Examination of Susceptibility to the Deficiency of Soil Water in a Forested Agricultural Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling and Data Handling
3. Results and Discussion
3.1. Spatial Distribution of Soil Properties
3.2. Impact of Soil Properties on Land Use
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myers, D.E. Basic Linear Geostatistics. Book Reviews. Technometrics 2000, 42, 4. [Google Scholar] [CrossRef]
- Yetik, M.K.; Yuceer, M.; Karadurmus, E.; Semizer, E.; Calimli, A.; Berber, R. An Interactive GIS-based Software for Dynamic Monitoring of Rivers. J. Environ. Prot. Ecol. 2014, 15, 1767–1778. [Google Scholar]
- Stanescu, E.; Lucaciu, I.; Niculescu, M.; Vosniakos, F.; Stanescu, B. Assessment of the abiotic components of the Danube river and main tributaries form southern part of Romania. J. Environ. Prot. Ecol. 2015, 16, 1371–1379. [Google Scholar]
- Feng, Y.; Astin, I. Remote Sensing of Soil Moisture Using the Propagation of Loran-C Navigation Signals. IEEE Geosci. Remote Sens. Lett. 2015, 12, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Radu, V.M.; Ionescu, P.; Deak, G.Y.; Ivanov, A.A.; Diacu, E. Multivariate Statistical Analysis for Quality Assesment of Aquatic Ecosystem on the Lower Danube. J. Environ. Prot. Ecol. 2014, 15, 412–424. [Google Scholar]
- Nadler, A. Methodologies and the Practical Aspects of the Bulk Soil EC (σa)—Soil Solution EC (σw) Relations. Adv. Agron. 2005, 88, 273–312. [Google Scholar]
- Ding, J.; Yu, D. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis; China; using remote sensing and electromagnetic induction instruments. Geoderma 2014, 235–236, 316–322. [Google Scholar] [CrossRef]
- Wichem, J.; Wichem, F.; Joergensen, R.G. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 2006, 137, 100–108. [Google Scholar]
- Beyer, W. Zur Bestimmung der Wasserdurchlassigkeit von Kieson und Sanduen aus derKornverteilung. Wasserwirtsch. Wassertech. 1964, 14, 165–169. [Google Scholar]
- Rosas, J.; Lopez, O.; Missimer, T.M.; Coulibaly, K.M.; Dehwah, A.H.; Sesler, K.; Lujan, L.R.; Mantilla, D. Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Ground Water 2014, 52, 399–413. [Google Scholar] [CrossRef]
- Basha, G.; Ouardat, B.M.J.; Marpu, P.R. Long-term projections of temperature, precipitation and soil moisture using non-stationary oscillation processes over the UAE region. Int. J. Climatol. 2015, 35, 4606–4618. [Google Scholar] [CrossRef]
- Reti, K.-O.; Malos, C.V.; Maniciula, I.D. Risk assessment Hydrological Risk Study in the Damuc Village; the Neamt County. J. Environ. Prot. Ecol. 2014, 15, 142. [Google Scholar]
- Yoshioka, M.; Takakura, S.; Ishizawa, T.; Sakai, N. Temporal changes of soil temperature with soil water content in an embankment slope during controlled artificial rainfall experiments. J. Appl. Geophys. 2015, 114, 134–145. [Google Scholar] [CrossRef]
- Gao, H.; Shao, M. Effects of temperature changes on soil hydraulic properties. Soil Till Res. 2015, 153, 145–154. [Google Scholar] [CrossRef]
- Barman, D.; Kundu, D.K.; Chakraborty, A.K.; Saha, A.R.; Ghorai, A.K.; Susanto, P.; Soumen, P. Prediction of soil temperature from air temperature for jute growing alluvial soils of Indo-Gangetic Plain. In Conference: National Seminar on “Resource Based Includive Agriculture & Rural Development: Opportunities & Challenges”; IRDM Faculty Centre, Ramakrishna Mission Vivekananda University: Kolkata, India, 2016. [Google Scholar]
- Li, H.Y.; Marchant, B.P.; Webster, R. Modelling the electrical conductivity of soil in the Yangtze delta in three dimensions. Geoderma 2016, 269, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Daia, F.; Zhoua, Q.; Lva, Z.; Wang, X.; Liub, G. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol Indic. 2014, 45, 184–194. [Google Scholar] [CrossRef]
- Saito, H.; McKenna, A.S.; Zimmerman, A.D.; Coburn, C.T. Geostatistical interpolation of object counts collected from multiple strip transects: Ordinary kriging versus finite domain kriging. Stoch. Env. Res. Risk. A 2005, 19, 71–85. [Google Scholar] [CrossRef]
- Prado-Péreza, A.J.; Aracil, E.L.; del Villard, P. A combined methodology using electrical resistivity tomography; ordinary kriging and porosimetry for quantifying total C trapped in carbonate formations associated with natural analogues for CO2 leakage. J. Appl. Geophys. 2014, 105, 21–33. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Narjary, B.; Meena, M.D.; Kumar, S.; Kamra, S.K.; Sharma, D.K.; Triantafilis, J. Digital mapping of soil salinity at various depths using an EM38. Soil Use Manag. 2019, 35, 232–244. [Google Scholar] [CrossRef]
