Role of Agricultural Terraces in Flood and Soil Erosion Risks Control in the High Atlas Mountains of Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Evaluating Infiltration Using Rainfall Simulations Technique
- LR: Total runoff (mm) = ∑ LRi;
- LRi: Runoff layer at each time step (mm) = (Ri/60) × ∆t;
- Ri: Runoff intensity at each time step (mm);
- ∆t: Time step (mn);
- LP: Total precipitated water (mm) = LR + LI;
- LI: Total infiltrated water blade (mm) = ∑ LIi;
- LIi: Infiltrated water blade at each time step (mm) = (Ii/60) × ∆t.
2.3. Quantifying Water Erosion Based on Cesium-137 Technique
2.4. Statistical Analysis
3. Results
3.1. Desciptive Statistics
3.2. Effect of Land Use Types on Initial Abstraction, Final Infiltration, Runoff and Soil Erosion Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sampling Units Code | Statistic | p-Value | ||||
---|---|---|---|---|---|---|
Pi | If | Kr | Pi | If | Kr | |
ARB_MR | 1.00 | 0.96 | 0.90 | 1.00 | 0.61 | 0.40 |
CER_MR | 0.87 | 0.95 | 0.86 | 0.30 | 0.55 | 0.27 |
CER_SR | 0.84 | 0.93 | 0.98 | 0.22 | 0.49 | 0.70 |
DFO_MR | 0.89 | 0.89 | 1.00 | 0.36 | 0.36 | 1.00 |
DFO_SR | 0.89 | 0.89 | 1.00 | 0.36 | 0.36 | 1.00 |
FAL_MR | 1.00 | 1.00 | 0.98 | 1.00 | 0.94 | 0.75 |
FAL_SR | 0.89 | 0.93 | 0.85 | 0.35 | 0.47 | 0.25 |
MDF_MR | 1.00 | 0.96 | 0.92 | 0.98 | 0.60 | 0.44 |
MDF_SR | 0.78 | 0.88 | 0.92 | 0.07 | 0.31 | 0.45 |
RAN_MR | 0.71 | 0.88 | 0.96 | 0.01 | 0.29 | 0.82 |
RAN_SR | 0.86 | 0.94 | 0.96 | 0.27 | 0.53 | 0.63 |
REF_SR | 0.97 | 0.83 | 0.91 | 0.69 | 0.19 | 0.42 |
SPS_MR | 0.78 | 1.00 | 0.78 | 0.08 | 0.97 | 0.06 |
WLA_MR | 0.89 | 0.98 | 0.79 | 0.34 | 0.74 | 0.09 |
WLA_SR | 0.68 | 0.95 | 0.95 | 0.00 | 0.78 | 0.78 |
Sampling Units Code | Statistic | p-Value |
---|---|---|
AGR_MR | 0.91 | 0.42 |
AGR_SR | 0.90 | 0.38 |
FOR_MR | 0.89 | 0.30 |
FOR_SR | 0.94 | 0.69 |
RAN_MR | 0.96 | 0.82 |
RAN_SR | 0.97 | 0.87 |
Variable | df1 | df2 | Statistic | p-Value |
---|---|---|---|---|
Pi | 14 | 44 | 0.76 | 0.70 |
If | 14 | 44 | 1.36 | 0.22 |
Kr | 14 | 44 | 1.34 | 0.23 |
Er | 5 | 30 | 1.09 | 0.39 |
Group1 | Group2 | Estimate | Conf.low | Conf.high | p.adj | p.adj.signif |
---|---|---|---|---|---|---|
ARB_MR | DFO_MR | 74.28 | 69.31 | 79.25 | 0.00 | **** |
ARB_MR | DFO_SR | 74.28 | 69.31 | 79.25 | 0.00 | **** |
ARB_MR | FAL_MR | 4.44 | −0.53 | 9.41 | 0.12 | ns |
ARB_MR | CER_SR | 3.14 | −1.83 | 8.11 | 0.60 | ns |
ARB_MR | FAL_SR | 2.97 | −2.00 | 7.95 | 0.68 | ns |
ARB_MR | MDF_SR | 2.96 | −2.01 | 7.94 | 0.69 | ns |
ARB_MR | RAN_MR | −1.83 | −6.14 | 2.48 | 0.96 | ns |
ARB_MR | RAN_SR | −1.92 | −6.89 | 3.05 | 0.98 | ns |
ARB_MR | WLA_SR | −1.62 | −5.92 | 2.69 | 0.99 | ns |
ARB_MR | CER_MR | 1.81 | −3.16 | 6.79 | 0.99 | ns |
ARB_MR | SPS_MR | −1.59 | −6.56 | 3.38 | 1.00 | ns |
ARB_MR | MDF_MR | 1.30 | −3.67 | 6.28 | 1.00 | ns |
ARB_MR | REF_SR | 0.69 | −4.28 | 5.67 | 1.00 | ns |
