Lake Watershed Dynamics and Bathymetry Modeling of Rara and Begnas Lakes in Nepal
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Source
3.1.1. Bathymetric Survey
3.1.2. Climate Data
3.1.3. Spatial Data
3.1.4. Land-Cover Classification and Soil Erosion Estimation
3.2. Data Analysis
3.2.1. Bathymetric Analysis
3.2.2. Climatic Trends
4. Results and Discussions
4.1. Lake Bathymetry
4.1.1. Rara Lake
4.1.2. Begnas Lake
4.2. Evolution of Rara and Begnas Lakes
4.3. Watershed Characterization (Land-Use Change and Sedimentation)
4.4. Climatic Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, Y.; Yang, K.; Wang, B.; Sheng, Y.; Bird, B.W.; Zhang, G.; Tian, L. Response of inland lake dynamics over the Tibetan Plateau to climate change. Clim. Chang. 2014, 125, 281–290. [Google Scholar] [CrossRef]
- Shijin, W.; Tao, Z. Spatial change detection of glacial lakes in the Koshi River Basin, the Central Himalayas. Environ. Earth Sci. 2014, 72, 4381–4391. [Google Scholar] [CrossRef]
- Sharma, C.M.; Sharma, S.; Gurung, S.; Bajracharya, R.M.; Jüttner, I. Study on Morphometry and Limnology of Gokyo Wetland with Climate Change Perspective; Report WWF; World Wildlife Fund: Nepal, Kathmandu, 2009. [Google Scholar]
- Khadka, N.; Zhang, G.; Thakuri, S. Glacial lakes in the Nepal Himalaya: Inventory and decadal dynamics (1977–2017). Remote Sens. 2018, 10, 1913. [Google Scholar] [CrossRef] [Green Version]
- Thakuri, S.; Salerno, F.; Smiraglia, C.; Bolch, T.; D’Agata, C.; Viviano, G.; Tartari, G. Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery. Cryosphere 2014, 8, 1297–1315. [Google Scholar] [CrossRef] [Green Version]
- Khadka, N.; Zhang, G.; Chen, W. The state of six dangerous glacial lakes in the Nepalese Himalaya. Terr. Atmos. Ocean. Sci. 2019, 30, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Somos-Valenzuela, M.A.; McKinney, D.C.; Rounce, D.R.; Byers, A.C. Changes in Imja Tsho in the Mount Everest region of Nepal. Cryosphere 2014, 8, 1661–1671. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A.; Yamada, T.; Fujita, K. Volume change of Imja glacial lake in the Nepal Himalayas. In Proceedings of the International Symposium on Disaster Mitigation and Basin Wide Water Management, Niigata, Japan, 7–10 December 2003; pp. 556–561. [Google Scholar]
- Thapa, S.; Wang, L.; Koirala, A.; Shrestha, S.; Bhattarai, S.; Aye, W.N. Valuation of Ecosystem Services from an Important Wetland of Nepal: A Study from Begnas Watershed System. Wetlands 2020, 40, 1071–1083. [Google Scholar] [CrossRef]
- Paudyal, K.; Baral, H.; Keenan, R.J. Assessing social values of ecosystem services in the Phewa Lake Watershed, Nepal. For. Policy Econ. 2018, 90, 67–81. [Google Scholar] [CrossRef]
- Bhuju, U.R.; Khadka, M.; Neupane, P.K.; Adhikari, R. Lakes of Nepal: 5358-A Map-Based Inventory; National Lakes Conservation Development Committee: Kathmandu, Nepal, 2009.
