Soil Sensitivity to Wind and Water Erosion as Affected by Land Use in Southern Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Determination of Soil Erosion Indices
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Properties of Soils under Different Land-Use Types
3.2. Soil Aggregate Stability Indices under Different Land-Use Types (MWDdry, GMDdry, DSA, WSA, and ASI)
3.3. Wind Erosion Indicators under Different Land-Use Types (EF, DEP, K, and ER)
3.4. Relationship among Soil Organic Matter, Aggregate Stability, and Erosion Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doran, J.W.; Sarrantonio, M.; Liebig, M.A. Soil health and sustainability. Adv. Agron. 1996, 56, 1–54. [Google Scholar]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.A.; Naderi, M.; Dematte, A.M.; Kerry, R. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran. Geomorphology 2016, 273, 385–395. [Google Scholar] [CrossRef]
- Auerswald, K.; Fiener, P.; Martin, W.; Elhaus, D. Use and misuse of the K-factor equation in soil erosion modeling: An alternative equation for determining USLE nomograph soil erodibility values. Catena 2014, 118, 220–225. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.A.; Abbasi, M.; Dematte, A.M.; Arthurd, E.; Panagos, P. Towards prediction of soil erodibility, SOM and CaCO3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma 2018, 314, 102–112. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L.; Esmaeili, A. Improvement to the prediction of the USLE Kfactor. Geomorphology 2014, 204, 229–234. [Google Scholar] [CrossRef]
- Kavdir, V.; Ozcan, H.; Yigini, Y. The influence of clay content, organic carbon and land use types on soil aggregates stability and tensile strength. Turk. J. Agric. For. 2004, 28, 155–162. [Google Scholar]
- Six, J.; Elliott, E.T.; Paustian, K. Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 2000, 64, 1042–1049. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Ashagrie, Y.; Zech, W.; Guggenberger, G.; Mamo, T. Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia. Soil Till. Res. 2007, 94, 101–108. [Google Scholar] [CrossRef]
- Lehrsch, G.A.; Sojka, R.E.; Koehn, A.C. Surfactant effects on soil aggregate tensile strength. Geoderma 2012, 189–190, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Beare, M.H.; Bruce, R.R. A comparison of methods for measuring water-stable aggregates: Implications for determining environmental effects on soil structure. Geoderma 1993, 56, 87–104. [Google Scholar] [CrossRef]
- Deuchare, S.A.; Towend, J.; Aitkenhead, M.J.; Fitzpatric, F.A. Changes in soil structure and hydraulic properties in regenerating rainforest. Soil Use Manag. 1999, 15, 183–187. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, F.G.; Angers, D.A. Organic carbon and nitrogen storage and organic carbon fraction, in adjacent cultivated and forested soils of eastern Canada. Soil Till. Res. 1998, 47, 253–261. [Google Scholar] [CrossRef]
- Reeves, D.W. The role of organic matter in maintaining soil quality in continuous cropping systems. Soil Till. Res. 1997, 43, 121–167. [Google Scholar] [CrossRef]
- Archad, M.A.; Franzluebbers, A.J.; Azooz, R.H. Components of surface soil structure under conventional and non-tillage in northwestern Canada. Soil Till. Res. 1999, 53, 41–47. [Google Scholar]
- Angers, D.A.; Edward, L.M.; Sanderson, J.B.; Bissonnette, N. Soil organic matter quality and aggregate stability under eight potato cropping sequences in a fine sandy loam of Prince Edward Island. Can. J. Soil Sci. 1999, 79, 411–417. [Google Scholar] [CrossRef]
- Mbagwu, J.S.C.; Piccolo, A.; Mbila, M.O. Water stability of aggregates of some tropical soils treated with humic substances. Pedologei 1993, 2, 269–284. [Google Scholar]
- Eynard, A.; Schumacher, T.E.; Lindstorm, M.J.; Malo, D.D. Aggregates size and stability in cultivated south Dakorta prairie Ustolls and Usterts. Soil Sci. Soc. Am. J. 2004, 68, 1360–1365. [Google Scholar] [CrossRef]
