL_SGS__20160620T161042_A005196_T30TXL_N02 * |
12. S2A_OPER_MSI_L1C_TL_SGS__20160710T161148_A005482_T30TXL_N02 * |
13. S2A_OPER_MSI_L1C_TL_SGS__20160819T161132_A006054_T30TXL_N02 * |
14. S2A_OPER_MSI_L1C_TL_SGS__20160921T162916_A006526_T30TXL_N02 * |
15. S2A_OPER_MSI_L1C_TL_SGS__20161011T162433_A006812_T30TXL_N02 * |
16. S2A_OPER_MSI_L1C_TL_SGS__20161028T161846_A007055_T30TXL_N02 |
17. S2A_OPER_MSI_L1C_TL_SGS__20161117T180146_A007341_T30TXL_N02 * |
18. S2A_MSIL1C_20161207T105432_N0204_R051_T30TXL_20161207T105428 |
19. S2A_MSIL1C_20161230T110442_N0204_R094_T30TXL_20161230T110441 * |
20. S2A_MSIL1C_20170225T105021_N0204_R051_T30TXL_20170225T105020 * |
21. S2A_MSIL1C_20170320T105731_N0204_R094_T30TXL_20170320T110651 * |
22. S2A_MSIL1C_20170416T105031_N0204_R051_T30TXL_20170416T105601 * |
23. S2A_MSIL1C_20170526T105031_N0205_R051_T30TXL_20170526T105518 * |
24. S2A_MSIL1C_20170605T105031_N0205_R051_T30TXL_20170605T105303 |
25. S2A_MSIL1C_20170608T105651_N0205_R094_T30TXL_20170608T110453 |
26. S2A_MSIL1C_20170615T105031_N0205_R051_T30TXL_20170615T105505 * |
27. S2A_MSIL1C_20170705T105031_N0205_R051_T30TXL_20170705T105605 * |
28. S2A_MSIL1C_20170923T105021_N0205_R051_T30TXL_20170923T105717 * |
29. S2A_MSIL1C_20171026T110131_N0206_R094_T30TXL_20171026T144303 * |
30. S2A_MSIL1C_20171122T105341_N0206_R051_T30TXL_20171122T131313 |
31. S2A_MSIL1C_20180101T105441_N0206_R051_T30TXL_20180101T131633 |
32. S2B_MSIL1C_20180419T105619_N0206_R094_T30TXL_20180419T121006 * |
33. S2B_MSIL1C_20180509T105619_N0206_R094_T30TXL_20180509T113046 * |
34. S2B_MSIL1C_20180615T105029_N0206_R051_T30TXL_20180615T130739 * |
35. S2B_MSIL1C_20180715T105029_N0206_R051_T30TXL_20180715T144536 * |
36. S2A_MSIL1C_20180819T105031_N0206_R051_T30TXL_20180819T130740 * |
37. S2B_MSIL1C_20180916T105649_N0206_R094_T30TXL_20180916T131145 * |
38. S2A_MSIL1C_20181021T110101_N0206_R094_T30TXL_20181021T112408 * |
39. S2B_MSIL1C_20181112T105259_N0207_R051_T30TXL_20181112T125827 * |
40. S2B_MSIL1C_20181212T105439_N0207_R051_T30TXL_20181212T124901 |
41. S2A_MSIL1C_20181227T105441_N0207_R051_T30TXL_20181227T112349 * |
42. S2A_MSIL1C_20181230T110441_N0207_R094_T30TXL_20181230T113426 |
43. S2B_MSIL1C_20190213T110149_N0207_R094_T30TXL_20190213T162521 |
44. S2A_MSIL1C_20190225T105021_N0207_R051_T30TXL_20190225T125616 * |
45. S2A_MSIL1C_20190330T105631_N0207_R094_T30TXL_20190330T130620 * |
46. S2B_MSIL1C_20190531T105039_N0207_R051_T30TXL_20190531T130936 * |
47. S2B_MSIL1C_20190802T105629_N0208_R094_T30TXL_20190802T131125 * |
48. S2A_MSIL1C_20190804T105031_N0208_R051_T30TXL_20190804T130903 |
49. S2B_MSIL1C_20190809T105039_N0208_R051_T30TXL_20190809T125039 |
50. S2A_MSIL1C_20190814T105031_N0208_R051_T30TXL_20190814T112158 |
51. S2A_MSIL1C_20190817T105621_N0208_R094_T30TXL_20190817T132102 |
52. S2B_MSIL1C_20190822T105629_N0208_R094_T30TXL_20190822T131655 |
53. S2A_MSIL1C_20190824T105031_N0208_R051_T30TXL_20190824T125731 * |
54. S2A_MSIL1C_20190903T105031_N0208_R051_T30TXL_20190903T131033 |