ARB_MR | WLA_MR | 0.56 | −4.41 | 5.53 | 1.00 | ns |
CER_MR | DFO_MR | 72.47 | 67.49 | 77.44 | 0.00 | **** |
CER_MR | DFO_SR | 72.47 | 67.49 | 77.44 | 0.00 | **** |
CER_MR | RAN_MR | −3.64 | −7.95 | 0.66 | 0.17 | ns |
CER_MR | WLA_SR | −3.43 | −7.73 | 0.88 | 0.25 | ns |
CER_MR | RAN_SR | −3.73 | −8.71 | 1.24 | 0.33 | ns |
CER_MR | SPS_MR | −3.40 | −8.38 | 1.57 | 0.47 | ns |
CER_MR | FAL_MR | 2.63 | −2.35 | 7.60 | 0.83 | ns |
CER_MR | CER_SR | 1.33 | −3.65 | 6.30 | 1.00 | ns |
CER_MR | FAL_SR | 1.16 | −3.81 | 6.13 | 1.00 | ns |
CER_MR | MDF_MR | −0.51 | −5.48 | 4.46 | 1.00 | ns |
CER_MR | MDF_SR | 1.15 | −3.82 | 6.12 | 1.00 | ns |
CER_MR | REF_SR | −1.12 | −6.09 | 3.85 | 1.00 | ns |
CER_MR | WLA_MR | −1.25 | −6.23 | 3.72 | 1.00 | ns |
CER_SR | DFO_MR | 71.14 | 66.17 | 76.11 | 0.00 | **** |
CER_SR | DFO_SR | 71.14 | 66.17 | 76.11 | 0.00 | **** |
CER_SR | RAN_MR | −4.97 | −9.28 | −0.66 | 0.01 | * |
CER_SR | WLA_SR | −4.76 | −9.06 | −0.45 | 0.02 | * |
CER_SR | RAN_SR | −5.06 | −10.03 | −0.09 | 0.04 | * |
CER_SR | SPS_MR | −4.73 | −9.70 | 0.24 | 0.08 | ns |
CER_SR | WLA_MR | −2.58 | −7.55 | 2.39 | 0.85 | ns |
CER_SR | REF_SR | −2.45 | −7.42 | 2.53 | 0.89 | ns |
CER_SR | MDF_MR | −1.84 | −6.81 | 3.14 | 0.99 | ns |
CER_SR | FAL_MR | 1.30 | −3.67 | 6.27 | 1.00 | ns |
CER_SR | FAL_SR | −0.17 | −5.14 | 4.81 | 1.00 | ns |
CER_SR | MDF_SR | −0.18 | −5.15 | 4.80 | 1.00 | ns |
Group1 | Group2 | Estimate | Conf.low | Conf.high | p.adj | p.adj.signif |
---|---|---|---|---|---|---|
ARB_MR | RAN_MR | −31.25 | −36.71 | −25.80 | 0.00 | **** |
ARB_MR | RAN_SR | −43.25 | −49.55 | −36.95 | 0.00 | **** |
ARB_MR | SPS_MR | −25.93 | −32.23 | −19.63 | 0.00 | **** |
ARB_MR | WLA_SR | −23.14 | −28.60 | −17.68 | 0.00 | **** |
ARB_MR | WLA_MR | −18.29 | −24.59 | −11.99 | 0.00 | **** |
ARB_MR | REF_SR | −15.51 | −21.81 | −9.21 | 0.00 | **** |
ARB_MR | FAL_SR | −12.56 | −18.86 | −6.26 | 0.00 | **** |
ARB_MR | FAL_MR | −9.52 | −15.82 | −3.22 | 0.00 | *** |
ARB_MR | DFO_MR | 7.64 | 1.34 | 13.94 | 0.01 | ** |
ARB_MR | DFO_SR | 7.64 | 1.34 | 13.94 | 0.01 | ** |
ARB_MR | CER_SR | −7.51 | −13.81 | −1.21 | 0.01 | ** |
ARB_MR | CER_MR | −5.35 | −11.65 | 0.95 | 0.17 | ns |
ARB_MR | MDF_MR | 2.48 | −3.82 | 8.78 | 0.98 | ns |
ARB_MR | MDF_SR | 1.58 | −4.72 | 7.88 | 1.00 | ns |
CER_MR | RAN_MR | −25.90 | −31.36 | −20.44 | 0.00 | **** |
CER_MR | RAN_SR | −37.89 | −44.19 | −31.59 | 0.00 | **** |
CER_MR | SPS_MR | −20.57 | −26.87 | −14.27 | 0.00 | **** |
CER_MR | WLA_SR | −17.79 | −23.24 | −12.33 | 0.00 | **** |
CER_MR | DFO_MR | 12.99 | 6.69 | 19.29 | 0.00 | **** |
CER_MR | DFO_SR | 12.99 | 6.69 | 19.29 | 0.00 | **** |
CER_MR | WLA_MR | −12.94 | −19.24 | −6.64 | 0.00 | **** |
CER_MR | REF_SR | −10.15 | −16.46 | −3.85 | 0.00 | **** |
CER_MR | MDF_MR | 7.83 | 1.53 | 14.13 | 0.00 | ** |
CER_MR | FAL_SR | −7.20 | −13.50 | −0.90 | 0.01 | * |
CER_MR | MDF_SR | 6.93 | 0.63 | 13.23 | 0.02 | * |