- Coote, D.R.; Malcolm-Mcgovern, C.A.; Wall, G.J.; Dickinson, W.T.; Rudra, R.P. Seasonal variation of erodibility indices based on shear strength and aggregate stability in some Ontario soils. Can. J. Soil Sci. 1988, 68, 405–416. [Google Scholar] [CrossRef]
- Anderson, R.; Brye, K.R.; Wood, L.S. Soil aggregate stability as affected by landuse and soil properties in the lower mississippi river valley. Soil Sci. Soc. Am. J. 2019, 83, 1512–1513. [Google Scholar] [CrossRef]
- Tang, F.K.; Cui, M.; Lu, Q.; Liu, Y.G.; Guo, H.Y.; Zhou, J.X. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region. Solid Earth 2016, 7, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.J.; Lal, R. Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the North Appalachian Region, USA. Pedosphere 2017, 27, 172–176. [Google Scholar] [CrossRef]
- Moosavi, A.A.; Sepaskhah, A.R. Sorptive number prediction of highly calcareous soils at different applied tensions using regression models. Plant Know. J. 2013, 2, 62–68. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle size analysis, hydrometer methods. In Methods of Soil Analysis: Part 1, Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Helmke, P.; Sparks, D.L. Lithium, sodium, potassium, rubidium, and cesium. In Methods of Soil Analysis: Part 3, 3rd ed, ChemicalMethods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1996; pp. 551–574. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils. In U.S. Salinity Labroratory Staff, USDA Hand Book NO. 60; Richards, L.A., Ed.; U.S. Government Printing Office: Washangton, DC, USA, 1954; p. 160. [Google Scholar]
- Salehi, M.H.; Hashemi Beni, O.; Beigi Harchegani, H.; Esfandiarpour Borujeni, I.; Motaghian, H.R. Refining soil organic matter determination by loss-on-ignition. Pedosphere 2011, 21, 473–482. [Google Scholar] [CrossRef]
- Nciizah, A.D.; Wakindiki, I.C.I. Rainfall pattern effects on crusting, infiltration and erodibility in some South African soils with various texture and mineralogy. Water SA 2014, 40, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1, Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Zamani, S.; Mahmoodabadi, M. Effect of particle-size distribution on wind erosion rate and soil erodibility. Arch. Agron. Soil Sci. 2013, 59, 1743–1753. [Google Scholar] [CrossRef]
- Chepil, W.S. Properties of soil which influence wind erosion: II dry aggregate structure as an index of erodibility. Soil Sci. 1950, 69, 403–414. [Google Scholar] [CrossRef]
- Chepil, W.S.; Woodruff, N.P. Estimations of wind erodibility of field surfaces. J. Soil Water Conserv. 1954, 9, 257–265. [Google Scholar]
- Swet, N.; Katra, I. Reduction in soil aggregation in response to dust emission processes. Geomorphology 2016, 268, 177–183. [Google Scholar] [CrossRef]
- Puget, P.; Chenu, C.; Balesdent, J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur. J. Soil Sci. 2000, 51, 595–605. [Google Scholar] [CrossRef]
- Six, J.; Guggenberger, G.; Paustian, K.; Haumaier, L.; Elliott, E.T.; Zech, W. Sources and composition of soil organic matter fractions between and within soil aggregates. Eur. J. Soil Sci. 2001, 52, 607–618. [Google Scholar] [CrossRef]
- Li, Y.Y.; Shao, M.A. Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. J. Arid Environ. 2006, 64, 77–96. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.H.; Luan, L.L.; Liu, F. Temporal variation in soil resistance to flowing water erosion for soil incorporated with plant litters in the Loess Plateau of China. Catena 2016, 145, 239–245. [Google Scholar] [CrossRef]
- Zhu, G.; Shangguana, Z.; Deng, L. Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau. Catena 2017, 149, 253–260. [Google Scholar] [CrossRef]
- Lal, R. Methods and Guidelines for Assessing Sustainable Use of Soil and Water Resources in the Tropics: SCS Technical Monograph. No. 21; Soil Management Support Services: Washington, DC, USA, 1994; p. 78. [Google Scholar]