55. S2A_MSIL1C_20190906T105621_N0208_R094_T30TXL_20190906T130522 |
56. S2B_MSIL1C_20190908T105029_N0208_R051_T30TXL_20190908T125351 |
57. S2A_MSIL1C_20190926T105811_N0208_R094_T30TXL_20190926T130550 |
58. S2B_MSIL1C_20190928T105029_N0208_R051_T30TXL_20190928T130836 * |
59. S2B_MSIL1C_20191001T105849_N0208_R094_T30TXL_20191001T131419 |
60. S2A_MSIL1C_20191003T105031_N0208_R051_T30TXL_20191003T111605 |
61. S2B_MSIL1C_20191008T105029_N0208_R051_T30TXL_20191008T125041 |
62. S2B_MSIL1C_20191011T105959_N0208_R094_T30TXL_20191011T121547 |
63. S2A_MSIL1C_20191026T110141_N0208_R094_T30TXL_20191026T113511 * |
64. S2B_MSIL1C_20191120T110249_N0208_R094_T30TXL_20191121T135932 * |
65. S2B_MSIL1C_20191207T105329_N0208_R051_T30TXL_20191207T111410 |
66. S2B_MSIL1C_20191210T110339_N0208_R094_T30TXL_20191210T113810 |
67. S2A_MSIL1C_20191225T110451_N0208_R094_T30TXL_20191225T113446 |
68. S2B_MSIL1C_20191230T110349_N0208_R094_T30TXL_20191230T113841 * |
69. S2A_MSIL1C_20200111T105421_N0208_R051_T30TXL_20200111T112046 |
70. S2A_MSIL1C_20200114T110411_N0208_R094_T30TXL_20200114T113817 * |
71. S2A_MSIL1C_20200203T110241_N0208_R094_T30TXL_20200203T113113 |
72. S2B_MSIL1C_20200205T105129_N0209_R051_T30TXL_20200207T121337 |
73. S2A_MSIL1C_20200220T105051_N0209_R051_T30TXL_20200319T122308 * |
74. S2A_MSIL1C_20200223T110041_N0209_R094_T30TXL_20200223T114220 |
75. S2A_MSIL1C_20200314T105821_N0209_R094_T30TXL_20200314T130531 |
76. S2B_MSIL1C_20200319T105649_N0209_R094_T30TXL_20200319T132209 * |
77. S2A_MSIL1C_20200403T105621_N0209_R094_T30TXL_20200403T130550 |
78. S2B_MSIL1C_20200425T104619_N0209_R051_T30TXL_20200425T130643 |
79. S2A_MSIL1C_20200503T105621_N0209_R094_T30TXL_20200503T130649 * |
80. S2A_MSIL1C_20200520T105031_N0209_R051_T30TXL_20200520T125512 |
81. S2A_MSIL1C_20200523T105631_N0209_R094_T30TXL_20200523T130313 |
82. S2A_MSIL1C_20200530T105031_N0209_R051_T30TXL_20200530T125407 * |
83. S2A_MSIL1C_20200622T105631_N0209_R094_T30TXL_20200622T133306 |
84. S2A_MSIL1C_20200629T105031_N0209_R051_T30TXL_20200629T125331 |
85. S2B_MSIL1C_20200704T104619_N0209_R051_T30TXL_20200704T125053 |
86. S2B_MSIL1C_20200707T105619_N0209_R094_T30TXL_20200707T130404 |
87. S2B_MSIL1C_20200717T105619_N0209_R094_T30TXL_20200717T130432 * |
88. S2A_MSIL1C_20200719T105031_N0209_R051_T30TXL_20200719T125648 |
89. S2A_MSIL1C_20200729T105031_N0209_R051_T30TXL_20200729T130448 |
90. S2A_MSIL1C_20200801T105631_N0209_R094_T30TXL_20200801T113256 |
91. S2A_MSIL1C_20200808T105031_N0209_R051_T30TXL_20200808T111510 |
92. S2B_MSIL1C_20200826T105619_N0209_R094_T30TXL_20200826T131208 |
93. S2A_MSIL1C_20200831T105621_N0209_R094_T30TXL_20200831T131423 |
94. S2B_MSIL1C_20200902T104629_N0209_R051_T30TXL_20200902T130348 |
95. S2B_MSIL1C_20200905T105619_N0209_R094_T30TXL_20200905T121813 * |
96. S2A_MSIL1C_20200910T105631_N0209_R094_T30TXL_20200910T131324 |
97. S2B_MSIL1C_20200912T104629_N0209_R051_T30TXL_20200912T132431 |
98. S2B_MSIL1C_20200915T105639_N0209_R094_T30TXL_20200915T131429 |
99. S2A_MSIL1C_20200927T105031_N0209_R051_T30TXL_20200927T130634 |
