Trace Metal Levels and Nutrient Characteristics of Crude Oil-Contaminated Soil Amended with Biochar–Humus Sediment Slurry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of pH
2.2. Determination of Organic Carbon Content
2.3. Determination of Cation Exchange Capacity (CEC)
2.4. Determination of Nitrogen Content
2.5. Determination of Phosphorus Content
2.6. Determination of Trace Metals
2.7. Determination of Potassium Content
2.8. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dominguez-Rodriguez, V.I.; Adams, R.H.; Vargas-Almeida, M.; Zavala-Cruz, J.; Romero-Frasca, E. Fertility Deterioration in a Remediated Petroleum-Contaminated Soil. Int. J. Environ. Res. Public Health 2020, 17, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emoyan, O.O.; Peretiemo-Clarke, B.O.; Tesi, G.O.; Adjerese, W.; Ohwo, E. Occurrence, Origin and Risk Assessment of Trace Metals Measured in Petroleum Tank-farm Impacted Soils. Soil Sediment Contam. 2020, 30, 384–408. [Google Scholar] [CrossRef]
- Lassalle, G.; Credoz, A.; Hedacq, R.; Fabre, S.; Dubucq, D.; Elger, A. Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance. Environ. Sci. Technol. 2018, 52, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Offiong, N.A.O.; Inam, E.J.; Etuk, H.S.; Essien, J.P. Current status and challenges of remediating petroleum-derived PAHs in soils: Nigeria as a case study for developing countries. Remediation J. 2019, 30, 65–75. [Google Scholar] [CrossRef]
- Ogunlaja, A.; Ogunlaja, O.O.; Okewole, D.M.; Morenikeji, O.A. Risk assessment and source identification of heavy metal contamination by multivariate and hazard index analyses of a pipeline vandalised area in Lagos State, Nigeria. Sci. Total Environ. 2019, 651, 2943–2952. [Google Scholar] [CrossRef]
- Iordache, M.; Iordache, A.M.; Sandru, C.; Voica, C. Assessment of heavy metals pollution in sediments from reservoirs of the Olt River as tool for environmental risk management. Rev. Chim. 2019, 70, 4153–4162. [Google Scholar] [CrossRef]
- Bartha, S.; Taut, I.; Goji, G.; Andravlad, I.; Dinulică, F. Heavy metal content in polyfloralhoney and potential health risk. A case study of Copșa Mică, Romania. Int. J. Environ. Res. Public Health 2020, 17, 1507. [Google Scholar] [CrossRef] [Green Version]
- Onojake, M.C.; Frank, O. Assessment of heavy metals in a soil contaminated by oil spill: A case study in Nigeria. Chem. Ecol. 2013, 29, 246–254. [Google Scholar] [CrossRef]
- Kumar, A.; Ramanathan, A.L.; Prasad, M.B.K.; Datta, D.; Kumar, M.; Sappal, S.M. Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: A baseline study before Sundarban oil spill of December, 2014. Environ. Sci. Pollut. Res. 2016, 23, 8985–8999. [Google Scholar] [CrossRef]
- Hussain, T.; Gondal, M.A. Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy. Environ. Monit. Assess. 2008, 136, 391–399. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001, 60, 193–207. [Google Scholar] [CrossRef]
- Peng, W.; Li, X.; Xiao, S.; Fan, W. Review of remediation technologies for sediments contaminated by heavy metals. J. Soils Sediments 2018, 18, 1701–1719. [Google Scholar] [CrossRef]
- Peng, X.; Ye, L.L.; Wang, C.H.; Zhou, H.; Sun, B. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res. 2011, 112, 159–166. [Google Scholar] [CrossRef]