- Shrestha, B.; Ye, Q.; Khadka, N. Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas. Sustainability 2019, 11, 3183. [Google Scholar] [CrossRef] [Green Version]
- Sewwandi, B.G.N.; Wickramaratne, K.N.K.R.; Jayasinghe, D.M.R.R.; Sangeetha, M.; Galagedara, L.W.; Dayawansa, N.D.K. Water allocation of Begnas lake in Nepal among different sectors: A comparison with Sri Lankan dry zone small irrigation systems. In Proceedings of the Water Professional’s Day, Water Resources Research in Sri Lanka, Peradeniya, Sri Lanka, 1 October 2009. [Google Scholar]
- Yagi, H.; Maekoku, H.; Okamura, A.; Matsuoka, H.; Teramura, H.; Adhikari, D.; Dangol, V. Rara Lake, its bathymetric feature and origin, Jumla District, western Nepal Himalayas. J. Nepal Geol. Soc. 2009, 155, 59–62. [Google Scholar]
- Rai, A.K.; Shrestha, B.C.; Joshi, P.L.; Gurung, T.B.; Nakanishi, M. Bathymetric maps of Lakes Phewa, Begnas and Rupa in Pokhara Valley, Nepal. Mem. Fac. Sci. Kyoto Univ. Ser. Biol. 1995, 16, 49–54. [Google Scholar]
- Okino, T.; Satoh, Y. Morphology, physics, chemistry and biology of Lake Rara in West Nepal. Hydrobiologia 1986, 140, 125–133. [Google Scholar] [CrossRef]
- Gurung, A.; Adhikari, S.; Chauhan, R.; Thakuri, S.; Nakarmi, S.; Ghale, S.; Dongol, B.S.; Rijal, D. Water crises in a water-rich country: Case studies from rural watersheds of Nepal’s mid-hills. Water Policy 2019, 21, 826–847. [Google Scholar] [CrossRef]
- Rafiq, L.; Blaschke, T. Disaster risk and vulnerability in Pakistan at a district level. Geomat. Nat. Hazards Risk 2012, 3, 324–341. [Google Scholar] [CrossRef]
- Gupta, S.K.; Deshpande, R.D. Water for India in 2050: First-order assessment of available options. Curr. Sci. 2004, 86, 1216–1224. [Google Scholar]
- Zhang, Z.; Chang, J.; Xu, C.Y.; Zhou, Y.; Wu, Y.; Chen, X.; Jiang, S.; Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 2018, 635, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Salerno, F.; Thakuri, S.; Guyennon, N.; Viviano, G.; Tartari, G. Glacier melting and precipitation trends detected by surface area changes in Himalayan ponds. Cryosphere 2016, 10, 1433–1448. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M.; et al. Climate Change: Impact on Agriculture and Costs of Adaptation; Food Policy Report; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Kafle, G.; Savillo, I.T. Present status of Ramsar sites in Nepal. Int. J. Biodivers. Conserv. 2009, 1, 146–150. [Google Scholar]
- Bhuju, U.R.; Shakya, P.R.; Basnet, T.B.; Shrestha, S. Nepal Biodiversity Resource Book: Protected Areas, Ramsar Sites, and World Heritage Sites; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2007. [Google Scholar]
- Acharya, T.D.; Yang, I.T.; Subedi, A.; Lee, D.H. Change detection of lakes in Pokhara, Nepal using Landsat data. Proceedings 2017, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.S.; Kargel, J.S.; Regmi, D.; Rupper, S.; Maurer, J.M.; Karki, A. Shrinkage of Nepal’s second largest Lake (Phewa tal) due to watershed degradation and increased sediment influx. Remote Sens. 2019, 11, 444. [Google Scholar] [CrossRef] [Green Version]
- Ferro, W. Some limnological and biological data from Rara, a deep Himalayan Lake in Nepal. J. Nepal Centre 1979, 2/3, 241–261. [Google Scholar]
- Rai, A.K. Limnological characteristics of subtropical Lakes Phewa, Begnas, and Rupa in Pokhara Valley, Nepal. Limnology 2000, 1, 33–46. [Google Scholar] [CrossRef]
- Paudel, N.; Adhikari, S.; Paudel, G. Ramsar lakes in the foothills of Himalaya, Pokhara-Lekhnath, Nepal: An overview. Janapriya J. Interdiscip. Stud. 2017, 6, 134–147. [Google Scholar] [CrossRef]
- Nakanishi, M.; Watanave, M.M.; Terashima, A.; Sako, Y.; Konda, T.; Shrestha, K.; Bhandary, H.; Ishida, Y. Studies on some limnological variables in subtropical lakes of the Pokhara Valley, Nepal. Jpn. J. Limnol. Rikusuigaku Zasshi 1988, 49, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.F.; Gurung, T.B.; Shrestha, B.; Jones, S.B.; Wylie, G.D.; Perkins, B.D.; Jones, J.R. Use of a subsurface plankton layer to benefit a cage-culture fishery in Lake Phewa, Nepal. Int. Ver. Theor. Angew. Limnol. Verh. 1998, 26, 2220–2227. [Google Scholar] [CrossRef]