100. S2B_MSIL1C_20201111T105259_N0209_R051_T30TXL_20201111T130651 * |
101. S2B_MSIL1C_20201121T105349_N0209_R051_T30TXL_20201121T115417 |
102. S2A_MSIL1C_20201209T110441_N0209_R094_T30TXL_20201209T131140 |
103. S2A_MSIL1C_20201226T105451_N0209_R051_T30TXL_20201226T130209 |
104. S2B_MSIL1C_20201231T105349_N0209_R051_T30TXL_20201231T120402 * |
105. S2A_MSIL1C_20210105T105441_N0209_R051_T30TXL_20210105T130129 * |
References
- Mitsch, W.J.; Gosselink, J.G. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- Bullock, A.; Acreman, M. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Hails, A.J. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity; Ramsar Convention Bureau: Gland, Switzerland, 1977; Volume 13. [Google Scholar]
- Arnaiz, S.L. ARA075: Laguna de Gallocanta. Instituto Geológico y Minero de España. 2013. Available online: http://info.igme.es/ielig/LIGInfo.aspx?codigo=ARA075 (accessed on 21 July 2020).
- Ramsar. Spain Wetlands Web Page. Available online: https://www.ramsar.org/es/humedal/espana (accessed on 21 July 2020).
- European Council. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. 1992. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1992:206:0007:0050:EN:PDF (accessed on 31 January 2022).
- Camacho-Valdez, V.; Ruiz-Luna, A.; Ghermandi, A.; Berlanga-Robles, C.A.; Nunes, P.A. Effects of land use changes on the ecosystem service values of coastal wetlands. Environ. Manag. 2014, 54, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Colloff, M.J.; Lavorel, S.; Wise, R.M.; Dunlop, M.; Overton, I.C.; Williams, K. Adaptation services of floodplains and wetlands under transformational climate change. Ecol. Appl. 2016, 26, 1003–1017. [Google Scholar] [CrossRef]
- Schmid, T.; Koch, M.; Gumuzzio, J. Multisensor approach to determine changes of wetland characteristics in semiarid environments (central Spain). IEEE Trans. Geosci. Remote Sens. 2005, 43, 2516–2525. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Penas, Á.; Río, S.D.; Díaz González, T.E.; Rivas-Sáenz, S. Bioclimatology of the Iberian Peninsula and the Balearic Islands. In The Vegetation of the Iberian Peninsula; Springer: Cham, Switzerland, 2017; pp. 29–80. [Google Scholar]
- Casterad, M.A.; Castañeda, C. La Laguna de Gallocanta: Medio Natural, Conservación y Teledetección; Memorias de la Real Sociedad Española de Historia Natural: Madrid, Spain, 2009. [Google Scholar]
- Comín, F.A.; Alonso, M. Spanish salt lakes: Their chemistry and biota. Hydrobiologia 1988, 158, 237–245. [Google Scholar] [CrossRef]
- Jiménez, A.; Luna, E.; Castañeda, C. Integración de datos territoriales de la Reserva Natural de la Laguna de Gallocanta como base para su gestión. In Análisis Espacial y Representación Geográfica: Innovación y Aplicación; XXIV Congreso de la Asociación de Geógrafos Españoles; University of Zaragoza: Zaragoza, Spain, 2015; pp. 1689–1698. Available online: http://hdl.handle.net/10261/128011 (accessed on 31 January 2022).
