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Abstract: Land use and land cover change (LUCC) and its spatio-temporal characteristics are essential
for natural resource management and sustainable development. LUCC is one of the major factors that
affect the ecosystem and the services it provides. In this study, we used remote sensing techniques
and a geographical information system to extract the land cover categories based on the Object-Based
Image Analysis (OBIA) technique from Landsat TM/ETM/OLI satellite images in the transboundary
Karnali River Basin (KRB, China and Nepal) of central Himalayas from 2000 to 2017. Spatio-temporal
integrated methodology—Tupu was used to spatially show the LUCC as well as spatial characteristics
of the arisen Tupu and shrunken Tupu. In addition, the ecosystem services value (ESV) were obtained
and analyzed for each land cover category. In 2017, forest covered the highest area (33.45%) followed
by bare area (30.3%), shrub/grassland (18.49%), agriculture (13.12%), snow/ice (4.32%), waterbody
(0.3%) and built-up area (0.04%) in the KRB. From 2000 to 2017, the areas of forest, waterbody
and snow/ice have decreased by 0.59, 6.14, and 1072.1 km2, respectively. Meanwhile, the areas of
shrub/grassland, agriculture, barren land, and built-up categories have increased by 82.21, 1.44, 991.97,
and 3.11 km2, respectively. These changes in the land cover have led to an increase in the ESV of
the basin, especially the increase in shrub/grassland, agriculture, and water bodies (in the higher
elevation). The total ESV of the basin was increased by $1.59 × 106 from 2000 to 2017. Anthropogenic
factors together with natural phenomena drive LUCC in the basin and thus the ESV. The findings
of this study could facilitate the basin-level policy formulation to guide future conservation and
development management interventions.

Keywords: land use and land cover change; remote sensing; ecosystem services value; Karnali
River Basin

1. Introduction

Land use and land cover change (LUCC) significantly affect the major functioning aspects of the
ecosystem [1] and are easily detectable indicators of changes in the global ecology [2–7]. Humans have
been altering the earth’s surface at an alarming rate. The alteration in the land use and land cover
(LULC) has a direct impact on biological diversity [8,9] as well as contributing to climate change at a
different scale [10–12]. This leads to changes in the ecosystem services affecting the biological systems
to support human needs [13]. These changes also partly determine the vulnerability of people and their
dwelling places to climatic, economic or socio-political perturbations [14,15]. Thus, robust knowledge
on LULC is fundamental to understand the landscape patterns and their changes—essential to assess
the drivers and their impacts on the ecosystem services [16].
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Ecosystem function refers to the habitat, biological or system properties and physical processes
that occur within or across the ecosystem [17]. Ecosystem services are the benefits humans reap
from the ecosystem function [17–19] that includes provisioning, regulating, cultural and supporting
services [18,20]. In addition, the ecosystem function plays an important and multi-dimensional
(ecological, socio-cultural and economic) role in the human society [21]. Ecosystem services do
not directly flow from nature to human well-being, rather this occurs through the interaction with
other forms of capital such as human capital (presence of human being), built capital (human built
environment) and social capital (their community) [22]. Generally, the structure of the ecosystem is
modified due to increased land use intensity and frequent changes in the land cover types. This results
in changes in the ecosystem functions and the associated services it provides [23–25]. In recent decades,
ecosystem services have been degrading due to an ever-increasing demand for these services, leading
to a substantial and largely irreversible loss of natural and biological diversity life on earth [18].
The assessment and valuation of ecosystem services based on LUCC can be an important tool to
raise awareness and convey the importance of ecosystem services [26]. Researchers have profoundly
assessed the value of ecosystem services and studies have been conducted at the global scale [17,22]
and regional scale (Tibetan Plateau, TP) [27], as well as at the national scale [28,29], to analyze the
status, changes, and trends of ecosystem services [27,30–33]. During 1997–2011, the loss in global
ecosystem services due to LUCC was estimated to be $4.3–20.2 trillion [22]. The annual ecological
value of the TP was estimated to be $151 billion, accounting for 17.68% of China’s annual ecological
value and 0.61% of the world [27]. Climate warming and local socio-economic development are the
prime factors for the environmental–ecological system degradation of the TP [32].

The values of ecosystem services based on LUCC have recently been assessed for the transboundary
Koshi river basin [28] and Gandaki river basin [29] of central Himalayas. However, to date, similar
studies have not been conducted in the transboundary Karnali River Basin (KRB). Paudel et al. (2016)
states that the 2010 global datasets of land cover are far from the reality and 2010 national datasets
published by ICIMOD in 2015 [34] are closer to ground truth in Nepal. In this study, we aim to present
the latest remote sensing-based land cover statistics of KRB and compare them with those of the
global and national land cover database. Furthermore, we trace the LUCC from 2000 and assess the
ecosystem services value (ESV) in the KRB. The spatio-temporal integrated landscape information Tupu
methodology was put forward and adopted to assess LUCC. The landscape information Tupu provides
the integrated spatial pattern and temporal processes of LUCC units [35]. Percentage-wise land
cover statistics are compared among the three major river basins in Nepal. In addition, district-wise
LULC statistics and possible driving factors for the land cover changes within the basin are discussed.
The quantification of the ESV for different land cover categories in KRB has been assessed according to
the coefficients of each land cover on ecosystem services adopted for the TP.