- Khadka, U.R.; Ramanathan, A.L. Major ion composition and seasonal variation in the Lesser Himalayan lake: Case of Begnas Lake of the Pokhara Valley, Nepal. Arab. J. Geosci. 2013, 6, 4191–4206. [Google Scholar] [CrossRef]
- Lohman, K.; Jones, J.R.; Knowlton, M.F.; Swar, D.B.; Pamperl, M.A.; Brazos, B.J. Pre-and postmonsoon limnological characteristics of lakes in the Pokhara and Kathmandu Valleys, Nepal. Int. Ver. Theor. Angew. Limnol. Verh. 1988, 23, 558–565. [Google Scholar] [CrossRef]
- Jones, J.R.; Knowlton, M.; Swar, D.B. Limnological reconnaissance of waterbodies in central and southern Nepal. Hydrobiologia 1989, 184, 171–189. [Google Scholar] [CrossRef]
- Ferro, W. Limnology of the Pokhara Valley Lakes (Himalayan Region, Nepal) and Its Implication for Fisery and Fish Culture; Report Integrated Fishery and Fish Culture Development Project; FAO: Rome, Italy, 1978. [Google Scholar]
- Popielarczyk, D.; Templin, T.; Łopata, M. Using the geodetic and hydroacoustic measurements to investigate the bathymetric and morphometric parameters of Lake Hancza (Poland). Open Geosci. 2015, 7, 854–869. [Google Scholar] [CrossRef]
- Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Thakuri, S.; Salerno, F.; Bolch, T.; Guyennon, N.; Tartari, G. Factors controlling the accelerated expansion of Imja Lake, Mount Everest region, Nepal. Ann. Glaciol. 2016, 57, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Mallick, J.; Hasan, M.A.; Alashker, Y.; Ahmed, M. Bathymetric and geochemical analysis of lake al-saad, Abha, kingdom of Saudi Arabia using geoinformatics technology. J. Geogr. Inf. Syst. 2014, 6, 440. [Google Scholar] [CrossRef] [Green Version]
- Šiljeg, A.; Lozić, S.; Šiljeg, S. A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia. Hydrol. Earth Syst. Sci. 2015, 19, 3653–3666. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, K.E.; Easterling, D.R.; Redmond, K.; Hubbard, K. Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett. 2003, 30, 1900. [Google Scholar] [CrossRef] [Green Version]
- Ngongondo, C.; Xu, C.Y.; Gottschalk, L.; Alemaw, B. Evaluation of spatial and temporal characteristics of rainfall in Malawi: A case of data scarce region. Theor. Appl. Climatol. 2011, 106, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Hameed, T.; Mariño, M.A.; DeVries, J.J.; Tracy, J.C. Method for trend detection in climatological variables. J. Hydrol. Eng. 1997, 2, 154–160. [Google Scholar] [CrossRef]
- Swar, D.B.; Gurung, T.B. Introduction and cage culture of exotic carps and their impact on fish harvested in Lake Begnas, Nepal. Hydrobiologia 1988, 166, 277–283. [Google Scholar] [CrossRef]
- Ferro, W.; Swar, D.B. Bathymetric maps from three lakes in the Pokhara Valley (Nepal). J. Inst. Sci. TU 1978, 1, 177–188. [Google Scholar]
- Acharya, S.; Can-Ge, L.I.; JI, K.; Sun, Z.; Wang, M.; Hou, J. Lacustrine Record of 1954 Flood Event on Begnas and Rupa Lake, Central Nepal. Acta Geol. Sinica Engl. Ed. 2020, 94, 717–724. [Google Scholar] [CrossRef]
- Lama, F.; Thakuri, S.; Ghimire, N.P.; Malla, R. Ecotone vegetation and water quality of Rara and Begnas Lakes, Nepal. Himalayan Biodivers. 2018, 6, 27–37. [Google Scholar] [CrossRef]
- Pant, R.; Pal, K.; Adhikari, N.; Adhikari, S.; Mishra, A. Water Quality Assessment of Begnas and Rupa Lakes, Lesser Himalaya Pokhara, Nepal. J. Inst. Eng. 2019, 15, 113–122. [Google Scholar] [CrossRef]
- Odongo, V.O.; van Oel, P.R.; van der Tol, C.; Su, Z. Impact of land use and land cover transitions and climate on evapotranspiration in the Lake Naivasha Basin, Kenya. Sci. Total Environ. 2019, 682, 19–30. [Google Scholar] [CrossRef]
- Dunn, S.M.; Mackay, R. Spatial variation in evapotranspiration and the influence of land use on catchment hydrology. J. Hydrol. 1995, 171, 49–73. [Google Scholar] [CrossRef]
- Liu, M.; Hu, D. Response of wetland evapotranspiration to land use/cover change and climate change in Liaohe River Delta, China. Water 2019, 11, 955. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.P.; Mo, X.G. Differences of evapotranspiration on forest, grassland and farmland. J. Appl. Ecol. 2007, 18, 1751–1757. [Google Scholar]
