Reviewing the Crop Residual Burning and Aerosol Variations during the COVID-19 Pandemic Hit Year 2020 over North India
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data and Methodology
3. Results
3.1. The Normalized Difference Vegetation Index (NDVI) and Fire Counts over Punjab and Haryana during the Pre-Lockdown and Lockdown Phase
3.2. Variation of PM2.5 and AOD over Punjab, Haryana and Delhi during the Lockdown Phase
3.3. Understanding the Direct Impact of Crop Residual Burning on Transported Air Pollution to Delhi
4. Conclusions
- The regulated vehicular and industrial emissions during the COVID-19 lockdown restrictions reduced the air pollution burden in the north Indian states of Haryana, Punjab and Delhi, but the values are still considerably higher and above the threshold.
- Punjab and Haryana account for the few districts that are not showing any decrease in aerosol concentrations during COVID-19 lockdown. The reason may be attributed to crop residual burning along with various small and medium scale industrial operations in a limited capacity, thermal power plants and oil refinery. The overall reduction during the lockdown period based on spatial average of the region matches with the results reported by other researchers.
- The aerosol loading over Delhi, though decreased significantly, still remains above the threshold range for most of the days during the lockdown period. The overall air quality is a result of local emissions and possibly considerable contribution from the Punjab and Haryana.
- The back trajectory and CWT analysis has identified crop residual burning over Haryana and Punjab as one prime activity which was almost unchanged in quantity during the lockdown phase and contributed to the transported pollutants.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akimoto, H. Global Air Quality and Pollution. Science 2003, 302, 1716–1719. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, J.; Ding, A.; Liao, H.; Liu, J.; Sun, Y.; Wang, T.; Xue, H.; Zhang, H.; Zhu, B. Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 2017, 4, 810–833. [Google Scholar] [CrossRef]
- Ramanathan, V.; Chung, C.; Kim, D.; Bettge, T.; Buja, L.; Kiehl, J.T.; Washington, W.M.; Fu, Q.; Sikka, D.R.; Wild, M. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA 2005, 102, 5326–5333. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, B.; Choudhury, G.; Vissa, N.K.; Singh, J.; Tesche, M. Changing air pollution scenario during COVID-19: Redefining the hotspot regions over India. Environ. Pollut. 2021, 271, 116354. [Google Scholar] [CrossRef]
- Choudhury, G.; Tyagi, B.; Singh, J.; Sarangi, C.; Tripathi, S.N. Aerosol-orography-precipitation–A critical assessment. Atmos. Environ. 2019, 214, 116831. [Google Scholar] [CrossRef]
- Choudhury, G.; Tyagi, B.; Vissa, N.K.; Singh, J.; Sarangi, C.; Tripathi, S.N.; Tesche, M. Aerosol-enhanced high precipitation events near the Himalayan foothills. Atmos. Chem. Phys. Discuss. 2020, 20, 15389–15399. [Google Scholar] [CrossRef]
- Gogikar, P.; Tyagi, B. Assessment of particulate matter variation during 2011–2015 over a tropical station Agra, India. Atmos. Environ. 2016, 147, 11–21. [Google Scholar] [CrossRef]
- Ghude, S.D.; Jain, S.L.; Arya, B.C.; Beig, G.; Ahammed, Y.N.; Kumar, A.; Tyagi, B. Ozone in ambient air at a tropical megacity, Delhi: Characteristics, trends and cumulative ozone exposure indices. J. Atmos. Chem. 2008, 60, 237–252. [Google Scholar] [CrossRef]
- Jethva, H.; Chand, D.; Torres, O.; Gupta, P.; Lyapustin, A.; Patadia, F. Agricultural Burning and Air Quality over Northern India: A Synergistic Analysis using NASA’s A-train Satellite Data and Ground Measurements. Aerosol Air Qual. Res. 2018, 18, 1756–1773. [Google Scholar] [CrossRef] [Green Version]
- Jethva, H.; Torres, O.; Field, R.D.; Lyapustin, A.; Gautam, R.; Kayetha, V. Connecting Crop Productivity, Residue Fires, and Air Quality over Northern India. Sci. Rep. 2019, 9, 16594. [Google Scholar] [CrossRef] [Green Version]
- Bray, C.D.; Battye, W.H.; Aneja, V.P. The role of biomass burning agricultural emissions in the Indo-Gangetic Plains on the air quality in New Delhi, India. Atmos. Environ. 2019, 218, 116983. [Google Scholar] [CrossRef]
- Sahu, S.K.; Mangaraj, P.; Beig, G.; Samal, A.; Pradhan, C.; Dash, S.; Tyagi, B. Quantifying the high resolution seasonal emission of air pollutants from crop residue burning in India. Environ. Pollut. 2021, 286, 117165. [Google Scholar] [CrossRef]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of Air Pollutants from Crop Residue Burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wang, M.; Zheng, M. Effects of COVID-19 lockdown on global air quality and health. Sci. Total Environ. 2021, 755, 142533. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Chauhan, A. Impact of lockdown on air quality in India during COVID-19 pandemic. Air Qual. Atmos. Health 2020, 13, 921–928. [Google Scholar] [CrossRef]