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Charpentier, A.; Grillas, P.; Lescuyer, F.; Coulet, E.; Auby, I. Spatio-temporal dynamics of a Zostera noltii dominated community over a period of fluctuating salinity in a shallow lagoon, Southern France. Estuar. Coast. Shelf Sci. 2005, 64, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Chulafak, G.A.; Kushardono, D.; Yulianto, F. Utilization of Multi-Temporal Sentinel-1 Satellite Imagery for Detecting Aquatic Vegetation Change in Lake Rawapening, Central Java, Indonesia. Pap. Appl. Geogr. 2021, 7, 316–330. [Google Scholar] [CrossRef]
- Fritz, C.; Kuhwald, K.; Schneider, T.; Geist, J.; Oppelt, N. Sentinel-2 for mapping the spatio-temporal development of submerged aquatic vegetation at Lake Starnberg (Germany). J. Limnol. 2019, 78, 71–91. [Google Scholar] [CrossRef]
- Ghirardi, N.; Bolpagni, R.; Bresciani, M.; Valerio, G.; Pilotti, M.; Giardino, C. Spatiotemporal dynamics of submerged aquatic vegetation in a deep lake from Sentinel-2 data. Water 2019, 11, 563. [Google Scholar] [CrossRef] [Green Version]
- Orth, R.J.; Dennison, W.C.; Lefcheck, J.S.; Gurbisz, C.; Hannam, M.; Keisman, J.; Landry, J.B.; Moore, K.A.; Murphy, R.R.; Patrick, C.J.; et al. Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing world. Bioscience 2017, 67, 698–712. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Wang, Z.; Wang, C.; Mao, D.; Zhang, Y. A New Vegetation Index to Detect Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery. Remote Sens. 2019, 11, 2043. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, G.; Avdan, U. Mapping and monitoring wetlands using Sentinel-2satellite imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Orusa, T.; Mondino, E.B. Exploring Short-Term Climate Change Effects on Rangelands and Broad-Leaved Forests by Free Satellite Data in Aosta Valley (Northwest Italy). Climate 2021, 9, 47. [Google Scholar] [CrossRef]
- Díaz de Arcaya, N.; Castañeda, C.; Herrero, J.; Losada, J.A. Cartografía de coberturas asociadas a las fluctuaciones de la Laguna de Gallocanta. Rev. Española Teledetección 2005, 24, 61–65. Available online: http://hdl.handle.net/10261/128197 (accessed on 31 January 2022).
- Comín, F.A.; Rodó, X.; Menéndez, M. Spatial heterogeneity of macrophytes in Lake Gallocanta (Aragón, NE Spain). Hydrobiologia 1993, 267, 169–178. [Google Scholar] [CrossRef]
- Castañeda, C.; Gracia, F.J.; Conesa, J.A.; Latorre, B. Geomorphological control of habitat distribution in an intermittent shallow saline lake, Gallocanta Lake, NE Spain. Sci. Total Environ. 2020, 726, 138601. [Google Scholar] [CrossRef]
- Luna, E.; Castañeda, C.; Gracia, F.J.; Rodríguez-Ochoa, R. Late Quaternary pedogenesis of lacustrine terraces in Gallocanta Lake, NE Spain. Catena 2016, 147, 372–385. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, N.J.; Baumhauer, R.; Schütt, B. Managing the impact of climate change on the hydrology of the Gallocanta Basin, NE-Spain. J. Environ. Manag. 2011, 92, 275–283. [Google Scholar] [CrossRef]
- Velasco, R.A. Ficha Informativa de los Humedales de Ramsar. Ministerio para la Transición Ecológica y el Reto Demográfico. Available online: https://www.miteco.gob.es/images/es/29_fir_gallocanta_0_tcm30-202998.pdf (accessed on 21 July 2020).
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Crippen, R.E. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Senseman, G.M.; Bagley, C.F.; Tweddale, S.A. Correlation of rangeland cover measures to satellite-imagery-derived vegetation indices. Geocarto Int. 1996, 11, 29–38. [Google Scholar] [CrossRef]
- Daughtry, C.S.; Walthall, C.L.; Kim, M.S.; Brown de Colstoun, E.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [Green Version]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Comín, F.A.; Alonso, M.; Lopez, P.; Comelles, M. Limnology of Gallocanta Lake, Aragon, northeastern Spain. Hydrobiologia 1983, 105, 207–221. [Google Scholar] [CrossRef]
- Confederación Hidrográfica del Ebro (CHE). Informes de Seguimiento. Red de Control Biológico en Lagos y Embalses. Available online: http://www.chebro.es/contenido.visualizar.do?idContenido=53039 (accessed on 20 July 2020).
- Chu, D.; Shen, H.; Guan, X.; Chen, J.M.; Li, X.; Li, J.; Zhang, L. Long time-series NDVI reconstruction in cloud-prone regions via spatio-temporal tensor completion. Remote Sens. Environ. 2021, 264, 112632. [Google Scholar] [CrossRef]
- Chen, J.; Jonsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Morales, S.; Ruiz, M.; Soria, J.M. Estudio de las fluctuaciones del nivel del agua en la laguna de Gallocanta (Aragón, España) mediante imágenes satelitales de Sentinel-2. Rev. Teledetec. 2021, 58, 119–129. [Google Scholar] [CrossRef]
- Fethers, J. Remote Sensing of Eelgrass Using Object Based Image Analysis and Sentinel-2 Imagery. Master’s Thesis, University of Aalborg, Aalborg, Denmark, 2018. Available online: https://projekter.aau.dk/projekter/files/280912719/Master_thesis_JOFethers.pdf (accessed on 31 January 2022).