2. Materials and Methods

2.1. Study Area

The Karnali river basin (KRB) is one of the three major river basins in Nepal, the Gandaki and
Koshi river basins being the other two (Figure 1). KRB is located in the western region of Nepal.
The Karnali river that originates from the south of Mansarovar and Rokas lakes in China (Tibet) is the
longest river flowing through Nepal, with many snow-fed rivers as its tributaries. This study focused
on the transboundary KRB (China and Nepal) which extends from 28◦19′39.44′′ to 30◦41′18.66′′ N in
latitude and 80◦33′34.93′′ to 83◦40′55.74′′ E in longitude. The KRB covers a total area of 46,124 km2

with 3085 km2 in China. With high variation in topography and elevation, the KRB covers all the
five physiographic regions in Nepal, i.e., Terai (60–200 m), Siwalik (200–1300 m), Middle Mountain
(1300–2700 m), High Mountain (2700–4000 m) and High Himalayas (>4000 m) [36]. Hence, all five
climate zones exist in the basin that includes tropical, sub-tropical, temperate, sub-alpine and alpine
climate zones. The climate of the KRB is influenced by South Asian Monsoon in the summer and
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westerlies in the winter season [37]. The average maximum and minimum temperature are 25 ◦C
and 13 ◦C, respectively, with an average annual precipitation of 1479 mm. The temperature shows
an increasing trend (by 0.05 ◦C per year for the maximum temperature and 0.01 ◦C per year for the
minimum temperature), whereas the precipitation is in a decreasing trend by 4.91 mm per year in the
KRB [38].
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Figure 1. Location of the study area, i.e., the Karnali river basin.

2.2. Data Collection

We used a total of 15 scenes of geometrically corrected Landsat Level 1 products that were
downloaded from the United States Geological Survey’s (USGS) web portal. The details are shown in
Table 1. The acquired Landsat images were of the post-monsoon period (October to early December)
since this period is less affected by seasonal snow and cloud cover [39] and, the vegetation is mostly green
to semi-deciduous [36]. Imageries of alternative years (±1 year) were used when good quality images
(cloud and seasonal snow free) for a particular year were not available for improving classification
accuracy. In some cases, the imageries from different seasons were used to check the best suitable
images for classification.

Table 1. Landsat data used for the study.

Acquired
Year

Number
of Scenes Sensor Spatial

Resolution (m)
Repeat Cycle

(Days)
Number
of Bands

2000 5 Enhanced Thematic Mapper (ETM) 30 16 6
2010 5 Thematic Mapper (TM) 30 16 6
2017 5 Operational Land Imager (OLI) 30 16 9

Other datasets used were the national land cover data of 2010 developed by ICIMOD, which
was downloaded from their website (http://rds.icimod.org/). The 30-m global land cover dataset of
the year 2000 and 2010 produced by the National Geomatics Center of China was downloaded from
their website (www.globallandcover.com). Other necessary auxiliary spatial datasets were collected
from the Survey Department, Government of Nepal, which was basically used for the verification and

http://rds.icimod.org/
www.globallandcover.com
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validation of classification. The Shuttle Radar Topography Mission (SRTM) 30-m Digital Elevation
Model (DEM) [40] was downloaded from the National Aeronautics and Space Administration’s (NASA)
web portal (https://urs.earthdata.nasa.gov/).

2.3. Image Pre-Processing and Classification

Different Landsat sensors have different bands and the bands were carefully stacked into one
image using ENVI 5.3 software. Band composition is very crucial to carry out image classification
(For Landsat 8, R, G, B: 5, 4, 3; for Landsat 5 and Landsat 7, R, G, B: 4, 3, 2). The Landsat images for the
years 2000 and 2010 were clipped out to remove the colored lines at the edges of the images. Radiometric
Calibration (Digital Number (DN) to top-of-atmosphere (TOA)) and atmospheric corrections (i.e., dark
object subtraction) were applied to all the images. Images of the same study year were mosaicked to
obtain a single image for the years 2000, 2010 and 2017, respectively. These images were co-registered
for producing the change detection maps between different time periods, taking the 2017 image as
baseline. The overall process followed in the study is shown in Figure 2.Sustainability 2019, 11, x FOR PEER REVIEW  5 of 20 
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The classification was carried out using the object-based image analysis (OBIA) in the eCognition
Developer 9.0 software. OBIA gives better classification results with higher accuracy than the
pixel-based methods because it uses spectral as well spatial information [16,41–44], which includes
information such as texture, neighborhood, context and related ancillary data [45–47]. Meanwhile,
SRTM DEM (30 m) was used to reduce the misclassification by removing the mountain shadow
following the same procedure mentioned in a previous study [39]. The “multi-resolution segmentation”
algorithm was used for the segmentation of the images, which clusters pixels into image objects

https://urs.earthdata.nasa.gov/
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based on their neighbors and relative homogeneity criteria [48–50]. Image layer weights of 1, scale
parameter of 20, shape of 0.1, and compactness of 0.5 were used in the multiresolution segmentation
algorithm. Multi-resolution segmentation is based on the assumption that similar features have similar
spectral responses and the spectral response of an element would be unique concerning other aspects
of interest [50].