CER_MR | FAL_MR | −4.17 | −10.47 | 2.13 | 0.53 | ns |
CER_MR | CER_SR | −2.15 | −8.45 | 4.15 | 0.99 | ns |
CER_SR | RAN_MR | −23.75 | −29.20 | −18.29 | 0.00 | **** |
CER_SR | RAN_SR | −35.74 | −42.04 | −29.44 | 0.00 | **** |
CER_SR | SPS_MR | −18.42 | −24.72 | −12.12 | 0.00 | **** |
CER_SR | WLA_SR | −15.63 | −21.09 | −10.18 | 0.00 | **** |
CER_SR | DFO_MR | 15.14 | 8.84 | 21.44 | 0.00 | **** |
CER_SR | DFO_SR | 15.14 | 8.84 | 21.44 | 0.00 | **** |
CER_SR | WLA_MR | −10.78 | −17.08 | −4.48 | 0.00 | **** |
CER_SR | MDF_MR | 9.99 | 3.69 | 16.29 | 0.00 | *** |
CER_SR | MDF_SR | 9.08 | 2.78 | 15.38 | 0.00 | *** |
CER_SR | REF_SR | −8.00 | −14.30 | −1.70 | 0.00 | ** |
CER_SR | FAL_SR | −5.05 | −11.35 | 1.25 | 0.24 | ns |
CER_SR | FAL_MR | −2.02 | −8.32 | 4.28 | 1.00 | ns |
Group1 | Group2 | Estimate | Conf.low | Conf.high | p.adj | p.adj.signif |
---|---|---|---|---|---|---|
ARB_MR | CER_MR | −0.27 | −9.39 | 8.86 | 1.00 | ns |
ARB_MR | CER_SR | 6.76 | −2.37 | 15.89 | 0.35 | ns |
ARB_MR | DFO_MR | −7.39 | −16.52 | 1.74 | 0.23 | ns |
ARB_MR | DFO_SR | −7.39 | −16.52 | 1.74 | 0.23 | ns |
ARB_MR | FAL_MR | 13.54 | 4.41 | 22.67 | 0.00 | *** |
ARB_MR | FAL_SR | 13.18 | 4.05 | 22.31 | 0.00 | *** |
ARB_MR | MDF_MR | −5.18 | −14.31 | 3.95 | 0.75 | ns |
ARB_MR | MDF_SR | −3.69 | −12.82 | 5.44 | 0.97 | ns |
ARB_MR | RAN_MR | 38.69 | 30.78 | 46.59 | 0.00 | **** |
ARB_MR | RAN_SR | 54.33 | 45.20 | 63.45 | 0.00 | **** |
ARB_MR | REF_SR | 19.19 | 10.06 | 28.31 | 0.00 | **** |
ARB_MR | SPS_MR | 31.46 | 22.34 | 40.59 | 0.00 | **** |
ARB_MR | WLA_MR | 21.85 | 12.72 | 30.97 | 0.00 | **** |
ARB_MR | WLA_SR | 27.31 | 19.41 | 35.22 | 0.00 | **** |
CER_MR | CER_SR | 7.02 | −2.10 | 16.15 | 0.29 | ns |
CER_MR | DFO_MR | −7.12 | −16.25 | 2.01 | 0.27 | ns |
CER_MR | DFO_SR | −7.12 | −16.25 | 2.01 | 0.27 | ns |
CER_MR | FAL_MR | 13.81 | 4.68 | 22.94 | 0.00 | *** |
CER_MR | FAL_SR | 13.44 | 4.32 | 22.57 | 0.00 | *** |
CER_MR | MDF_MR | −4.91 | −14.04 | 4.22 | 0.81 | ns |
CER_MR | MDF_SR | −3.43 | −12.55 | 5.70 | 0.99 | ns |
CER_MR | RAN_MR | 38.95 | 31.05 | 46.86 | 0.00 | **** |
CER_MR | RAN_SR | 54.59 | 45.46 | 63.72 | 0.00 | **** |
CER_MR | REF_SR | 19.45 | 10.32 | 28.58 | 0.00 | **** |
CER_MR | SPS_MR | 31.73 | 22.60 | 40.86 | 0.00 | **** |
CER_MR | WLA_MR | 22.11 | 12.98 | 31.24 | 0.00 | **** |
CER_MR | WLA_SR | 27.58 | 19.67 | 35.49 | 0.00 | **** |
CER_SR | DFO_MR | −14.15 | −23.27 | −5.02 | 0.00 | *** |
CER_SR | DFO_SR | −14.15 | −23.27 | −5.02 | 0.00 | *** |
CER_SR | FAL_MR | 6.78 | −2.35 | 15.91 | 0.34 | ns |
CER_SR | FAL_SR | 6.42 | −2.71 | 15.55 | 0.43 | ns |
CER_SR | MDF_MR | −11.94 | −21.06 | −2.81 | 0.00 | ** |
CER_SR | MDF_SR | −10.45 | −19.58 | −1.32 | 0.01 | * |
CER_SR | RAN_MR | 31.93 | 24.02 | 39.83 | 0.00 | **** |
CER_SR | RAN_SR | 47.57 | 38.44 | 56.70 | 0.00 | **** |
CER_SR | REF_SR | 12.43 | 3.30 | 21.56 | 0.00 | ** |