- Liu, M.; Tian, H.; Chen, G.; Ren, W.; Zhang, C.; Liu, J. Effects of land-use and land-cover change on evapotranspiration and water yield in China during 1900–2000. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1193–1207. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Estimating evapotranspiration of European forests from NOAA-imagery at satellite overpass time: Towards an operational processing chain for integrated optical and thermal sensor data products. Remote Sens. Environ. 2005, 96, 256–276. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef]
- Thakuri, S.; Dahal, S.; Shrestha, D.; Guyennon, N.; Romano, E.; Colombo, N.; Salerno, F. Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos. Res. 2019, 228, 261–269. [Google Scholar] [CrossRef]
- Lambert, L.; Chitrakar, B.D. Variation of potential evapotranspiration with elevation in Nepal. Mt. Res. Dev. 1989, 9, 145–152. [Google Scholar] [CrossRef]
- Salerno, F.; Thakuri, S.; D’Agata, C.; Smiraglia, C.; Manfredi, E.C.; Viviano, G.; Tartari, G. Glacial lake distribution in the Mount Everest region: Uncertainty of measurement and conditions of formation. Glob. Planet. Change 2012, 92, 30–39. [Google Scholar] [CrossRef]
Station Index | Location | Station Type | Lat | Long | Elevation | Data Availability | % Missing Values | |
---|---|---|---|---|---|---|---|---|
°N | °E | m a.s.l. | Air Temperature | Rainfall | ||||
804 | Pokhara Airport | Aeronautical, manned and automatic | 28.20 | 83.97 | 827 | 1968–2013 | 1 | 4 |
814 | Lumle | Agrometeorology | 28.18 | 83.48 | 1740 | 1969–2013 | 1 | 2 |
303 | Jumla | Synoptic, manned | 29.27 | 82.18 | 2366 | 1976–2015 | 7 | 3 |
310 | Dipal Gaun | Climatology, manned and automatic | 29.16 | 82.13 | 2310 | 1985–2015 | 3 | 8 |
Satellite/Sensor | Acquired Date | Spatial Resolution (m) | Number of Bands | Scene ID |
---|---|---|---|---|
Landsat MSS | 28 October 1976 | 60 | 4 | LM02_L1TP_152041_19761028_20180424_01_T2 |
30 October 1976 | 60 | 4 | LM02_L1TP_154040_19761030_20180424_01_T2 | |
Landsat TM | 7 November 1989 | 30 | 7 | LT05_L1TP_142041_19891107_20170201_01_T1 |
3 December 1990 | 30 | 7 | LT05_L1TP_143040_19901203_20170127_01_T1 | |
30 October 2010 | 30 | 7 | LT05_L1TP_144040_20101030_20161012_01_T1 | |
1 November 2010 | 30 | 7 | LT05_L1TP_142041_20101101_20161012_01_T1 | |
Landsat ETM+ | 15 December 2000 | 30/15* | 8 | LE07_L1TP_142041_20001215_20170208_01_T1 |
20 November 2000 | 30/15* | 8 | LE07_L1TP_143040_20001120_20170209_01_T1 | |
Sentinel 2B | 7 December 2019 | 10 | 13 | L1_T44RQS_A023282_20191207T050809 |
25 November 2019 | 10 | 13 | L1C_T44RPT_A014202_20191125T051334 |
Landcover | Total Area (km2) | ||
---|---|---|---|
1976 | 2000 | 2019 | |
(a) Rara watershed | |||
Forest | 12.51 | 13.19 | 13.60 |
Waterbody | 9.61 | 9.96 | 10.25 |
Agriculture/settlement | 2.96 | 1.74 | 0.97 |
Bare | 0.10 | 0.20 | 0.28 |
(b) Begnas watershed | |||
Forest | 14.12 | 11.47 | 12.00 |
Waterbody | 2.48 | 2.99 | 2.98 |
Agriculture/settlement | 1.54 | 3.39 | 3.12 |
Bare | 0.16 | 0.43 | 0.19 |
Site | Station | Mean Temperature (°C/yr) | Annual Rainfall (mm/yr) |
---|---|---|---|
Rara | 303 | 0.035 * | −3.2 * |
310 | 0.042 * | −3.5 * | |
Begnas | 804 | 0.035 * | −4.7 |
814 | 0.030 * | 20.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakuri, S.; Lama, F.; Malla, R.; Khadka, N.; Ghimire, N.P.; Salerno, F. Lake Watershed Dynamics and Bathymetry Modeling of Rara and Begnas Lakes in Nepal. Earth 2021, 2, 272-286. https://doi.org/10.3390/earth2020016
Thakuri S, Lama F, Malla R, Khadka N, Ghimire NP, Salerno F. Lake Watershed Dynamics and Bathymetry Modeling of Rara and Begnas Lakes in Nepal. Earth. 2021; 2(2):272-286. https://doi.org/10.3390/earth2020016
Chicago/Turabian StyleThakuri, Sudeep, Furbe Lama, Rabin Malla, Nitesh Khadka, Narayan Prasad Ghimire, and Franco Salerno. 2021. "Lake Watershed Dynamics and Bathymetry Modeling of Rara and Begnas Lakes in Nepal" Earth 2, no. 2: 272-286. https://doi.org/10.3390/earth2020016
APA StyleThakuri, S., Lama, F., Malla, R., Khadka, N., Ghimire, N. P., & Salerno, F. (2021). Lake Watershed Dynamics and Bathymetry Modeling of Rara and Begnas Lakes in Nepal. Earth, 2(2), 272-286. https://doi.org/10.3390/earth2020016