- Tajik, F.; Rahimi, H.; Pazira, E. Effects of electrical conductivity and sodium adsorption ratio of water on aggregate stability in soils with different organic matter content. J. Agric. Sci. Technol. 2003, 5, 67–75. [Google Scholar]
- Emadi, M.; Baghernejad, M.; Memarian, H.R. Effect of land-use change on soil fertility characteristics within water-stable aggregates of twocultivated soils in northern Iran. Land Use Policy 2009, 26, 452–457. [Google Scholar] [CrossRef]
- Chirinda, N.; Olesen, J.E.; Porter, J.R.; Schjønning, P. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agric. Ecosyst. Environ. 2010, 139, 584–594. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Tillage effects on quality of organic and mineral soils under on-farm conditions in Ohio. Environ. Earth Sci. 2015, 74, 1815–1822. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Le, G.C.; Angers, D.A.; Maron, P.A.; Leterme, P.; Menasseriaubry, S. Linking microbial community to soil water-stable aggregation during crop residue decomposition. Soil Biol. Biochem. 2012, 50, 126–133. [Google Scholar]
- Zhang, P.; Wei, T.; Jia, Z.; Han, Q.; Ren, X. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 2014, 230–231, 41–49. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Ahmadbeigi, B. Dry and water-stable aggregates in different cultivation systems of arid region soils. Arab. J. Geosci. 2013, 6, 2997–3002. [Google Scholar] [CrossRef]
- Kavdir, Y.; Killi, D. Influence of olive oil solid waste application on soil pH, electrical conductivity, soil nitrogen transformations, carbon content and aggregate stability. Bioresour. Technol. 2008, 99, 2326–2332. [Google Scholar] [CrossRef] [PubMed]
- Opara, C.C. Soil microaggregates stability under different land use types in southeastern Nigeria. Catena 2009, 79, 103–112. [Google Scholar] [CrossRef]
- Delelegn, Y.T.; Purahong, W.; Blazevic, A.; Yitaferu, B.; Wubet, T.; Göransson, H.; Godbold, D.L. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Sci. Rep. 2017, 7, 13602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodruff, N.P.; Siddoway, F.H. A wind erosion equation. Soil Sci. Soc. Am. J. 1965, 29, 602–608. [Google Scholar] [CrossRef]
- Colazo, J.C.; Buschiazzo, D.E. Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma 2010, 159, 228–236. [Google Scholar] [CrossRef]
- Tatarko, J. Soil aggregation and wind erosion: Processes and measurements. Ann. Arid Zone 2001, 40, 251–263. [Google Scholar]
- Karunatilake, U.P.; Van Es, H.M. Rainfall and tillage effects on soil structure after alfalfa conversion to corn on a clay loam soil in New York. Soil Till. Res. 2002, 67, 135–146. [Google Scholar] [CrossRef]
- Nerger, R.; Funk, R.; Cordsen, E.; Fohrer, N. Application of a modeling approach to designate soil and soil organic carbon loss to wind erosion on long-term monitoring sites (BDF) in Northern Germany. Aeolian Res. 2017, 25, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, M.; Riksen, M.J.P.M.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef]
- Mackinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S. Comparison of aerodynamically and model derived roughness lengths (Z0) over diverse surfaces, central Mojave Desert, California, USA. Geomorphology 2004, 63, 103–113. [Google Scholar] [CrossRef]
- Zhang, C.; Zou, X.; Gong, J.; Liu, L.; Liu, Y. Aerodynamic roughness of cultivated soil and its influences on soil erosion by wind in a wind tunnel. Soil Till. Res. 2004, 75, 53–59. [Google Scholar] [CrossRef]
- Liu, L.Y.; Li, X.Y.; Shi, P.J.; Gao, S.Y.; Wang, J.H.; Ta, W.Q.; Song, Y.; Liu, M.X.; Wang, Z.; Xia, B.L. Wind erodibility of major soils in the farming-pastoral ecotone of China. J. Arid Environ. 2007, 68, 611–623. [Google Scholar] [CrossRef]
- Presley, D.; Tatarko, J. Principles of Wind Erosion and Its Control; Kansas State University: Manhattan, KS, USA, 2009; Available online: http://www.weru.ksu.edu (accessed on 18 August 2011).