- Islam, M.; Halder, M.; Siddique, M.A.B.; Razir, S.A.A.; Sikder, S.; Joardar, J.C. Banana peel biochar as alternative source of potassium for plant productivity and sustainable agriculture. Int. J. Recycl. Org. Waste Agric. 2019, 8, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Puga, A.P.; Grutzmacher, P.; Cerri, C.E.P.; Ribeirinho, V.S.; Andrade, C.A. Biochar-based nitrogen fertilizers: Greenhouse gas emissions, use efficiency, and maize yield in tropical soils. Sci. Total Environ. 2020, 704, 135375. [Google Scholar] [CrossRef]
- Anderson, C.R.; Condron, L.M.; Clough, T.J.; Fiers, M.; Stewart, A.; Hill, R.A.; Sherlock, R.R. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 2011, 54, 309–320. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Wang, Y.; Chen, Y.; Lei, T. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma 2016, 267, 17–23. [Google Scholar] [CrossRef]
- Clough, T.; Condron, L.; Kammann, C.; Müller, C. A Review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Gul, S.; Whalen, J.K. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol. Biochem. 2016, 103, 1–15. [Google Scholar] [CrossRef]
- Li, G.; Chen, F.; Jia, S.; Wang, Z.; Zuo, Q.; He, H. Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.). Environ. Pollut. 2020, 265, 114887. [Google Scholar] [CrossRef]
- Mukome, F.N.D.; Buelow, M.C.; Shang, J.; Peng, J.; Rodriguez, M.; Mackay, D.M.; Pignatello, J.J.; Sihota, N.; Hoelen, T.P.; Parikh, S.J. Biochar amendment as a remediation strategy for surface soils impacted by crude oil. Environ. Pollut. 2020, 265, 115006. [Google Scholar] [CrossRef]
- Nigam, N.; Yadav, V.; Mishra, D.; Karak, T.; Khare, P. Biochar amendment alters the relation between the Pb distribution and biological activities in soil. Int. J. Environ. Sci. Technol. 2019, 16, 8595–8606. [Google Scholar] [CrossRef]
- Pan, M. Biochar adsorption of antibiotics and its implications to remediation of contaminated soil. Water Air Soil Pollut. 2020, 231. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.W. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef]
- Ramtahal, G.; Umaharan, P.; Hanuman, A.; Davis, C.; Ali, L. The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Sci. Total Environ. 2019, 693, 133563. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.J.; Gaston, L.A.; Li, J.; Fultz, L.M.; DeLaune, R.D.; Dodla, S.K. Remediation of crude oil-contaminated coastal marsh soil: Integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application. J. Hazard. Mater. 2020, 396, 122595. [Google Scholar] [CrossRef]
- Wu, S.; He, H.; Inthapanya, X.; Yang, C.; Lu, L.; Zeng, G.; Han, Z. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review. Environ. Sci. Pollut. Res. 2017, 24, 16560–16577. [Google Scholar] [CrossRef]
- Yang, B.; Luo, W.; Wang, X.; Yu, S.; Gan, M.; Wang, J.; Liu, X.; Qiu, G. The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution. Sci. Total Environ. 2020, 737, 139485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, C.; Chen, G.; Zhou, J.; Chen, Z.; Li, Z.; Zhu, J.; Feng, T.; Chen, Y. Response of soil microbial communities to additions of straw biochar, iron oxide, and iron oxide-modified straw biochar in an arsenic-contaminated soil. Environ. Sci. Pollut. Res. 2020, 27, 23761–23768. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Offiong, N.-A.O.; Inam, E.J.; Etuk, H.S.; Essien, J.P.; Ofon, U.A.; Una, C.C. Biochar and humus sediment mixture attenuates crude oil-derived PAHs in a simulated tropical ultisol. SN Appl. Sci. 2020, 2. [Google Scholar] [CrossRef]