- Traganos, D.; Reinartz, P. Mapping Mediterranean seagrasses with Sentinel-2 imagery. Mar. Pollut. Bull. 2018, 134, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, G.; Ma, Z.; Sathyendranath, S.; Platt, T.; Jiang, C.; Sun, K. Canopy reflectance modeling of aquatic vegetation for algorithm development: Global sensitivity analysis. Remote Sens. 2018, 10, 837. [Google Scholar] [CrossRef] [Green Version]
- Giardino, C.; Bresciani, M.; Valentini, E.; Gasperini, L.; Bolpagni, R.; Brando, V.E. Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake. Remote Sens. Environ. 2015, 157, 48–57. [Google Scholar] [CrossRef]
- Stratoulias, D.; Balzter, H.; Sykioti, O.; Zlinszky, A.; Tóth, V.R. Evaluating sentinel-2 for lakeshore habitat mapping based on airborne hyperspectral data. Sensors 2015, 15, 22956–22969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoeven, J.T.A. The ecology of Ruppia-dominated communities in Western Europe. I. Distribution of Ruppia representatives in relation to their autecology. Aquat. Bot. 1979, 6, 197–267. [Google Scholar] [CrossRef]
- Brock, M.A. Biology of the salinity tolerant genus Ruppia L. in saline lakes in South Australia II. Population ecology and reproductive biology. Aquat. Bot. 1982, 13, 249–268. [Google Scholar] [CrossRef]
- Langangen, A. Charophytes from some Aegean islands (Khios, Lesvos and Limnos) in Greece. Flora Mediterr. 2008, 19, 379–384. Available online: http://www1.unipa.it/herbmed/flora/18-379.pdf (accessed on 31 January 2022).
- Conde-Álvarez, R.M.; Bañares-España, E.; Nieto-Caldera, J.M.; Flores-Moya, A.; Figueroa, F.L. Submerged macrophyte biomass distribution in the shallow saline lake Fuente de Piedra (Spain) as function of environmental variables. An. Jardín Botánico Madr. 2012, 69, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Diaz, P.; Gerrero, M.C.; Alcorlo, P.; Baltanás, A.; Florin, M.; Montes, C. Anthropogenic perturbations to the trophic structure in a permanent hypersaline shallow lake: La Salada de Chiprana (north-eastern Spain). Int. J. Salt Lake Res. 1998, 7, 187–210. [Google Scholar] [CrossRef]
Band | Wavelength Center (nm) | Pixel Resolution (m) |
---|---|---|
Band 1 | 443 nm (dark blue) | 60 m/px |
Band 2 | 490 nm (light blue) | 10 m/px |
Band 3 | 560 nm (green) | 10 m/px |
Band 4 | 665 nm (red) | 10 m/px |
Band 5 | 705 nm (dark red) | 20 m/px |
Band 6 | 740 nm (ultra-red) | 20 m/px |
Band 7 | 783 nm (far red) | 20 m/px |
Band 8 | 842 nm (near infrared) | 10 m/px |
Band 8A | 865 nm (near infrared 2) | 20 m/px |
Band 9 | 940 nm (far infrared) | 60 m/px |
Band 10 | 1375 nm (short infrared wave) | 60 m/px |
Band 11 | 1610 nm (short infrared wave) | 20 m/px |
Band 12 | 2190 nm (short infrared wave 2) | 20 m/px |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soria, J.; Ruiz, M.; Morales, S. Monitoring Subaquatic Vegetation Using Sentinel-2 Imagery in Gallocanta Lake (Aragón, Spain). Earth 2022, 3, 363-382. https://doi.org/10.3390/earth3010022
Soria J, Ruiz M, Morales S. Monitoring Subaquatic Vegetation Using Sentinel-2 Imagery in Gallocanta Lake (Aragón, Spain). Earth. 2022; 3(1):363-382. https://doi.org/10.3390/earth3010022
Chicago/Turabian StyleSoria, Juan, Miriam Ruiz, and Samuel Morales. 2022. "Monitoring Subaquatic Vegetation Using Sentinel-2 Imagery in Gallocanta Lake (Aragón, Spain)" Earth 3, no. 1: 363-382. https://doi.org/10.3390/earth3010022
APA StyleSoria, J., Ruiz, M., & Morales, S. (2022). Monitoring Subaquatic Vegetation Using Sentinel-2 Imagery in Gallocanta Lake (Aragón, Spain). Earth, 3(1), 363-382. https://doi.org/10.3390/earth3010022