- Bennett, J.M.; Marchuk, A.; Marchuk, S.; Raine, S.R. Towards predicting the soil-specific threshold electrolyte concentration of soil as a reduction in saturated hydraulic conductivity: The role of clay net negative charge. Geoderma 2019, 337, 122–131. [Google Scholar] [CrossRef]
- Lamačová, A.; Hruška, J.; Krám, P.; Stuchlík, E.; Farda, A.; Chuman, T.; Fottová, D. Runoff trends analysis and future projections of hydrological patterns in small forested catchments. Soil Water Res. 2014, 9, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Jones, S.B.; Philpot, D.W. A Linear Physically-Based Model for Remote Sensing of Soil Moisture using Short Wave Infrared Bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, P.; Weng, Q. Assessing the Impacts of Urbanization-Associated Land Use/Cover Change on Land Surface Temperature and Surface Moisture: A Case Study in the Midwestern United States. Remote Sens. 2015, 7, 4880–4898. [Google Scholar] [CrossRef] [Green Version]
- Zaman, B. Spatio-Temporal Prediction of Root Zone Soil Moisture Using Multivariate Relevance Vector Machines. Open J. Mod. Hydrol. 2014, 4, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Bell, M.D.; Clark, S.J.; Gelfand, E.A.; Flikkema, G.P. Process modeling for soil moisture using sensor network data. Stat. Methodol. 2014, 17, 99–112. [Google Scholar] [CrossRef]
- Hirschi, M.; Mueller, B.; Dorigo, W.; Seneviratne, S.I. Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: The role of surface vs. root-zone soil moisture variability. Remote Sens. Environ. 2014, 154, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Nicolai-Shaw, N.; Hirschi, M.; Mittelbach, H.; Seneviratne, S. Spatial representativeness of soil moisture using in situ; remote sensing; and land reanalysis data. J. Geophys. Res. Atmos. 2015, 120, 9955–9964. [Google Scholar] [CrossRef]
- Braunack, M.V.; Johnston, D.B.; Price, J.; Gauthier, E. Soil temperature and soil water potential under thin oxodegradable plastic film impact on cotton crop establishment and yield. Field Crops Res. 2015, 184, 91–103. [Google Scholar] [CrossRef]
- Petrescu, V.; Darvas, A.; Darvas, J. Integrated Monitoring System of Water Quality Transported by the Upper Olt River (County Harghita) Case Study—Downstream of the Miercurea Ciuc Town. J. Environ. Prot. Ecol. 2012, 13, 1300. [Google Scholar]
- Gergeleya, I.; Opreab, L.; Sion, C. Some Aspects Regarding the Ecological Monitoring of Aquatic Systems in the Crisul Negru River Basin. J. Environ. Prot. Ecol. 2011, 12, 851–860. [Google Scholar]
- Gao, X.; Wu, P.; Zhao, X.; Wang, J.; Shi, Y. Effects of Land Use on Soil moisture. Variations in a Semi-arid Catchment: Implications for Land and Agricultural Water Management. Land Degrad. Dev. 2014, 25, 163–172. [Google Scholar] [CrossRef]
- Wang, J.-F.; Stein, A.; Gao, B.-B.; Ge, Y. A review of spatial sampling. Spat. Stat. 2012, 2, 1–14. [Google Scholar] [CrossRef]
Land Use | Soil Texture | Bulk Density | EC | Temperature | Soil Moisture | Soil Resistance |
---|---|---|---|---|---|---|
Agriculture area | g·cm−3 | mS/m−1 | °C | % | MPa | |
Silt loam | 1.22 | 18.87 | 14.38 | 34 | 2.42 | |
Loam | 1.32 | 12.26 | 21.36 | 24 | 4.02 | |
Meadow | Silty clay loam | 1.56 | 7.57 | 18.32 | 29 | 1.43 |
Clay loam | 1.45 | 6.95 | 14.23 | 32 | 1.07 | |
Forest | Silt | 1.24 | 1.87 | 12.93 | 35 | 0.64 |
Silt loam | 1.42 | 0.87 | 11.53 | 37 | 0.31 |
Land Use | Soil Texture | Bulk Density | EC | Temperature | Soil Moisture | Soil Resistance |
---|---|---|---|---|---|---|
Agriculture area | g·cm−3 | mS/m−1 | °C | % | MPa | |
Clay loam | 1.34 | 15.03 | 16.32 | 25 | 3.43 | |
Silty clay loam | 1.48 | 21.94 | 14.35 | 29 | 4.26 | |
Meadow | Loam | 1.56 | 17.94 | 16.14 | 25 | 2.32 |
Loamy silt | 1.72 | 8.98 | 18.03 | 30 | 2.46 | |
Forest | Silt | 1.45 | 2.54 | 14.93 | 39 | 1.32 |
Silt loam | 1.23 | 1.85 | 12.06 | 36 | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halecki, W.; Łyszczarz, S. Examination of Susceptibility to the Deficiency of Soil Water in a Forested Agricultural Area. Earth 2021, 2, 532-543. https://doi.org/10.3390/earth2030031
Halecki W, Łyszczarz S. Examination of Susceptibility to the Deficiency of Soil Water in a Forested Agricultural Area. Earth. 2021; 2(3):532-543. https://doi.org/10.3390/earth2030031
Chicago/Turabian StyleHalecki, Wiktor, and Stanisław Łyszczarz. 2021. "Examination of Susceptibility to the Deficiency of Soil Water in a Forested Agricultural Area" Earth 2, no. 3: 532-543. https://doi.org/10.3390/earth2030031
APA StyleHalecki, W., & Łyszczarz, S. (2021). Examination of Susceptibility to the Deficiency of Soil Water in a Forested Agricultural Area. Earth, 2(3), 532-543. https://doi.org/10.3390/earth2030031