Bridging ADHD and Metabolic Disorders: Insights into Shared Mechanisms and Clinical Implications
Abstract
:1. Introduction
2. Pathophysiological Mechanisms Linking ADHD Neurobiological Factors and Metabolism
2.1. Dopaminergic System and Its Role in ADHD and Metabolism
2.2. HPA Axis Dysregulation and Genetic Variants
2.3. Genetic Links to Inflammatory Pathways
2.4. Epigenetic Modifications and Environmental Interactions
2.5. Shared Polygenic Risk Scores and Heritability
3. Inflammation and Oxidative Stress as Neurobiological Bridges Between ADHD and Metabolic Dysfunction
4. Obesity, Metabolic Syndrome, Diabetes, and ADHD: Shared Risk Factors
4.1. ADHD and Obesity
ADHD and Metabolic Syndrome
4.2. ADHD and Diabetes
5. Clinical Implications and Treatment Considerations
5.1. Lifestyle Modifications and Nutritional Approaches
5.2. Pharmacological Considerations
Mechanism | Clinical Effect | Associated Metabolic Outcomes | Therapeutic Implications | References |
---|---|---|---|---|
Dopaminergic Dysregulation | Altered dopamine signaling affects attention, impulsivity, and reward sensitivity. | Impaired appetite regulation, altered insulin secretion, increased obesity risk. | Dopamine modulators, nutritional interventions (e.g., omega-3 supplementation). | [17,20,36] |
HPA Axis Dysregulation | Dysregulated cortisol secretion and increased stress reactivity. | Visceral fat accumulation, insulin resistance, and heightened diabetes risk. | Stress management strategies, HPA-targeted therapies, lifestyle modifications. | [21,22,23] |
Inflammation and Oxidative Stress | Chronic low-grade inflammation and increased ROS contribute to neuroinflammation. | Insulin resistance, dyslipidemia, obesity, and type 2 diabetes. | Anti-inflammatory diets, antioxidant therapies, and interventions targeting ROS production. | [125,126,145] |
Genetic and Epigenetic Factors | Shared genetic loci and epigenetic modifications create a common predisposition for both ADHD and metabolic dysfunction. | Predisposition to metabolic syndrome, obesity, and diabetes. | Personalized medicine approaches, early screening, and targeted lifestyle modifications. | [122,139,140] |
Integrated Clinical Approaches | Comorbid ADHD and metabolic disorders require holistic, multidisciplinary management. | Improved glycemic control, weight management, and overall cognitive function. | Combined pharmacological treatments (e.g., CGM, SGLT2 inhibitors, GLP-1 RAs), behavioral therapies, and lifestyle programs. | [147,152,159] |
5.3. Bariatric Surgery
6. Future Directions and Research Needs
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallo, E.F.; Posner, J. Moving towards causality in attention-deficit hyperactivity disorder: Overview of neural and genetic mechanisms. Lancet Psychiatry 2016, 3, 555–567. [Google Scholar] [CrossRef]
- Biederman, J. Pharmacotherapy for attention-deficit/hyperactivity disorder (ADHD) decreases the risk for substance abuse: Findings from a longitudinal follow-up of youths with and without ADHD. J. Clin. Psychiatry 2003, 64, 3–8. [Google Scholar] [PubMed]