- Robles-Gonzalez, I.V.; Fava, F.; Poggi-Varaldo, H.M. A review on slurry bioreactors for bioremediation of soils and sediments. Microb. Cell Fact. 2008, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Talley, J.W.; Ghosh, U.; Tucker, S.G.; Furey, J.S.; Luthy, R.G. Particle-scale understanding of the bioavailability of PAHs in sediment. Environ. Sci. Technol. 2002, 36, 477–483. [Google Scholar] [CrossRef]
- Keith, L.K. Environmental Sampling and Analysis: A Practical Guide; Lewis Publishers: Boca Raton, FL, USA, 1991. [Google Scholar]
- Christian, G.D. Analytical Chemistry, 6th ed.; John Wiley & Sons: Singapore, 2004; p. 828. [Google Scholar]
- Radojević, M.; Bashkin, V.N. Practical Environmental Analysis, 2nd ed.; Royal Society of Chemistry: London, UK, 2006; p. 457. [Google Scholar]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Lu, T.; Huang, H.; Zhao, D.; Kobayashi, N.; Chen, Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J. Anal. Appl. Pyrolysis 2015, 112, 284–289. [Google Scholar] [CrossRef]
- Anyika, C.; Abdul Majid, Z.; Ibrahim, Z.; Zakaria, M.P.; Yahya, A. The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—A review. Environ. Sci. Pollut. Res. 2015, 22, 3314–3341. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P.; Charmas, B.; Skubiszewska-Zięba, J.; Pasieczna-Patkowska, S. Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrolysis 2015, 112, 201–213. [Google Scholar] [CrossRef]
- Jones, J.M.; Darvell, L.I.; Bridgeman, T.G.; Pourkashanian, M.; Williams, A. An investigation of the thermal and catalytic behaviour of potassium in biomass combustion. Proc. Combust. Inst. 2007, 31, 1955–1963. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Waqas, M.; Li, G.; Khan, S.; Shamshad, I.; Reid, B.J.; Qamar, Z.; Chao, C. Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environ. Sci. Pollut. Res. 2015, 22, 12114–12123. [Google Scholar] [CrossRef]
Parameter | BC500 | BC700 | BC900 |
---|---|---|---|
pH | 8.10 ± 0.22 | 9.20 ± 0.32 | 9.10 ± 1.10 |
Total organic carbon (%) | 3.51 ± 0.02 | 2.3 ± 0.03 | 2.8 ± 0.21 |
Total nitrogen (%) | 0.73 ± 0.01 | 0.52 ± 0.02 | 0.24 ± 0.01 |
Total phosphorus (%) | 0.78 ± 0.01 | 0.07 ± 0.00 | 0.05 ± 0.01 |
Potassium (mg/kg) | 35.33 ± 5.34 | 42.22 ± 7.55 | 26.17 ± 5.77 |
CEC (meq/100 g) | 0.17 | 0.17 | 0.14 |
Parameter | Soil Blank | Sewage Sludge | Humus Sediment | BC500 | Contaminated Soil (A) | Treated Soils * |
---|---|---|---|---|---|---|
pH | 6.0 ± 0.36 | 5.8 ± 0.12 | 6.0 ± 0.44 | 8.10 ± 0.22 | 6.8 ± 0.02 | 7.6 ± 0.20 |
Total organic carbon (%) | 4.05± 1.15 | 4.63 ± 0.50 | 10.17 ± 1.25 | 3.51 ± 0.02 | 5.5 ± 1.12 | 2.79 ± 0.55 |
Total nitrogen (%) | 0.01 ± 0.00 | 4.16 ± 0.13 | 1.20 ± 0.08 | 0.73 ± 0.01 | 0.02 ± 0.00 | 3.88 ± 0.09 |
Total phosphorus (%) | 0.07 ± 0.02 | 3.63 ± 0.10 | 24.11 ± 2.90 | 0.78 ± 0.01 | 0.08 ± 0.02 | 4.43 ± 0.60 |