The segmented objects were further processed and analyzed using different indices. The spectral
values of the image layers were used to generate the image indices such as the normalized difference
vegetation index (NDVI), normalized difference water index (NDWI), bare soil index (BSI) and
normalized difference snow index (NDSI) derived through band rationing. The rules were set up
for the image objects according to their attributes such as NDVI, NDWI, BSI, and NDSI layer values.
Here, the image objects representing patterns are determined either by ground truth information or by
comparing with high-resolution Google Earth images. Land cover data were extracted by classifying
the image objects based on the rulesets developed by exploring the spectral bands and indices. Seven
types of land cover categories were classified for the KRB. We used previous national [36] and global [51]
datasets as well as Google Earth to validate and cross-check our classification output. The seven land
cover classes were set up for the KRB, namely, Forest (1), Shrub/grassland (2), Agriculture (3), Bare
area (4), Waterbody (5), Snow/Ice (6) and Built-up (7).

2.4. Accuracy Assessment

Accuracy assessment/validation of the results obtained from remotely sensed data is a
necessity to know its quality [52,53]. The classification accuracy was assessed using user’s and
producer’s accuracy, an error matrix and kappa coefficient [53]. The user’s accuracy measures
error of commission—representing the likelihood of a classified pixel matching the ground reality.
The producer’s accuracy measures error of omission—measuring how well the ground land cover
types can be classified. The overall accuracy compares each classified pixel against the land cover
obtained from corresponding ground truth [52,53]. Kappa statistics are used as a measure of agreement
between reality and derived results [52] and were calculated using the equation that has been widely
used in the previous LUCC studies [29,53,54]. The stratified random sampling method was used in
this study to carry out the accuracy assessment of the classified data in Google Earth as well as in base
imagery in ArcGIS. Google Earth is a freeware that provides high-resolution satellite imageries which
act as an important reference for the validation of classification outputs [54] and has been widely used
in many studies [29,36,55–60]. A total of 901, 905 and 890 stratified random points were generated in
the classified image of 2000, 2010 and 2017, respectively, and were verified in Google Earth imageries.
The topographical maps during 1992–2001 from the Survey Department, Government of Nepal were
also used for data verification [29,59,61].

2.5. Spatio-Temporal Integrated Methodology—Tupu

Geo-information Tupu unit is the synthetic unit for geospatial-temporal analysis by “space-
attribute-process” features and is composed of a relatively homogenous geographic and temporal unit,
which was put forward by Ye et al. in 2004 [62]. When an integrated Tupu unit analysis is carried out,
each geographical process of various events is synthesized into spatial and temporal attribute data [35].
Input and output are the two directions of land cover changes with regard to our starting set of
attributes, the “reference” Tupu units. In the input diversion, also termed as the “arisen” series of Tupu
units, other types of land cover are converted to the “reference” type. Similarly, in the output diversion,
also termed as the “shrunken” series of Tupu units, the “reference” type of land cover diverts to other
ones [62]. For example, when forest area is converted to agriculture, the arisen Tupu here is agriculture,
whereas the shrunken Tupu is forest. We have evaluated the arisen and shrunken Tupu units from
2000 to 2017 and assessed the change in the value of ecosystem services. The detailed methodology
described in the study carried out by Ye et al. [62] is used for calculation on Tupu units conversion.
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2.6. Ecosystem Services Value Assessment

Costanza et al. [17] estimated the value per unit area of each ecosystem service for various
ecosystems using the supply and demand analysis of the sum of consumer and producer surplus
or the price times quantity for various ecological services. The 17 ecosystem services for 16 biomes
were classified to estimate the global ESV. To derive the ESV coefficients, the values for ecosystem
services per unit area by biome were estimated and then multiplied by the total area of each biome,
which was summed over all services and biomes [17]. Various scholars have modified the global ESV
coefficients [21,22,27]. Xie et al. [27] also updated and modified the coefficients of ESV for the TP based
on Costanza’s global ESV. These modified coefficients of ESV were used in the assessment of ESV in
the Koshi [28] and Gandaki river basins [29]. Since the physiographic as well as the climatic conditions
of the KRB are similar to the other two basins in Nepal, the same modified coefficient values were
used to estimate the ESV in the KRB (Table 2). In this study, the ESV coefficient for the category of
shrub/grassland was calculated as the weighted average value between shrub and grassland. The ESV
for the built-up category was not estimated due to the lack of coefficients values in the previous
studies. Here, we adjusted the ESV coefficients of 2003 using the Consumer Price Index (CPI) Inflation
Calculator obtained from the website of the Bureau of Labor Statistics, United States Department of
Labor (https://www.bls.gov/data/inflation_calculator.htm) (Table 2).

Table 2. Land cover types and their ESV coefficients in Tibetan Plateau [27].

Land Cover Biome
ESV Coefficient ($ ha−1)

2003 2010 * 2017 *

Forest 2168.84 2587.1 3017.23
Shrub land 1089.19 1299.24 1515.25
Grassland 565.88 675.01 787.24
Cropland 699.37 834.24 972.94

Barren area 59.83 71.37 83.23
Water bodies 6552.97 7816.72 9116.31
Snow/glacier 59.83 71.37 83.23

* Inflation-adjusted coefficient by using the Consumer Price Index (CPI) Inflation Calculator.

The ESV for each land cover category was obtained by multiplying the area of each land cover
with their individual coefficient (Table 2). Similarly, the ESV for each LC category that has changed
was obtained in the form of arisen ESV and shrunken ESV. For instance, the arisen ESV of forest is
assessed from the multiplication of the area of arisen forest Tupu with its respective ESV coefficient.