CER_SR | SPS_MR | 24.71 | 15.58 | 33.84 | 0.00 | **** |
CER_SR | WLA_MR | 15.09 | 5.96 | 24.22 | 0.00 | **** |
CER_SR | WLA_SR | 20.56 | 12.65 | 28.46 | 0.00 | **** |
Group1 | Group2 | Estimate | Conf.low | Conf.high | p.adj | p.adj.signif |
---|---|---|---|---|---|---|
AGR_MR | RAN_SR | −10.68 | −19.34 | −2.02 | 0.01 | ** |
AGR_MR | FOR_MR | 3.54 | −4.81 | 11.89 | 0.79 | ns |
AGR_MR | AGR_SR | 2.10 | −6.56 | 10.76 | 0.98 | ns |
AGR_MR | RAN_MR | 1.57 | −7.09 | 10.23 | 0.99 | ns |
AGR_MR | FOR_SR | 1.34 | −7.75 | 10.42 | 1.00 | ns |
AGR_SR | RAN_SR | −12.78 | −21.44 | −4.12 | 0.00 | ** |
AGR_SR | FOR_MR | 1.44 | −6.91 | 9.78 | 1.00 | ns |
AGR_SR | FOR_SR | −0.76 | −9.85 | 8.32 | 1.00 | ns |
AGR_SR | RAN_MR | −0.53 | −9.19 | 8.13 | 1.00 | ns |
References
- Bruins, H.J. Ancient desert agriculture in the Negev and climate-zone boundary changes during average, wet and drought years. J. Arid Environ. 2012, 86, 28–42. [Google Scholar] [CrossRef]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Stavi, I.; Rahamim, S.; Gidon, R.; Judith, L. Ancient to Recent-Past Runoff Harvesting Agriculture in Recharge Playas of the Hyper-Arid Southern Israel. Water 2017, 9, 991. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Chen, D.; Wang, L.; Daryanto, S.; Chen, L.; Yu, Y. Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Sci. Rev. 2016, 159, e388–e403. [Google Scholar] [CrossRef] [Green Version]
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Liang, L.; Takeuchi, K.; Okuro, T.; Zhang, D.; Sun, L. Indigenous ecological knowledge and natural resource management in the cultural landscape of China’s Hani Terraces. Ecol. Res. 2012, 27, 247–263. [Google Scholar] [CrossRef]
- Li, J.; Min, Q.; Li, W.; Bai, Y.; Lun, Y.; Bijaya, G.C.D. Evaluation of water resources conserved by forests in the Hani Rice Terraces System of Honghe County, Yunnan, China: An application of the fuzzy comprehensive evaluation model. J. Mt. Sci. 2016, 13, 744–753. [Google Scholar] [CrossRef]
- Miao, J.; Yang, W.; Yang, B.; Ma, Y.; Huang, G. Evaluating the ecosystem services of Chongyi Hakka Terraces in Gannan, Jiangxi Province. J. Nat. Res. 2016, 31, 1817–1831. [Google Scholar]
- Chen, D.; Wei, W.; Chen, L.; Yun, Y. Progress of the ecosystem services and management of terraces. J. Mt. Sci. 2016, 34, 374–384. [Google Scholar]
- Kosmowski, F. Soil water management practices (terraces) helped to mitigate the 2015 drought in Ethiopia. Agric. Water Manag. 2018, 204, 11–16. [Google Scholar] [CrossRef]
- Petit, C.; Konold, W.; Höchtl, F. Historic terraced vineyards: Impressive witnesses of vernacular architecture. Landsc. Hist. 2012, 33, 5–28. [Google Scholar] [CrossRef]