- Singh, J.; Tyagi, B. Transformation of Air Quality over a Coastal Tropical Station Chennai during COVID-19 Lockdown in India. Aerosol Air Qual. Res. 2021, 21. [Google Scholar] [CrossRef]
- Sahu, S.K.; Tyagi, B.; Beig, G.; Mangaraj, P.; Pradhan, C.; Khuntia, S.; Singh, V. Significant change in air quality parameters during the year 2020 over 1st smart city of India: Bhubaneswar. SN Appl. Sci. 2020, 2, 1990. [Google Scholar] [CrossRef]
- Beig, G.; Bano, S.; Sahu, S.; Anand, V.; Korhale, N.; Rathod, A.; Yadav, R.; Mangaraj, P.; Murthy, B.; Singh, S.; et al. COVID-19 and environmental -weather markers: Unfolding baseline levels and veracity of linkages in tropical India. Environ. Res. 2020, 191, 110121. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Chowdhury, P.; Talukdar, S.; Sarda, R. Modelling rabi crop health in flood plain region of India using time-series Landsat data. Geocarto Int. 2020, 1–28. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef] [PubMed]
- Bray, C.D.; Nahas, A.; Battye, W.H.; Aneja, V.P. Impact of Lockdown during the COVID-19 Outbreak on Multi-Scale Air Quality. Atmos. Environ. 2021, 254, 118386. [Google Scholar] [CrossRef]
- Press Information Bureau. The Daily COVID Bulletin. 2020. Available online: https://pib.gov.in/PressReleasePage.aspx?PRID=1628127 (accessed on 10 June 2020).
- Sahu, S.K.; Mangaraj, P.; Beig, G.; Tyagi, B.; Tikle, S.; Vinoj, V. Establishing a link between fine particulate matter (PM2.5) zones and COVID -19 over India based on anthropogenic emission sources and air quality data. Urban Clim. 2021, 38, 100883. [Google Scholar] [CrossRef]
- Shi, Z.; Song, C.; Liu, B.; Lu, G.; Xu, J.; Van Vu, T.; Elliott, R.J.R.; Li, W.; Bloss, W.J.; Harrison, R.M. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 2021, 7, eabd6696. [Google Scholar] [CrossRef]
- Gogikar, P.; Tyagi, B.; Gorai, A.K. Seasonal prediction of particulate matter over the steel city of India using neural network models. Model. Earth Syst. Environ. 2019, 5, 227–243. [Google Scholar] [CrossRef]
- Gogikar, P.; Tripathy, M.R.; Rajagopal, M.; Paul, K.K.; Tyagi, B. PM2.5 estimation using multiple linear regression approach over industrial and non-industrial stations of India. J. Ambient Intell. Humaniz. Comput. 2021, 12, 2975–2991. [Google Scholar] [CrossRef]
- Grange, S.K.; Carslaw, D.C.; Lewis, A.C.; Boleti, E.; Hueglin, C. Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. Phys. Discuss. 2018, 18, 6223–6239. [Google Scholar] [CrossRef] [Green Version]
- The Registrar General & Census Commissioner, India. Census. 2011. Available online: http://www.censusindia.gov.in/2011census/population_enumeration.html (accessed on 1 March 2021).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Planning Department, Government of NCT Delhi. Economic Survey of Delhi (2008–2009); Planning Department, Government of NCT Delhi: Delhi, India, 2009.
- Singh, J.; Noh, Y.-J.; Agrawal, S.; Tyagi, B. Dust Detection and Aerosol Properties Over Arabian Sea Using MODIS Data. Earth Syst. Environ. 2019, 3, 139–152. [Google Scholar] [CrossRef]
- Lyapustin, A.I.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.G.; Sellers, P.J.; Tucker, C.J.; Korkin, S.V. Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction. Remote Sens. Environ. 2012, 127, 385–393. [Google Scholar] [CrossRef]
- Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Lyapustin, A.; Broday, D.M.; Chatfield, R. Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 2019, 224, 12–28. [Google Scholar] [CrossRef]
- Csiszar, I.; Schroeder, W.; Giglio, L.; Ellicott, E.; Vadrevu, K.; Justice, C.O.; Wind, B. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results. J. Geophys. Res. Atmos. 2014, 119, 803–816. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Wang, D.; Morton, D.; Masek, J.; Wu, A.; Nagol, J.; Xiong, X.; Levy, R.; Vermote, E.; Wolfe, R. Impact of sensor degradation on the MODIS NDVI time series. Remote Sens. Environ. 2012, 119, 55–61. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. Air Now. 2000. Available online: https://www.airnow.gov/index.cfm?action=airnow.global_summary#India$New_Delhi (accessed on 26 February 2021).
- Indian Ministry of Environment. Central Pollution Control Board. Available online: https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing (accessed on 26 February 2021).