3. Results

3.1. Classification Accuracy Assessment

The user’s and producer’s accuracy for land cover classifications were calculated as 86.46 and
89.30% for 2017, 85.17 and 86.47% for 2010 and 83.83 and 85.72% for 2000, respectively. The overall
accuracy was 89.4, 87.4 and 86.7% for the years 2017, 2010 and 2000, respectively. The kappa coefficients
calculated were within the acceptable range of 0.87, 0.85 and 0.84 for the years 2017, 2010 and 2000,
respectively [53]. The classification accuracy assessment in a confusion matrix for the year 2017 is
given in Table 3.

https://www.bls.gov/data/inflation_calculator.htm
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Table 3. User’s and producer’s accuracy assessment of the classification, 2017.

LULC Type Forest Shrub/
Grassland Agriculture Bare

Area Waterbody Snow/
Ice

Built-
Up Total User’s

Accuracy
Producer’s
Accuracy

Forest 185 8 3 2 0 0 0 198 93.43 94.87
Shrub/grassland 4 143 3 3 1 5 0 159 89.94 82.66

Agriculture 2 4 138 2 2 0 1 149 92.62 92.62
Bare Area 2 7 3 185 2 6 0 205 90.24 90.69

Waterbody 1 2 0 3 44 4 0 54 81.48 84.62
Snow/Ice 1 8 0 6 2 80 0 97 82.47 84.21
Built-up 0 1 2 3 1 0 21 28 75 95.45

Total 195 173 149 204 52 95 22 890

3.2. LC Statistics of the Basin

The KRB has been categorized into seven different LULC classes in 2000, 2010 and 2017 (Figure 3
and Table 4). In 2017, forest covers the highest area (33.45%) in the basin, followed by bare area (30.3%),
shrub/grassland (18.49%), agriculture (13.12%), snow/ice (4.32%), waterbody (0.3%) and built-up
(0.04%). Similarly, in the year 2000, forest covers the highest area (33.45%), followed by bare area
(28.15%), shrub/grassland (18.31%), agriculture (13.11%), snow/ice (6.64%), waterbody (0.31%) and
built-up (0.03%). The result showed a slight decrease in the forest, waterbody and snow/ice categories
in the datasets from 2000 to 2017. Meanwhile, the area of shrub/grassland, agriculture, bare area and
built-up area have increased (Table 4).
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Table 4. Land cover status in the KRB.

Land Cover Classes
Land Cover Area (km2)

Change from 2000–2017 (km2)
2000 2010 2017

Forest 15,426.92 15,426.45 15,426.32 −0.59
Shrub/grassland 8445.37 8480.75 8527.58 82.21

Agriculture 6047.97 6103.79 6049.40 1.44
Bare Area 12,982.76 13,345.45 13,974.73 991.97

Waterbody 142.72 140.23 136.58 −6.14
Snow/Ice 3064.61 2610.55 1992.54 −1072.07
Built-up 13.45 16.50 16.57 3.11

3.3. LC Change from 2000 to 2017

The land cover of the Karnali basin has experienced subtle changes in the last 17 years. The result
shows that 1.6 km2 of forest area changed to agriculture. Similarly, the 2.9 km2 change from agriculture
was in the form of built-up (settlement) area due to human encroachment for settlements. The changes
in the course of the river have led to 7 km2 of bare area converting into the water bodies. The highest
change in the entire basin was from snow to bare area by 997.6 km2. Meanwhile, 70.7 km2 of snow
changed to shrub/grassland (Table 5).

Table 5. Transition matrix of LUCC in the KRB from 2000 to 2017 (area km2).

2000
2017

Forest Shrub/Grassland Agriculture Bare Waterbody Snow Built-Up

Forest 15,424.8 0.1 1.6 0.2 0.1 0 0
Shrub/grassland 0.3 8441.8 0.3 0.1 2.4 0 0

Agriculture 0.1 0.8 6043.7 0.3 0 0 2.9
Bare 0.1 7.8 0.2 12,967.1 7.0 0.1 0.3

Waterbody 0.3 6.0 3.2 8.6 123.2 0.9 0
Snow/ice 0 70.7 0.0 997.6 3.9 1991.1 0
Built-up 0 0 0.1 0 0 0 13.4

3.4. District-Wise LC Statistics

There are 13 districts in Nepal that completely lie inside the basin (Figure 1), while the China part
is considered as a single administrative area aside from the Nepalese district boundary. The status of
LULC varies within the districts of the basin (Table 6).

Forest, agriculture, waterbody, and the built-up area was highest in Surkhet district, whereas
Dolpa district had the highest area of shrub/grassland as well as barren area and snow among the
14 administrative regions. Dolpa district had the least forest area after the China part. Our mapping
showed that there is no forest cover in the China part, while the bare area had the highest area followed
by shrub/grassland, snow, and agriculture. District-wise land cover status (Table 6) shows that the
built-up area was increased by 2.36 km2 in Surkhet district. Birendranagar municipality, located in
Surkhet district, is the largest city in the KRB. In the China part, the built-up area had increased by
0.84 km2. The conversion of forest into agricultural land and urban encroachment over the agricultural
land were the prime factors for the decrease in forest area and agriculture area, respectively, in Surkhet
district from 2000 to 2017 [59].
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Table 6. District-wise land cover status in 2000, 2010 and 2017 (km2).