- Franke, B.; Michelini, G.; Asherson, P.; Banaschewski, T.; Bilbow, A.; Buitelaar, J.K.; Cormand, B.; Faraone, S.V.; Ginsberg, Y.; Haavik, J.; et al. Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur. Neuropsychopharmacol. 2018, 28, 1059–1088. [Google Scholar] [CrossRef] [PubMed]
- Turgay, A.; Goodman, D.W.; Asherson, P.; Lasser, R.A.; Babcock, T.F.; Pucci, M.L.; Barkley, R.; ADHD Transition Phase Model Working Group. Lifespan persistence of ADHD: The life transition model and its application. J. Clin. Psychiatry 2012, 73, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Hechtman, L.T. Hyperactive Children Grown Up: ADHD in Children, Adolescents, and Adults, 2nd ed.; Guilford Press: New York, NY, USA, 1993. [Google Scholar]
- Polanczyk, G.; de Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The worldwide prevalence of ADHD: A systematic review and metaregression analysis. Am. J. Psychiatry 2007, 164, 942–948. [Google Scholar] [CrossRef]
- Abdelnour, E.; Jansen, M.O.; Gold, J.A. ADHD Diagnostic Trends: Increased Recognition or Overdiagnosis? Mo. Med. 2022, 119, 467–473. [Google Scholar]
- Ginsberg, Y.; Quintero, J.; Anand, E.; Casillas, M.; Upadhyaya, H.P. Underdiagnosis of attention-deficit/hyperactivity disorder in adult patients: A review of the literature. Prim. Care Companion CNS Disord. 2014, 16, 13r01600. [Google Scholar] [CrossRef]
- Cortese, S.; Tessari, L. Attention-Deficit/Hyperactivity Disorder (ADHD) and Obesity: Update 2016. Curr. Psychiatry Rep. 2017, 19, 4. [Google Scholar] [CrossRef]
- The Lancet Gastroenterology Hepatology. Obesity: Another ongoing pandemic. Lancet Gastroenterol. Hepatol. 2021, 6, 411. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Ni, Y.; Yi, C.; Fang, Y.; Ning, Q.; Shen, B.; Zhang, K.; Liu, Y.; Yang, L.; et al. Global Prevalence of Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2024, 178, 800–813. [Google Scholar] [CrossRef]
- Jenssen, B.P.; Kelly, M.K.; Powell, M.; Bouchelle, Z.; Mayne, S.L.; Fiks, A.G. COVID-19 and Changes in Child Obesity. Pediatrics 2021, 147, 147. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.B. COVID-19, Childhood Obesity, and NAFLD: Colliding Pandemics. Lancet Gastroenterol. Hepatol. 2022, 7, 499–501. [Google Scholar] [CrossRef]
- Caturano, A.; Galiero, R.; Loffredo, G.; Vetrano, E.; Medicamento, G.; Acierno, C.; Rinaldi, L.; Marrone, A.; Salvatore, T.; Monda, M.; et al. Effects of a Combination of Empagliflozin Plus Metformin vs. Metformin Monotherapy on NAFLD Progression in Type 2 Diabetes: The IMAGIN Pilot Study. Biomedicines 2023, 11, 322. [Google Scholar] [CrossRef]
- Mundi, M.S.; Patel, J.J.; Mohamed Elfadil, O.; Patel, J.; Patel, I.; Nanda, S.; Hurt, R.T. When Pandemics Collide: The Interplay of Obesity and COVID-19. Curr. Gastroenterol. Rep. 2021, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Sciberras, E.; Mulraney, M.; Silva, D.; Coghill, D. Prenatal Risk Factors and the Etiology of ADHD—Review of Existing Evidence. Curr. Psychiatry Rep. 2017, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Sagvolden, T.; Sergeant, J.A. Attention Deficit/Hyperactivity Disorder—From Brain Dysfunctions to Behaviour. Behav. Brain Res. 1998, 94, 1–10. [Google Scholar] [PubMed]