Potassium (mg/kg) | 7.47 ± 0.12 | 64.81 ± 6.33 | 15.80 ± 3.11 | 35.33 ± 5.34 | 6.34 ± 0.55 | 13.66 ± 3.60 |
CEC (meq/100 g) | 0.46 | 21.02 | - | 0.17 | - | - |
Trace Metals | Blank Soil | Humus Sediment | Contaminated Soil (Sample A) | Sewage Sludge | Pyrolyzed Sludge | Treated Soil * | ||
---|---|---|---|---|---|---|---|---|
BC500 | BC700 | BC900 | ||||||
Zn | 0.41 ± 0.02 | 0.33 ± 0.13 | 0.36 ± 0.03 | 0.17 ± 0.00 | 0.23 ± 0.30 | 1.10 ± 1.50 | 0.27 ± 0.23 | 0.48 ± 0.08 |
Pb | 0.13 ± 0.01 | 0.15 ± 0.06 | 0.10 ± 0.00 | 0.13 ± 0.02 | 0.10 ± 0.09 | 0.12 ± 0.02 | 0.10 ± 0.04 | 0.07 ± 0.01 |
Cr | 0.83 ± 0.04 | 0.01 ± 0.00 | 0.54 ± 0.13 | 0.01 ± 0.00 | 0.05 ± 0.05 | 0.07 ± 0.02 | 0.06 ± 0.06 | 0.60 ± 0.01 |
Cd | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.12 ± 0.03 | 0.07 ± 0.10 | 0.07 ± 0.10 | 0.07 ± 0.10 | 0.01 ± 0.00 |
Cu | 0.20 ± 0.10 | 0.22 ± 0.03 | 0.14 ± 0.02 | 0.09 ± 0.00 | 0.06 ± 0.07 | 0.38 ± 0.50 | 0.08 ± 0.10 | 0.18 ± 0.04 |
Trace Metals | Concentration of Biochar/Humus Sediment Mixture | ||||
---|---|---|---|---|---|
15 g a | 20 g b | 25 g c | 35 g d | 60 g e | |
Zn | 2.94 ± 1.00 | 1.66 ± 0.50 | 9.10 ± 2.49 | 5.34 ± 0.47 | 10.78 ± 0.80 |
Pb | 0.23 ± 0.11 | 0.19 ± 0.08 | 0.17 ± 0.10 | 0.51 ± 0.15 | 0.25 ± 0.06 |
Cr | 0.16 ± 0.06 | 0.13 ± 0.01 | 0.10 ± 0.01 | 0.20 ± 0.11 | 0.16 ± 0.08 |
Cd | 0.11 ± 0.00 | 0.07 ± 0.00 | 0.11 ± 0.02 | 0.22 ± 0.02 | 0.12 ± 0.10 |
Cu | 0.37 ± 0.15 | 0.39 ± 0.01 | 0.12 ± 0.00 | 1.00 ± 0.00 | 1.37 ± 0.05 |
Trace Metals | Level of Contamination (Volume of Crude Oil Spiked) | ||||
---|---|---|---|---|---|
120 mL a | 200 mL b | 250 mL c | 300 mL d | 500 mL e | |
Zn | 15.38 ± 3.50 | 14.34 ± 2.40 | 9.63 ± 1.80 | 12.37 ± 4.22 | 9.59 ± 3.15 |
Pb | 0.69 ± 0.05 | 3.60 ± 1.20 | 2.14 ± 0.00 | 2.14 ± 0.13 | 0.30 ± 0.11 |
Cr | 0.29 ± 0.01 | 0.99 ± 0.10 | 0.59 ± 0.02 | 0.59 ± 0.47 | 0.16 ± 0.02 |
Cd | 0.43 ± 0.01 | 2.28 ± 0.30 | 1.19 ± 0.30 | 0.22 ± 0.32 | 0.10 ± 0.01 |
Cu | 1.61 ± 0.20 | 2.11 ± 1.00 | 1.52 ± 0.50 | 1.42 ± 0.62 | 1.15 ± 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Offiong, N.-A.O.; Inam, E.J.; Etuk, H.S.; Ebong, G.A.; Inyangudoh, A.I.; Addison, F. Trace Metal Levels and Nutrient Characteristics of Crude Oil-Contaminated Soil Amended with Biochar–Humus Sediment Slurry. Pollutants 2021, 1, 119-126. https://doi.org/10.3390/pollutants1030010
Offiong N-AO, Inam EJ, Etuk HS, Ebong GA, Inyangudoh AI, Addison F. Trace Metal Levels and Nutrient Characteristics of Crude Oil-Contaminated Soil Amended with Biochar–Humus Sediment Slurry. Pollutants. 2021; 1(3):119-126. https://doi.org/10.3390/pollutants1030010
Chicago/Turabian StyleOffiong, Nnanake-Abasi O., Edu J. Inam, Helen S. Etuk, Godwin A. Ebong, Akwaowo I. Inyangudoh, and Francis Addison. 2021. "Trace Metal Levels and Nutrient Characteristics of Crude Oil-Contaminated Soil Amended with Biochar–Humus Sediment Slurry" Pollutants 1, no. 3: 119-126. https://doi.org/10.3390/pollutants1030010
APA StyleOffiong, N. -A. O., Inam, E. J., Etuk, H. S., Ebong, G. A., Inyangudoh, A. I., & Addison, F. (2021). Trace Metal Levels and Nutrient Characteristics of Crude Oil-Contaminated Soil Amended with Biochar–Humus Sediment Slurry. Pollutants, 1(3), 119-126. https://doi.org/10.3390/pollutants1030010