Year District Forest Shrub/Grassland Agriculture Bare Area Waterbody Snow Built-Up

2017

Humla 554.85 1502.41 231.68 3139.61 10.38 557.95 0
Bajhang 1111.30 965.99 490.65 676.13 5.67 189.58 0.07
Mugu 744.70 583.43 268.33 1423.74 13.86 190.12 0
Bajura 1073.73 665.64 383.70 127.74 2.28 44.39 0
Dolpa 474.10 1553.26 117.54 5162.55 14.81 609.16 0.05
Jumla 946.63 809.83 258.77 489.79 2.16 45.51 0

Kalikot 1017.27 300.75 304.47 23.70 2.41 0.02 0
Doti 1520.05 57.27 433.85 6.90 6.94 0 0

Achham 1068.50 47.04 571.57 5.04 6.69 0 0
Jajarkot 1254.53 332.02 544.05 83.08 2.82 3.35 0
Dailekh 822.03 52.16 593.14 1.44 3.57 0.00 0
Rukum 1273.07 672.41 552.40 317.39 6.47 31.53 0
Surkhet 1725.61 103.76 600.81 13.45 20.97 0 13.26
Burang * - 529.24 40.30 2242.65 11.64 138.70 3.14

2010

Humla 554.47 1463.42 231.47 2181.66 4.34 1560.29 0
Bajhang 1110.54 954.58 496.15 443.45 8.80 425.80 0.07
Mugu 744.50 557.39 268.14 849.36 11.88 792.90 0
Bajura 1073.00 662.65 383.85 103.11 2.78 72.09 0
Dolpa 476.95 1057.18 117.52 3813.37 16.23 2450.14 0.05
Jumla 946.32 790.80 258.00 290.02 0.00 267.54 0

Kalikot 1015.49 297.50 308.67 15.61 3.44 7.91 0
Doti 1519.37 46.73 434.57 15.47 8.86 0 0

Achham 1068.13 36.70 571.58 12.76 9.68 0 0
Jajarkot 1253.91 317.81 544.52 51.99 5.63 46.01 0
Dailekh 822.24 50.96 592.62 2.56 3.86 0.09 0
Rukum 1271.72 639.64 553.13 225.48 10.17 153.14 0
Surkhet 1724.32 93.40 601.21 16.16 29.54 0 13.22
Burang * - 528.25 45.30 2226.90 12.11 150.35 3.10

2000

Humla 554.85 1502.45 231.64 3061.11 10.45 636.29 0
Bajhang 1111.22 965.94 490.64 621.93 5.50 243.77 0.07
Mugu 744.70 583.43 268.33 1363.23 13.86 250.62 0
Bajura 1073.73 665.58 383.70 105.83 2.21 66.42 0
Dolpa 474.10 1552.77 117.54 4690.94 10.10 1085.84 0.05
Jumla 946.29 789.54 258.77 387.18 0.92 169.98 0

Kalikot 1017.27 300.75 304.47 23.70 2.41 0.02 0
Doti 1519.99 57.27 433.82 6.79 7.05 0.00 0

Achham 1068.37 47.01 571.56 5.04 6.87 0.00 0
Jajarkot 1254.53 314.83 544.05 59.41 2.75 44.28 0
Dailekh 822.03 52.16 593.14 1.49 3.51 0 0
Rukum 1273.07 666.71 552.39 244.18 6.08 110.85 0
Surkhet 1726.82 103.67 601.09 14.09 21.24 0 10.90
Burang * - 526.67 41.21 2205.03 12.38 177.80 2.39

* Burang region is considered as a single administrative unit in the Tibetan part, China, of the KRB.

3.5. Analysis by Spatio-Temporal Integrated Methodology—Tupu

The spatial distribution of arisen and shrunken Tupu units in the KRB is shown in Figure 4.
Among the arisen Tupu, the largest arising Tupu unit was in the bare area category, followed by
shrub/grassland and waterbody areas. The largest shrunken Tupu unit was of snow/ice, followed by
waterbody and bare area. The area of arisen and shrunken Tupu units along with their respective ESV
for different land cover categories in the KRB is described in Section 3.6.
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3.6. Ecosystem Services Value of the Basin

Based on the ESV coefficients derived for the TP in 2003 (Table 2), the total ESV in the basin
was $45.87 × 108 in 2000. The ESV value of the forest, shrub/grassland, and agriculture covered the
largest ESV value of $33.46 × 108, $6.29 × 108 and $4.23 × 108, respectively, since these three land cover
categories occupy 95.9% of the whole basin area.

From the year 2000 to 2010, the ESV had increased by $5 million. The ESV for the categories of
forest, shrub/grassland, and agriculture were $33.46 × 108, $6.31 × 108 and $4.27 × 108, respectively, for
the year 2010. This increase in total ESV was attributed to the increase in the area of shrub/grassland,
agriculture and barren land with forest area almost being stable. During the same period, the ESV of
snow/ice decreased from $0.94 × 108 to $0.92 × 108, and that of water bodies decreased from $0.18 × 108

to $0.16 × 108. Conversely, in the period of 2010 to 2017, the total ESV decreased by $3 million in
the KRB. From 2010 to 2017, there was a decrease in ESV for the forest, agriculture, water bodies,
and snow/ice, whereas, ESV increased for shrub/grassland and barren land (Table 7). Overall, from
2000 to 2017, the ESV in the basin increased by $1.59 × 106. The ESV for the forest, shrub/grassland,
and agriculture were $33.46 × 108, $6.35 × 108 and $4.23 × 108, respectively, in 2017. The spatial
distribution of ESV is shown in Figure 5. The ESV after adjusting the inflation is higher than the values
without inflation adjustment (Table 7). The ESV for the years 2010 and 2017 after inflation adjustment
is $54.77 × 108 and $63.84 × 108, respectively, which is higher by $8.85 × 108 and $17.95 × 108 than the
respective ESV without inflation adjustment.