- Varotto, M.; Bonardi, L.; Tarolli, P. World Terraced Landscapes: History, Environment, Quality of Life; Springer: Cham, Switzerland, 2019; pp. 1–357. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth-Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.; Wang, S.J. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena 2012, 90, 53–62. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.M.; Bai, Z.K.; Lv, C. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coalmine dump in a loess area. Catena 2015, 128, 44–53. [Google Scholar] [CrossRef]
- Wen, Y.; Kasielke, T.; Li, H.; Zhang, B.; Zepp, H. May agricultural terraces induce gully erosion? A case study from the Black soil region of northeast China. Sci. Total Environ. 2020, 750, 141715. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Dong, Y.H.; Li, D.; Liu, Q.; Wang, J.; Zhang, X.L. Effects of different terrace protection measures in a sloping land consolidation project targeting soil erosion at the slope scale. Ecol. Eng. 2013, 53, 46–53. [Google Scholar] [CrossRef]
- Moraetis, D.; Nikolaidis, N.P.; Paranychianakis, N.; Rousseva, S.; Kercheva, M.; Nenov, M. Soil genesis, evolution, and properties in the koiliaris river watershedcritical zone observatory. J. Soil Sediment. 2015, 15, 347–364. [Google Scholar] [CrossRef]
- Ziyadi, M.; Dahbi, A.; Aitlhaj, A.; El Ouahrani, A.; El Ouahidi, A.; Achtak, H. Terraced Agroforestry Systems in West Anti-Atlas (Morocco): Incidence of Climate Change and Prospects for Sustainable Development. Climate Change-Resilient Agriculture and Agroforestry; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Piccarreta, M.; Pasini, A.; Capolongo, D.; Lazzari, M. Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: The Basilicata region, southern Italy. Int. J. Climatol. 2013, 33, 3229–3248. [Google Scholar] [CrossRef]
- Cevasco, A.; Brandolini, P. Rapid debris volume estimation by LiDAR data derived DEMs: Applications to the 25 October 2011 debris flood event at Vernazza (Cinque Terre, Italy). Rend. Online Della Soc. Geol. Ital. 2015, 35, 62–65. [Google Scholar] [CrossRef]
- Piccarreta, M.; Capolongo, D.; Boenzi, F.; Bentivenga, M. Implications of decadal changes in precipitation and land use policy to soil erosion in Basilicata, Italy. Catena 2006, 65, 138–151. [Google Scholar] [CrossRef]
- Vergari, F.; Della Seta, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Long- and short-term evolution of several Mediterranean denudation hot spots: The role of rainfall variations and human impact. Geomorphology 2013, 183, 14–27. [Google Scholar] [CrossRef]
- Salvati, L.; Bajocco, S. Land sensitivity to desertification across Italy. Past, present and future. Appl. Geogr. 2011, 31, 223–231. [Google Scholar] [CrossRef]
- Sabir, M. The Terraces of the Anti-Atlas: From Abandonment to the Risk of Degradation of a Landscape Heritage. Water 2021, 13, 510. [Google Scholar] [CrossRef]
- Modeste, M.; Abdellatif, K.; Nadia, M.; Zhang, H. Cartographie Des Risques De L’érosion Hydrique Par L’équation Universelle Révisée Des Pertes En Sols, La Télédétection Et Les SIG Dans Le Bassin Versant De L’ourika (Haut Atlas, Maroc). Eur. Sci. J. ESJ 2016, 12, 277. [Google Scholar] [CrossRef] [Green Version]