- Visser, S.M.; Strek, G.; Ribolzi, O. Techniques for simultaneous quantification of wind and water erosion in semi-arid regions. J. Arid Environ. 2004, 59, 699–717. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Zhang, Q. Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in southwest China. Int. J. Environ. Res. Pub. Health 2019, 16, 3809. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Liu, G.; Liu, P.; Zheng, F.; Zhang, J.; Hu, F. Developing equations to explore relationships between aggregate stability and erodibility in Ultisols of subtropical China. Catena 2017, 157, 279–285. [Google Scholar] [CrossRef]
- Yan, F.L.; Shi, Z.H.; Li, Z.X.; Cai, C.F. Estimating interrill soil erosion from aggregate stability of Ultisols in subtropical China. Soil Till. Res. 2008, 100, 34–41. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.; Li, N.; Zhang, B.; Yang, H. Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China. Catena 2019, 174, 24–35. [Google Scholar] [CrossRef]
- Kalhoro, S.A.; Xu, X.; Chen, W.; Hua, R.; Raza, S.; Ding, K. Effects of different land-use systems on soil aggregates: A case study of the Loess Plateau (Northern China). Sustainability 2017, 9, 1349. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Chang, C.; Wang, R.; Li, J. Comparison of different methods to determine wind-erodible fraction of soil with rock fragments under different tillage/management. Soil Till. Res. 2017, 168, 42–49. [Google Scholar] [CrossRef]
- Hontoria, C.; Gomez-Paccard, C.; Mariscal-Sancho, I.; Benito, M.; Perez, J.; Espejo, R. Aggregate size distribution and associated organic C and N under different tillage systems and Ca-amendment in a degraded Ultisol. Soil Till. Res. 2016, 160, 42–52. [Google Scholar] [CrossRef]
- Morvan, X.; Verbeke, L.; Laratte, S.; Schneider, A.R. Impact of recent conversion to organic farming on physical properties and their consequences on runoff, erosion and crusting in a silty soil. Catena 2018, 165, 398–407. [Google Scholar] [CrossRef]
Property † | Annual Cultivated Field (ACF) | Fallow Field (FF) | Rangeland (R) | Orchard Field(OF) |
---|---|---|---|---|
Sand (%) | 3.9 | 8.5 | 23.3 | 19.6 |
Silt (%) | 54.6 | 57.3 | 58.1 | 54.6 |
Clay (%) | 41.5 | 34.2 | 18.6 | 25.8 |
Texture class | Silty clay | Silty clay loam | Silt loam | Silt loam |
Na+ (mg L−1) | 13.4 | 10.5 | 23.7 | 27.8 |
Ca2+ (mg L−1) | 51.8 | 55.5 | 124 | 82.2 |
Mg2+ (mg L−1) | 50.2 | 40.5 | 16.8 | 51.5 |
SAR ((meq L−1)0.5) | 0.32 | 0.26 | 0.53 | 0.59 |
CCE(%) | 32.7 | 37.6 | 40.7 | 43.6 |
Property †/Index | Land Use | |||||||
---|---|---|---|---|---|---|---|---|