ESV Estimation from Tupu Methodology

ESV gain from the arisen Tupu (arisen ESV) and ESV loss from the shrunken Tupu (shrunken
ESV) during 2000–2017 was assessed by multiplying the ESV coefficient with their respective arisen
and shrunken land cover categories. For the arisen Tupu, the highest arisen ESV was from increasing
waterbody ($8.73 × 106), followed by shrub/grassland ($6.37 × 106) and bare area ($6.02 × 106). For the
shrunken Tupu, the highest shrunken ESV was from loss of waterbody ($12.82 × 106) followed by
snow/ice ($6.40 × 106) and forest ($0.45 × 106) (Table 8).
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Table 7. ESV of the KRB. The values in parentheses are after inflation adjustment.

Land Cover Types
ESV (108$) Change in ESV (106$)

2000 2010 2017 2000–2017

Forest 33.459 33.458 (39.91) 33.457 (46.545) −0.1 (13.09)
Shrub/grassland 6.291 6.317(7.535) 6.352 (8.837) 6.12 (2.55)

Agriculture 4.230 4.269 (5.092) 4.231 (5.886) 0.1 (1.66)
Bare Area 0.777 0.798 (0.952) 0.836 (1.163) 5.90 (0.39)

Waterbody 0.935 0.919 (1.096) 0.895 1.245) −3.90 (0.31)
Snow/Ice 0.183 0.156 (0.186) 0.119 (0.166) −6.39 (−0.02)

Total 45.87 45.92 (54.77) 45.89 (63.84) 1.59 (17.97)Sustainability 2019, 11, x FOR PEER REVIEW  12 of 20 
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Table 8. Arisen and shrunken Tupu (2000 to 2017) with their respective ESV. The 2017 values in
parentheses are after inflation adjustment.

Land Cover Categories
Arisen Tupu Shrunken Tupu

Area (×10−2 km2) Total ESV ($106) Area (×10−2 km2) Total ESV ($ 106)

Forest 144 0.31 (0.43) 205.38 −0.45 (−0.62)
Shrub/grassland 8546.58 6.37 (8.86) 312.93 −0.23 (−0.32)

Agriculture 546.66 0.38 (0.53) 412.65 −0.29 (−0.40)
Bare area 100,677.51 6.02 (8.38) 1551.51 −0.09 (−0.13)

Waterbody 1332.18 8.73 (12.14) 1956.06 −12.82 (17.83)
Snow/ice 96.84 0.01 (0.01) 107,216.55 −6.41 (−6.41)

Total 21.82 (30.35) −20.29 (−28.23)

It could be noted that the total gain in ESV ($1.53 × 106) calculated from the addition of arisen ESV
and shrunken ESV (Table 8) maintained good agreement with the estimation from the common method
(Table 7) as described in Section 3.6, supporting both the methodologies. However, among them,
the spatio-temporal integrated Tupu method had a better advantage to show the spatial distribution
and characteristics of the ESV across the basin (Figure 5). The major advantage of the spatio-temporal
integrated Tupu method is to locate the arisen and shrunken ESV and identify the process of changes it
has gone through. This information further allows the users, policymakers, or concerned authority
to identify and quantify the changes in the ESV due to LUCC. The shrunken ESV of the forest and
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agriculture was in the Terai and Siwalik physiographic region of the basin, whereas the shrunken ESV
of the snow/ice was in the high mountain region (Figure 5). This shrinkage of snow/ice and conversion
to waterbody was a prime factor for the increase in ESV in the high mountain region. The arisen ESV
of shrub/grassland is due to the conversion from the bare area in the higher elevation.

4. Discussion

4.1. Mapping of LUCC and Its Dynamics in the KRB

Remote sensing techniques and a geographical information system have been widely used for the
LUCC study at local, regional and global scales as they are powerful as well as cost-effective tools to
analyze the spatio-temporal variations of the land surface [63,64]. The use of remote sensing techniques
has some limitations. The acquisition season and the quality of satellite images (cloud-free) impact
the classification scheme [65]. For example, the images from the monsoon period contain high cloud
coverage, whereas using images from the winter season can overestimate the temporary snow cover.
The significant changes in the categories of shrub/grassland, barren land and snow/ice (Section 3.3)
were possibly due to the seasonal variation at the time of satellite image acquisition. In addition,
the agricultural area can be misclassified as shrub/grassland when the images used are before the
harvesting season. To overcome such limitations, we have used cloud-free and post-monsoon satellite
images to maximize classification accuracy.

The KRB has gone through nominal changes in the land cover over a period of seventeen years.
The decrease in forest area and increase in the agriculture area was mainly due to anthropogenic
activities. The built-up area has increased by 23.14% in the entire basin. The population of Birendranagar
municipality of Surkhet district, the largest town in the basin, increased by nearly 70,000 individuals
between 2001 and 2015 [59]. Population growth and migration from rural areas to urban areas impact
the LUCC [55,59,66]. Thus, the increase in population led to the increase in the built-up area in
Surkhet district by 21.64% and in the Burang area by 31.6% from 2000 to 2017. The conversion of
4.06 km2 of forest to agriculture, 0.6 km2 of forest to built-up and 0.69 km2 of forest to shrub/grassland
indicate anthropogenic activities responsible for LUCC in the KRB. The study conducted by Uddin
et al. [67] on the Kailash Sacred Landscape in the Nepal part (KSL-Nepal), which is also a part of
the KRB, suggests that higher dependency on the forest, agricultural expansion, livestock grazing,
daily fuelwood consumption, and illegal timber extraction are drivers for the LUCC changes in the
region. Birendranagar is the newly declared capital of the Karnali province and, thus, has a high
probability of urbanization due to migration. Climate change is also the driving factor for changes in
the LUCC. Glacier area has decreased in the KRB by 30% from 1980 to 2010 [68] in the Nepal part and
our study also shows a decrease in snow/ice class in the entire transboundary KRB by 35% (Table 5).
Snow/ice has largely been converted to bare area (Table 5). The temperature is in increasing trend,
while precipitation is in decreasing trend in the basin as mentioned in Section 2.1 [38].