- Casey, B.J.; Nigg, J.T.; Durston, S. New Potential Leads in the Biology and Treatment of Attention Deficit-Hyperactivity Disorder. Curr. Opin. Neurol. 2007, 20, 119–124. [Google Scholar] [CrossRef]
- Scheres, A.; Dijkstra, M.; Ainslie, E.; Balkan, J.; Reynolds, B.; Sonuga-Barke, E.; Castellanos, F.X. Temporal and Probabilistic Discounting of Rewards in Children and Adolescents: Effects of Age and ADHD Symptoms. Neuropsychologia 2006, 44, 2092–2103. [Google Scholar] [CrossRef]
- Tripp, G.; Wickens, J.R. Neurobiology of ADHD. Neuropharmacology 2009, 57, 579–589. [Google Scholar] [CrossRef]
- Berens, A.; LeMoult, J.; Kircanski, K.; Gotlib, I.H. ADHD Symptoms and Diurnal Cortisol in Adolescents: The Importance of Comorbidities. Psychoneuroendocrinology 2023, 148, 105990. [Google Scholar] [CrossRef]
- Chang, J.P.; Mondelli, V.; Satyanarayanan, S.K.; Chiang, Y.J.; Chen, H.T.; Su, K.P.; Pariante, C.M. Cortisol, Inflammatory Biomarkers, and Neurotrophins in Children and Adolescents with Attention Deficit Hyperactivity Disorder (ADHD) in Taiwan. Brain Behav. Immun. 2020, 88, 105–113. [Google Scholar] [CrossRef]
- Petropoulos, A.; Anesiadou, S.; Michou, M.; Lymperatou, A.; Roma, E.; Chrousos, G.; Pervanidou, P. Functional Gastrointestinal Symptoms in Children with Autism and ADHD: Profiles of Hair and Salivary Cortisol, Serum Leptin Concentrations and Externalizing/Internalizing Problems. Nutrients 2024, 16, 1538. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.W.; Huang, K.L.; Ba, Y.M.; Tsai, S.J.; Chen, M.H. Role of Appetite Hormone Dysregulation in Symptomology and Executive Function in Adolescents with Attention Deficit Hyperactivity Disorder. Int. J. Neuropsychopharmacol. 2023, 26, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Özcan, Ö.; Arslan, M.; Güngör, S.; Yüksel, T.; Selimoğlu, M.A. Plasma Leptin, Adiponectin, Neuropeptide Y Levels in Drug Naive Children with ADHD. J. Atten. Disord. 2018, 22, 896–900. [Google Scholar] [CrossRef]
- Kang, J.; Park, M.; Oh, C.M.; Kim, T. High-Fat Diet-Induced Dopaminergic Dysregulation Induces REM Sleep Fragmentation and ADHD-Like Behaviors. Psychiatry Res. 2023, 327, 115412. [Google Scholar] [CrossRef]
- Du Rietz, E.; Xie, T.; Wang, R.; Cheesman, R.; Garcia-Argibay, M.; Dong, Z.; Zhang, J.; Niebuur, J.; Vos, M.; Snieder, H.; et al. The Contribution of Attention-Deficit/Hyperactivity Disorder Polygenic Load to Metabolic and Cardiovascular Health Outcomes: A Large-Scale Population and Sibling Study. Transl. Psychiatry 2024, 14, 470. [Google Scholar] [CrossRef] [PubMed]
- Demontis, D.; Walters, G.B.; Athanasiadis, G.; Walters, R.; Therrien, K.; Nielsen, T.T.; Farajzadeh, L.; Voloudakis, G.; Bendl, J.; Zeng, B.; et al. Genome-Wide Analyses of ADHD Identify 27 Risk Loci, Refine the Genetic Architecture and Implicate Several Cognitive Domains. Nat. Genet. 2023, 55, 198–208. [Google Scholar] [CrossRef]
- Faraone, S.V.; Larsson, H. Genetics of Attention Deficit Hyperactivity Disorder. Mol. Psychiatry 2019, 24, 562–575. [Google Scholar] [CrossRef]