- Roose, E. Méthodes de mesure des états de surface du sol, de la rugosité et des autres caractéristiques qui peuvent aider au diagnostic de terrain des risques de ruissellement et d’érosion, en particulier sur les versants cultivés des montagnes. Bull Réseau Eros. 1996, 16, 87–97. [Google Scholar]
- Modeste, M.; Nouira, A.; Benmansour, M.; Boulmane, M.; Khattabi, A.; Mhammdi, N.; Benkdad, A. Assessment of soil erosion rates in a Mediterranean cultivated and uncultivated soils using fallout 137Cs. J. Environ. Radioact. 2019, 208–209, 106021. [Google Scholar] [CrossRef]
- Walling, D.E.; He, Q.; Zhang, Y. Conversion models and related software. In Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies. IAEA-TECDOC-1741; IAEA Publication: Vienna, Austria, 2014; pp. 125–148. [Google Scholar]
- Walling, D.E.; He, Q.; Appleby, P.G. Conversion models for use in soilerosion, soilredistribution and sedimentation investigations. In Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides; Zapata, F., Ed.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 111–164. [Google Scholar]
- Sabir, M.; Barthès, B.; Roose, E. Recherche d’indicateurs des risques de ruissellement et d’érosion sur les principaux sols des montagnes méditerranéennes du rif occidental (Maroc). Sécheresse 2004, 15, 105–110. [Google Scholar]
- Cammeraat, E.; van Beek, R.; Kooijman, A. Vegetation succession and its consequences for slope stability in SE Spain. Plant Soil 2005, 278, 135–147. [Google Scholar] [CrossRef]
- Araya, T.; Cornelis, W.M.; Nyssen, J.; Govaerts, B.; Bauer, H.; Gebreegziabher, T.; Oicha, T.; Raes, D.; Sayre, K.D.; Haile, M.; et al. Effects of conservation agriculture on runoff, soil loss and crop yield under rainfed conditions in Tigray, Northern Ethiopia. Soil Use Manag. 2011, 27, 404–414. [Google Scholar] [CrossRef]
- Tian, M.; Min, Q.; Jiao, W.; Yuan, Z.; Fuller, A.M.; Yang, L.; Zhang, Y.; Zhou, J.; Cheng, B. Agricultural Heritage Systems Tourism: Definition, characteristics and development framework. J. Mt. Sci. 2016, 13, 440–454. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, C.; Chen, X. Effects of China’s payment for ecosystem services programs on cropland abandonment: A case study in Tiantangzhai Township, Anhui. China. Land Use Policy 2018, 73, 239–248. [Google Scholar] [CrossRef]
- Brandolini, P.; Cevasco, A.; Capolongo, D.; Pepe, G.; Lovergine, F.; Del Monte, M. Response of Terraced Slopes to a Very Intense Rainfall Event and Relationships with Land Abandonment: A Case Study from Cinque Terre (Italy). Land Degrad. Dev. 2017, 29, 630–642. [Google Scholar] [CrossRef]
LULC | Geology | Sampling Units Code | Number of Samples | |
---|---|---|---|---|
Agriculture (AGR) | Arboriculture | Magmatic rock | ARB_MR | 3 |