Annual Cultivated Field (ACF) | Fallow Field (FF) | Rangeland (R) | Orchard Field (OF) | |||||
0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | |
SOM (%) | 3.11 bc †† | 3.05 bc | 2.51 c | 2.25 c | 3.72 ab | 3.02 bc | 5.03 a | 4.07 ab |
MWDdry (mm) | 0.54 bc | 0.59 b | 0.57 bc | 0.50 c | 0.51 c | 0.55 bc | 0.75 a | 0.67 ab |
GMDdry (mm) | 0.39 a | 0.38 a | 0.39 a | 0.32 ab | 0.29 b | 0.29 b | 0.43 a | 0.34 ab |
DSA (%) | 74.3 ab | 75.4 ab | 81.4 a | 77.2 ab | 67.5 b | 67.8 b | 74.2 ab | 70.0 ab |
WSA (%) | 52.4 a | 54.2 a | 53.9 a | 48.2 a | 55.0 a | 50.5 a | 63.3 a | 53.7 a |
ASI | 0.53 a | 0.53 a | 0.51 a | 0.48 a | 0.45 a | 0.42 a | 0.59 a | 0.49 a |
EF (%) | 73.0 b | 77.1 ab | 78.8 a | 79.0 a | 80.8 a | 77.3 ab | 59.8 c | 62.5 c |
DEP (%) | 4.00 f | 5.40 e | 4.00 f | 6.57 d | 14.5 a | 14.8 a | 9.43 c | 13.3 b |
K | 9.75 ab | 8.55 b | 9.06 ab | 11.2 a | 10.9 a | 9.64 ab | 5.60 c | 6.77 bc |
ER (g m−2 min−1) | 105 ab | 94.6 b | 99.1 ab | 117 a | 115 a | 104 ab | 67.4 c | 78.5 bc |
SOM | MWDdry | GMDdry | DSA | WSA | ASI | EF | DEP | K | ER | |
---|---|---|---|---|---|---|---|---|---|---|
SOM † | 1.00 | |||||||||
MWDdry | 0.79 ** | 1.00 | ||||||||
GMDdry | 0.40 | 0.68 ** | 1.00 | |||||||
DSA | −0.53 ** | −0.19 | 0.38 | 1.00 | ||||||
WSA | 0.77 ** | 0.60 ** | 0.55 ** | −0.08 | 1.00 | |||||
ASI | 0.57 ** | 0.54 ** | 0.70 ** | 0.16 | 0.89 ** | 1.00 | ||||
EF | −0.85 ** | −0.88 ** | −0.51 * | 0.35 | −0.60 ** | −0.52 ** | 1.00 | |||
DEP | 0.36 | 0.14 | −0.52 ** | −0.61 ** | 0.07 | −0.32 | −0.20 | 1.00 | ||
K | −0.74 ** | −0.98 ** | −0.69 ** | 0.16 | −0.58 ** | −0.53 ** | 0.85 ** | −0.11 | 1.00 | |
ER | −0.74 ** | −0.98 ** | −0.69 ** | 0.17 | −0.58 ** | −0.54 ** | 0.86 ** | −0.11 | 1.00 ** | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozaffari, H.; Rezaei, M.; Ostovari, Y. Soil Sensitivity to Wind and Water Erosion as Affected by Land Use in Southern Iran. Earth 2021, 2, 287-302. https://doi.org/10.3390/earth2020017
Mozaffari H, Rezaei M, Ostovari Y. Soil Sensitivity to Wind and Water Erosion as Affected by Land Use in Southern Iran. Earth. 2021; 2(2):287-302. https://doi.org/10.3390/earth2020017
Chicago/Turabian StyleMozaffari, Hasan, Mahrooz Rezaei, and Yaser Ostovari. 2021. "Soil Sensitivity to Wind and Water Erosion as Affected by Land Use in Southern Iran" Earth 2, no. 2: 287-302. https://doi.org/10.3390/earth2020017
APA StyleMozaffari, H., Rezaei, M., & Ostovari, Y. (2021). Soil Sensitivity to Wind and Water Erosion as Affected by Land Use in Southern Iran. Earth, 2(2), 287-302. https://doi.org/10.3390/earth2020017