4.2. Global, National, and Regional Dataset Perspectives

Global-level [51] and national-level products [36] in 2010 have dissimilarity in the datasets,
especially in the forest land. The area of forest in the KRB reported by Chen et al. [51] while studying
global land cover was 15,961.31 km2 (34.61%), whereas, Uddin et al. [36] reported the area to be
15,493.84 km2 (33.6%) for the year 2010. The two studies differ in the calculation of the total area
of grassland and snow/ice (Figure 6). The reason behind the dissimilar data might be due to the
methodologies and validation approaches adopted for the classification schemes. The national
datasets [36] were more favorable to use over the global datasets [51] because the national datasets
were closer to the ground reality [34]. Also, the area of forest (15,426.45 km2) classified in this study is
in good agreement with national datasets. The national-level LC of Nepal was validated with field
points (435 location points in Google Earth and 130 GPS-tagged field validation points for the accuracy
assessment) to rectify the errors [36].
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The regional-level land cover data produced for the KRB of the year 2010 in our study was
similar to that of national datasets [36] prepared by ICIMOD for the year 2010. The major changes
between these two datasets are in the categories of bare area and snow/ice. In the national dataset,
bare area has been under classified and the snow/ice has been overclassified. The reason behind these
dissimilarities is the image acquisition period. The national dataset acquired data in the winter season,
but regional-level data were acquired during the post-monsoon period.
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4.3. Comparison of LUCC Dynamics with the Other Two Major Basins in Nepal

Among the three basins, the KRB had the highest coverage of forest (33.45%) and bare area (30.3%).
Similarly, the Gandaki basin had the highest coverage of waterbody (1.22%), snow/ice (7.27%) and
built-up (0.59%) area, whereas the Koshi basin had the highest coverage of shrub/grassland (27.59%)
and agriculture (38.19%) (Figure 7). Comparing LUCC among the three major river basins, it was
more rigorous in the Koshi basin followed by the Gandaki basin, with lowest changes in the KRB.
In the Koshi basin, cropland, swamp, built-up, shrubland, and grassland have increased, while forest,
waterbodies, barren area and snow/ice have decreased between 1990 and 2010. The major changes
in the Koshi basin were in the form of forest converted to cropland (4121.78 km2) and barren area
converted to grassland (5414.09 km2) [28]. In the Gandaki basin, snow/ice and shrub/grassland area
have decreased. However, all other categories have increased from 1990–2015. The forest cover has
been increasing in the downstream of the Gandaki basin due to the conservation of the forest by
implementing policies and government intervention in the form of various national parks and wildlife
reserves [29]. In the KRB, waterbody and snow/ice have decreased and shrub/grassland, agriculture,
bare area and built-up have increased during 2000–2017.

Rapid economic and development activities are major factors for LUCC [69–72]. Urban area
expansion of the Kathmandu region and agricultural expansion were the major reasons for LUCC in
the Koshi basin [28]. Population growth, migration from rural to urban areas, intensive agricultural
practices and land reclamation in the Koshi basin were the prime driving factors for LUCC [29,73,74].
Similarly, urbanization is in increasing trend in Gandaki basin and Rai et al. [29] estimate that the
built-up area had increased up by threefold from 1990 to 2015 in the basin. However, urbanization in
the KRB was less than in the other two basins. The economic activities are very limited in the KRB.
It is one of the most under-developed regions in Nepal facing various conservation and development
challenges [67,75] and had the least human development index of 0.386 [76]. Thus, LUCC in the KRB
basin was less than the other two basins in Nepal. The accessibility in the Terai region is easier and
has experienced more economic and development activities than in hills and mountain area of the
KRB [59]. Thus, the KRB region requires proper maintenance of the land cover database for future
references as well as proper planning for resource utilization.
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4.4. Status of ESV

The ESV in KRB has increased by $1.59 × 106 from 2000 to 2017. This change in ESV is also in
accordance with the positive change in ESV in the Gandaki River Basin which is adjacent to the KRB.
The gain in ESV in the KRB was largely due to the arisen ESV of shrub/grassland, bare area, and
waterbody (in the higher elevation) in the basin. This increase in the ESV of shrub/grassland further
implies better ecosystem services. The shrub/grassland ecosystem are key habitats for different animals
and particularly serve as pasture for cattle [77]. The ESV coefficient for the bare area and snow/ice
category is the same, i.e., $59.83 per hectare [27] and, thus, the change from snow/ice to the bare area or
vice-versa does not affect the ESV. In the high altitude region, the conversion of snow/ice to waterbody
(Table 5) increased the total ESV, as the coefficient for waterbody is more than 100 times higher than that
of snow/ice (Table 2). This result might show the improvement of ESV. However, in the high altitude
region, the increase in the area of waterbody is primarily due to glacial lake expansion [39], which
increases the risk of glacier lake outburst flood (GLOF), threatening the downstream communities
and infrastructures [78]. Thus, the increase in ESV (from the conversion of snow/ice to waterbody)
does not necessarily indicates benefit in the mountain ecosystem. The waterbodies in the lower
elevation need to be preserved as the shrunken ESV from waterbody is the highest. The shrunken
ESV of forest, agriculture, and waterbody in the lower elevation have contributed to a decrease in ESV.
The diminishing ESV due to shrunken forest and agriculture in the lower elevation indicate the human
activities responsible for deteriorating the ESV in the basin.