Cereal farming | Magmatic rock | CER_MR | 3 | |
Cereal farming | Sedimentary rock | CER_SR | 3 | |
Forest (FOR) | Dense forest | Magmatic rock | DFO_MR | 5 |
Dense forest | Sedimentary rock | DFO_SR | 5 | |
Fallow (FAL) | Fallow | Magmatic rock | FAL_MR | 3 |
Fallow | Sedimentary rock | FAL_SR | 3 | |
Forest (FOR) | Moderately dense forest | Magmatic rock | MDF_MR | 5 |
Moderately dense forest | Sedimentary rock | MDF_SR | 5 | |
Rangeland (RAN) | Rangeland | Magmatic rock | RAN_MR | 3 |
Rangeland | Sedimentary rock | RAN_SR | 6 | |
Reforestation (REF) | Reforestation | Sedimentary rock | REF_SR | 3 |
Rangeland (RAN) | Spiny high-mountain xerophytes | Magmatic rock | SPS_MR | 3 |
Forest (FOR) | Wood land | Magmatic rock | WLA_MR | 3 |
Wood land | Sedimentary rock | WLA_SR | 6 |
LULC | Geology | Sampling Units Code | Number of Samples |
---|---|---|---|
Agriculture (AGR) | Magmatic rock | AGR_MR | 6 |
Sedimentary rock | AGR_SR | 6 | |
Forest (FOR) | Magmatic rock | FOR_MR | 7 |
Sedimentary rock | FOR_SR | 5 | |
Rangeland (RAN) | Magmatic rock | RAN_MR | 6 |
Sedimentary rock | RAN_SR | 6 |
Sampling Units Code | n | Min | Max | Median | Interquartile Range | Mean | SD |
---|---|---|---|---|---|---|---|
ARB_MR | 3 | 2.48 | 4.96 | 3.72 | 1.24 | 3.72 | 1.24 |
CER_MR | 3 | 4.80 | 6.00 | 5.80 | 0.60 | 5.53 | 0.64 |
CER_SR | 3 | 3.60 | 8.82 | 8.16 | 2.61 | 6.86 | 2.84 |
DFO_MR | 5 | 75.00 | 80.00 | 79.00 | 2.50 | 78.00 | 2.65 |
DFO_SR | 5 | 75.00 | 80.00 | 79.00 | 2.50 | 78.00 | 2.65 |
FAL_MR | 3 | 6.80 | 9.52 | 8.16 | 1.36 | 8.16 | 1.36 |
FAL_SR | 3 | 2.40 | 9.52 | 8.16 | 3.56 | 6.69 | 3.78 |
MDF_MR | 5 | 3.78 | 6.25 | 5.04 | 1.24 | 5.02 | 1.24 |
MDF_SR | 5 | 6.25 | 7.50 | 6.30 | 0.63 | 6.68 | 0.71 |
RAN_MR | 6 | 1.25 | 2.54 | 1.90 | 1.24 | 1.89 | 0.68 |
RAN_SR | 3 | 1.30 | 2.60 | 1.50 | 0.65 | 1.80 | 0.70 |
REF_SR | 3 | 2.52 | 6.70 | 4.02 | 2.09 | 4.41 | 2.12 |
SPS_MR | 3 | 1.25 | 2.60 | 2.54 | 0.68 | 2.13 | 0.76 |
WLA_MR | 3 | 3.78 | 5.04 | 4.02 | 0.63 | 4.28 | 0.67 |
WLA_SR | 6 | 1.20 | 2.60 | 2.52 | 0.97 | 2.11 | 0.68 |
Sampling Units Code | n | Min | Max | Median | Interquartile Range | Mean | SD |
---|---|---|---|---|---|---|---|
ARB_MR | 3 | 69.75 | 70.85 | 70.50 | 0.55 | 70.36 | 0.56 |
CER_MR | 3 | 64.82 | 65.27 | 64.95 | 0.23 | 65.01 | 0.23 |
CER_SR | 3 | 61.88 | 64.20 | 62.49 | 1.16 | 62.86 | 1.20 |
DFO_MR | 5 | 75.00 | 80.00 | 79.00 | 2.50 | 78.00 | 2.65 |
DFO_SR | 5 | 75.00 | 80.00 | 79.00 | 2.50 | 78.00 | 2.65 |
FAL_MR | 3 | 60.27 | 61.39 | 60.86 | 0.56 | 60.84 | 0.56 |
FAL_SR | 3 | 55.49 | 59.47 | 58.46 | 1.99 | 57.81 | 2.07 |
MDF_MR | 5 | 71.77 | 73.69 | 73.08 | 0.96 | 72.85 | 0.98 |
MDF_SR | 5 | 71.47 | 72.68 | 71.68 | 0.61 | 71.94 | 0.65 |
RAN_MR | 6 | 33.79 | 43.90 | 40.50 | 5.74 | 39.11 | 4.11 |
RAN_SR | 3 | 24.78 | 30.25 | 26.33 | 2.74 | 27.12 | 2.82 |
REF_SR | 3 | 54.45 | 55.10 | 55.03 | 0.33 | 54.86 | 0.36 |