- Ptácek, R.; Kuzelová, H.; Stefano, G.B. Dopamine D4 Receptor Gene DRD4 and Its Association with Psychiatric Disorders. Med. Sci. Monit. 2011, 17, RA215–RA220. [Google Scholar] [CrossRef]
- Tunbridge, E.M.; Narajos, M.; Harrison, C.H.; Beresford, C.; Cipriani, A.; Harrison, P.J. Which Dopamine Polymorphisms Are Functional? Systematic Review and Meta-Analysis of COMT, DAT, DBH, DDC, DRD1-5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biol. Psychiatry 2019, 86, 608–620. [Google Scholar] [CrossRef]
- Tahir, E.; Yazgan, Y.; Cirakoglu, B.; Ozbay, F.; Waldman, I.; Asherson, P.J. Association and Linkage of DRD4 and DRD5 with Attention Deficit Hyperactivity Disorder (ADHD) in a Sample of Turkish Children. Mol. Psychiatry 2000, 5, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, J.; Huang, Z.; Fan, X.; Wang, X.; Chen, X.; Guo, H.; Liu, H.; Li, S.; Yu, S.; et al. Dopaminergic System and Neurons: Role in Multiple Neurological Diseases. Neuropharmacology 2024, 260, 110133. [Google Scholar] [CrossRef] [PubMed]
- Dresp-Langley, B. From Reward to Anhedonia—Dopamine Function in the Global Mental Health Context. Biomedicines 2023, 11, 2469. [Google Scholar] [CrossRef] [PubMed]
- Tafet, G.E.; Ortiz Alonso, T. Psychoneurobiology of Dopaminergic Pathways and the Reward System. In Psychiatry and Neuroscience Update—Vol. V.; Gargiulo, P.Á., Mesones-Arroyo, H.L., Eds.; Springer: Cham, Switzerland, 2024; pp. 321–329. [Google Scholar] [CrossRef]
- Lisco, G.; De Tullio, A.; Iovino, M.; Disoteo, O.; Guastamacchia, E.; Giagulli, V.A.; Triggiani, V. Dopamine in the Regulation of Glucose Homeostasis, Pathogenesis of Type 2 Diabetes, and Chronic Conditions of Impaired Dopamine Activity/Metabolism: Implication for Pathophysiological and Therapeutic Purposes. Biomedicines 2023, 11, 2993. [Google Scholar] [CrossRef]
- Dunlavey, C.J. Introduction to the Hypothalamic-Pituitary-Adrenal Axis: Healthy and Dysregulated Stress Responses, Developmental Stress and Neurodegeneration. J. Undergrad. Neurosci. Educ. 2018, 16, R59–R60. [Google Scholar]
- Plieger, T.; Felten, A.; Splittgerber, H.; Duke, É.; Reuter, M. The Role of Genetic Variation in the Glucocorticoid Receptor (NR3C1) and Mineralocorticoid Receptor (NR3C2) in the Association between Cortisol Response and Cognition under Acute Stress. Psychoneuroendocrinology 2018, 87, 173–180. [Google Scholar] [CrossRef]
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016, 6, 603–621. [Google Scholar] [CrossRef]
- Ma, L.; Chen, Y.H.; Chen, H.; Liu, Y.Y.; Wang, Y.X. The Function of Hypothalamus-Pituitary-Adrenal Axis in Children with ADHD. Brain Res. 2011, 1368, 159–162. [Google Scholar] [CrossRef]
- Lasselin, J.; Capuron, L. Chronic Low-Grade Inflammation in Metabolic Disorders: Relevance for Behavioral Symptoms. Neuroimmunomodulation 2014, 21, 95–101. [Google Scholar] [CrossRef]
- Cifuentes, M.; Verdejo, H.E.; Castro, P.F.; Corvalan, A.H.; Ferreccio, C.; Quest, A.F.G.; Kogan, M.J.; Lavandero, S. Low-Grade Chronic Inflammation: A Shared Mechanism for Chronic Diseases. Physiology 2025, 40, 4–25. [Google Scholar] [CrossRef]