The inflation adjusted ESV is higher than the ESV without inflation adjustment. Even the same
area of any LC category in two different time period would show an increase in ESV with inflation
adjustment. Here, in our study, the forest area has decreased from the year 2000 to 2017. However, with
inflation adjustment, the ESV of forest has increased from $33.46 × 108 in 2000 to $46.55 × 108 in 2017,
implying betterment in forest ecosystem. But the decrease in forest area actually implies degradation
in the forest ecosystem [79,80]. For a temporal comparison of changes in the ESV, the values without
inflation adjustment give a better understanding of the changes in the ESV. We recommend that new
ESV coefficients need to be derived to represent the actual ESV in a given time, rather than use the
adjusted inflation to compare the ESV for the different time period.

From 1997 to 2011, the loss in global ecosystem services due to LUCC was about $4.3–20.2
trillion [22]. In the Tibetan Plateau, the ESV increased at the rate of $67.10 × 108 from the year
1985 to 2000 [81]. However, from 2000 to 2010, the ESV in the TP decreased at the rate of $9.30 ×
108 [82]. Climate warming and socio-economic development degrading the environmental–ecological
system [32] coupled with rampant urbanization [83] are the major factors for the decrease in ESV in
the TP. The ecosystem services value (ESVs) for the Koshi river basin for the years 1990 and 2010
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were $91.60 × 108 and $89.55 × 108, respectively, with a decrease of $2.05 × 108 [28] over the period.
In the Gandaki river basin, the ESV for the years 1990 and 2015 were $50.6 × 108 and $51.84 × 108,
respectively, with an increase of $1.68 × 108 [29]. In the Koshi basin, the loss is primarily due to
anthropogenic activities such as urbanization, deforestation and land reclamation [28]. Whereas in the
Gandaki basin, ecosystem services have improved due to the increase in cropland, forest, river/lake,
wetland categories. The LUCC and ESV change in the KRB was less than that of Gandaki River Basin
and Koshi River Basin. The ecosystem services have improved in the KRB and Gandaki basin [29],
whereas they have deteriorated in Koshi River Basin [28]. Significant LUCC in the Gandaki and Koshi
River basin amounted to significant changes in the ESV. Also, the temporal span of the data used for
the Koshi basin (20 years) and Gandaki basin (25 years) were longer than that of the KRB (17 years).
With new federal state government coming into the act, major development programs in the KRB are
in the pipeline [84]. Thus, LUCC due to development activities will inevitably be affected, influencing
the ESV of the basin in the future. Sustainable landscape planning, management, and development
measures have to be adopted in this region [67,85] and the region is still facing challenges with the
effectiveness of protected area management [86]. The mapping of arisen ESV and shrunken ESV thus
can put forward the spatial location that needs immediate attention, aiding in the management of
ecosystem services.

5. Conclusions

In this study, we have investigated the variation in land use and land cover in the transboundary
KRB using optical satellite data for a period of seventeen years from 2000 to 2017. Furthermore, we
have evaluated and analyzed the ESV for each land cover type. Forest covered the highest area in the
basin, followed by bare area, shrub/grassland, agriculture, snow/ice, waterbody and built-up for the
year 2017. Forest, waterbody, and snow/ice have decreased, whereas shrub/grassland, agriculture, bare
area and built-up have increased in the basin in the study period. Due to these LUCC, the total ESV for
the basin increased by $1.59 × 106 in the last 17 years, and this gain occurred mainly in shrub/grassland,
agriculture, bare area, and water bodies (in the higher altitude) ecosystem. The highest decrease was in
the snow/ice ecosystem, followed by waterbody and forest ecosystem, respectively. The LUCC and its
effects in the ESV are further spatially shown in the form of arisen and shrunken Tupu units. The arisen
ESV was highest for waterbody ($8.73 × 106) in the higher altitude, followed by shrub/grassland
($6.37 × 106) and bare area ($6.02 × 106). The shrunken ESV was highest for waterbody ($12.82 × 106)
followed by snow/ice ($6.41 × 106) and forest ($0.45 × 106). The small increase in the ESV shows the
improving ecosystem services and LUCC is one of the driving factors for the changes in ESV in the
basin. Thus, regular monitoring of the dynamics of LUCC is essential. The spatio-temporal integrated
geo-information landscape Tupu methodology had a major advantage over the common method as it
shows the spatial distribution and change characteristics of the LUCC as well as arisen and shrunken
ESV across the basin, which is an important contribution to the LULC, LUCC, and ESV related studies.
The spatial distribution of LUCC and changes in ESV extracted by using spatio-temporal integrated
landscape information Tupu methodology facilitates in better understanding the spatio-temporal
dynamics of LUCC and changes in ESV.

The usage of high-resolution satellite images can give a better classification results improving the
estimation of ESV, which can assist in natural resource sustainable management and adaptations of
ecosystem services at the regional and local scale.
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