SPS_MR | 3 | 44.23 | 44.65 | 44.43 | 0.22 | 44.44 | 0.22 |
WLA_MR | 3 | 50.38 | 54.06 | 51.79 | 1.84 | 52.08 | 1.86 |
WLA_SR | 6 | 45.24 | 49.69 | 47.12 | 1.09 | 47.23 | 1.49 |
Sampling Units Code | n | Min | Max | Median | Interquartile Range | Mean | SD |
---|---|---|---|---|---|---|---|
ARB_MR | 3 | 7.74 | 8.83 | 8.59 | 0.54 | 8.39 | 0.57 |
CER_MR | 3 | 7.88 | 8.27 | 8.21 | 0.20 | 8.12 | 0.21 |
CER_SR | 3 | 10.70 | 20.48 | 14.26 | 4.89 | 15.15 | 4.95 |
DFO_MR | 5 | 0.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DFO_SR | 5 | 0.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 |
FAL_MR | 3 | 21.26 | 22.71 | 21.82 | 0.73 | 21.93 | 0.73 |
FAL_SR | 3 | 17.64 | 23.98 | 23.08 | 3.17 | 21.57 | 3.43 |
MDF_MR | 5 | 2.51 | 4.20 | 2.92 | 0.85 | 3.21 | 0.88 |
MDF_SR | 5 | 4.44 | 5.06 | 4.59 | 0.31 | 4.70 | 0.33 |
RAN_MR | 6 | 40.09 | 54.11 | 46.05 | 5.89 | 47.07 | 5.12 |
RAN_SR | 3 | 58.88 | 65.76 | 63.50 | 3.44 | 62.71 | 3.51 |
REF_SR | 3 | 24.65 | 29.61 | 28.47 | 2.48 | 27.57 | 2.60 |
SPS_MR | 3 | 35.92 | 41.93 | 41.71 | 3.01 | 39.85 | 3.41 |
WLA_MR | 3 | 29.47 | 30.65 | 30.58 | 0.59 | 30.23 | 0.67 |
WLA_SR | 6 | 31.54 | 41.23 | 35.20 | 4.77 | 35.70 | 3.67 |
Sampling Units Code | n | Min | Max | Median | Interquartile Range | Mean | SD |
---|---|---|---|---|---|---|---|
AGR_MR | 6 | −18.36 | −0.06 | −5.07 | 6.54 | −6.61 | 6.67 |
AGR_SR | 6 | −11.48 | 2.27 | −5.13 | 9.20 | −4.50 | 5.77 |
FOR_MR | 7 | −8.46 | 0.36 | −1.40 | 4.83 | −3.07 | 3.36 |
FOR_SR | 5 | −11.46 | 2.52 | −7.22 | 7.26 | −5.27 | 5.68 |
RAN_MR | 6 | −8.08 | −1.14 | −5.66 | 2.56 | −5.04 | 2.47 |
RAN_SR | 6 | −25.15 | −11.49 | −17.07 | 4.55 | −17.28 | 4.76 |
Variable | DFn | DFd | F | p-Value |
---|---|---|---|---|
Pi | 14 | 44 | 738.461 | 7.02 × 10−40 |
If | 14 | 44 | 169.282 | 1.75 × 10−28 |
Kr | 14 | 44 | 126.553 | 2.91 × 10−26 |
Er | 5 | 30 | 6.733 | 0.000258 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meliho, M.; Khattabi, A.; Nouira, A.; Orlando, C.A. Role of Agricultural Terraces in Flood and Soil Erosion Risks Control in the High Atlas Mountains of Morocco. Earth 2021, 2, 746-763. https://doi.org/10.3390/earth2040044
Meliho M, Khattabi A, Nouira A, Orlando CA. Role of Agricultural Terraces in Flood and Soil Erosion Risks Control in the High Atlas Mountains of Morocco. Earth. 2021; 2(4):746-763. https://doi.org/10.3390/earth2040044
Chicago/Turabian StyleMeliho, Modeste, Abdellatif Khattabi, Asmae Nouira, and Collins Ashianga Orlando. 2021. "Role of Agricultural Terraces in Flood and Soil Erosion Risks Control in the High Atlas Mountains of Morocco" Earth 2, no. 4: 746-763. https://doi.org/10.3390/earth2040044
APA StyleMeliho, M., Khattabi, A., Nouira, A., & Orlando, C. A. (2021). Role of Agricultural Terraces in Flood and Soil Erosion Risks Control in the High Atlas Mountains of Morocco. Earth, 2(4), 746-763. https://doi.org/10.3390/earth2040044