- Allen, G.; Sioutas, C.; Koutrakis, P.; Reiss, R.; Lurmann, F.W.; Roberts, P.T. Evaluation of the TEOM® Method for Measurement of Ambient Particulate Mass in Urban Areas. J. Air Waste Manag. Assoc. 1997, 47, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Cyrys, J.; Dietrich, G.; Kreyling, W.; Tuch, T.; Heinrich, J. PM25 measurements in ambient aerosol: Comparison between Harvard impactor (HI) and the tapered element oscillating microbalance (TEOM) system. Sci. Total Environ. 2001, 278, 191–197. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G. Description of the HYSPLIT_4 Modeling System NOAA Tech. Memo. ERL ARL-224; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1997. [Google Scholar]
- Draxler, R.R. HYSPLIT4 User’s Guide. NOAA Tech. Memo. ERL ARL-230; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1999. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Cheng, I.; Zhang, L.; Blanchard, P.; Dalziel, J.; Tordon, R. Concentration-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia, Canada. Atmos. Chem. Phys. Discuss. 2013, 13, 6031–6048. [Google Scholar] [CrossRef] [Green Version]
- Munir, S.; Coskuner, G.; Jassim, M.; Aina, Y.; Ali, A.; Mayfield, M. Changes in Air Quality Associated with Mobility Trends and Meteorological Conditions during COVID-19 Lockdown in Northern England, UK. Atmosphere 2021, 12, 504. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- CPCB (Central Pollution Control Board). National Ambient Air Quality Standards (NAAQS); Gazette Notification; CPCB: New Delhi, India, 2009. [Google Scholar]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, T. Social and Travel Lockdown Impact Considering Coronavirus Disease (COVID-19) on Air Quality in Megacities of India: Present Benefits, Future Challenges and Way Forward. Aerosol Air Qual. Res. 2020, 20, 1222–1236. [Google Scholar] [CrossRef]
- Gogikar, P.; Tyagi, B.; Padhan, R.R.; Mahaling, M. Particulate Matter Assessment Using In Situ Observations from 2009 to 2014 over an Industrial Region of Eastern India. Earth Syst. Environ. 2018, 2, 305–322. [Google Scholar] [CrossRef]
Date | Punjab Fire Counts | Haryana Fire Counts | Delhi PM2.5 (µg/m3) Same Day | Delhi PM2.5 (µg/m3) Next Day |
---|---|---|---|---|
29 April 2020 | 27 | 86 | 137 | 139 |
1 May 2020 | 66 | 64 | 150 | 103 |
5 May 2020 | 66 | 34 | 120 | 141 |
6 May 2020 | 131 | 28 | 141 | 89 |
7 May 2020 | 1069 | 275 | 89 | 121 |
8 May 2020 | 1004 | 361 | 121 | 143 |
9 May 2020 | 1036 | 221 | 143 | 116 |
10 May 2020 | 247 | 11 | 116 | 121 |
11 May 2020 | 604 | 52 | 121 | 119 |
12 May 2020 | 1102 | 358 | 119 | 155 |
13 May 2020 | 630 | 46 | 155 | 129 |
14 May 2020 | 357 | 329 | 129 | 122 |
15 May 2020 | 672 | 312 | 122 | 145 |
16 May 2020 | 1020 | 154 | 145 | 163 |
17 May 2020 | 1359 | 286 | 163 | 161 |
18 May 2020 | 2923 | 407 | 161 | 161 |
19 May 2020 | 1108 | 238 | 161 | 137 |
20 May 2020 | 659 | 117 | 137 | 120 |
21 May 2020 | 261 | 30 | 120 | 151 |
22 May 2020 | 378 | 67 | 151 | 139 |
23 May 2020 | 761 | 72 | 139 | 123 |
24 May 2020 | 441 | 90 | 123 | 133 |
25 May 2020 | 148 | 58 | 133 | 130 |
26 May 2020 | 109 | 21 | 130 | 120 |
27 May 2020 | 95 | 8 | 120 | 108 |
28 May 2020 | 65 | 16 | 108 | 789 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hari, M.; Sahu, R.K.; Tyagi, B.; Kaushik, R. Reviewing the Crop Residual Burning and Aerosol Variations during the COVID-19 Pandemic Hit Year 2020 over North India. Pollutants 2021, 1, 127-140. https://doi.org/10.3390/pollutants1030011
Hari M, Sahu RK, Tyagi B, Kaushik R. Reviewing the Crop Residual Burning and Aerosol Variations during the COVID-19 Pandemic Hit Year 2020 over North India. Pollutants. 2021; 1(3):127-140. https://doi.org/10.3390/pollutants1030011
Chicago/Turabian StyleHari, Manoj, Rajesh Kumar Sahu, Bhishma Tyagi, and Ravikant Kaushik. 2021. "Reviewing the Crop Residual Burning and Aerosol Variations during the COVID-19 Pandemic Hit Year 2020 over North India" Pollutants 1, no. 3: 127-140. https://doi.org/10.3390/pollutants1030011
APA StyleHari, M., Sahu, R. K., Tyagi, B., & Kaushik, R. (2021). Reviewing the Crop Residual Burning and Aerosol Variations during the COVID-19 Pandemic Hit Year 2020 over North India. Pollutants, 1(3), 127-140. https://doi.org/10.3390/pollutants1030011