- Oda, K.; Tanaka, N.; Arai, T.; Araki, J.; Song, Y.; Zhang, L.; Kuchiba, A.; Hosoi, T.; Shirasawa, T.; Muramatsu, M.; et al. Polymorphisms in Pro- and Anti-Inflammatory Cytokine Genes and Susceptibility to Atherosclerosis: A Pathological Study of 1503 Consecutive Autopsy Cases. Hum. Mol. Genet. 2007, 16, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The Interplay between Cytokines, Inflammation, and Antioxidants: Mechanistic Insights and Therapeutic Potentials of Various Antioxidants and Anti-Cytokine Compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef] [PubMed]
- Caturano, A.; Rocco, M.; Tagliaferri, G.; Piacevole, A.; Nilo, D.; Di Lorenzo, G.; Iadicicco, I.; Donnarumma, M.; Galiero, R.; Acierno, C.; et al. Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications. Antioxidants 2025, 14, 72. [Google Scholar] [CrossRef]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative Stress and Inflammation in the Pathogenesis of Neurological Disorders: Mechanisms and Implications. Acta Pharm. Sin. B 2024, 15, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Klibaner-Schiff, E.; Simonin, E.M.; Akdis, C.A.; Cheong, A.; Johnson, M.M.; Karagas, M.R.; Kirsh, S.; Kline, O.; Mazumdar, M.; Oken, E.; et al. Environmental Exposures Influence Multigenerational Epigenetic Transmission. Clin. Epigenetics 2024, 16, 145. [Google Scholar] [CrossRef]
- Cecil, C.A.M.; Nigg, J.T. Epigenetics and ADHD: Reflections on Current Knowledge, Research Priorities and Translational Potential. Mol. Diagn. Ther. 2022, 26, 581–606. [Google Scholar] [CrossRef]
- Padula, A.M.; Monk, C.; Brennan, P.A.; Borders, A.; Barrett, E.S.; McEvoy, C.T.; Foss, S.; Desai, P.; Alshawabkeh, A.; Wurth, R.; et al. A Review of Maternal Prenatal Exposures to Environmental Chemicals and Psychosocial Stressors-Implications for Research on Perinatal Outcomes in the ECHO Program. J. Perinatol. 2020, 40, 10–24. [Google Scholar] [CrossRef]
- Musillo, C.; Berry, A.; Cirulli, F. Prenatal Psychological or Metabolic Stress Increases the Risk for Psychiatric Disorders: The “Funnel Effect” Model. Neurosci. Biobehav. Rev. 2022, 136, 104624. [Google Scholar] [CrossRef]
- Ho, S.M.; Johnson, A.; Tarapore, P.; Janakiram, V.; Zhang, X.; Leung, Y.K. Environmental Epigenetics and Its Implication on Disease Risk and Health Outcomes. ILAR J. 2012, 53, 289–305. [Google Scholar] [CrossRef]
- Tiffon, C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int. J. Mol. Sci. 2018, 19, 3425. [Google Scholar] [CrossRef]
- Kotsakis Ruehlmann, A.; Sammallahti, S.; Cortés Hidalgo, A.P.; Bakulski, K.M.; Binder, E.B.; Campbell, M.L.; Caramaschi, D.; Cecil, C.A.M.; Colicino, E.; Cruceanu, C.; et al. Epigenome-Wide Meta-Analysis of Prenatal Maternal Stressful Life Events and Newborn DNA Methylation. Mol. Psychiatry 2023, 28, 5090–5100. [Google Scholar] [CrossRef] [PubMed]
- Green, A.; Baroud, E.; DiSalvo, M.; Faraone, S.V.; Biederman, J. Examining the Impact of ADHD Polygenic Risk Scores on ADHD and Associated Outcomes: A Systematic Review and Meta-Analysis. J. Psychiatr. Res. 2022, 155, 49–67. [Google Scholar] [CrossRef]
- Brikell, I.; Kuja-Halkola, R.; Larsson, H. Heritability of Attention-Deficit Hyperactivity Disorder in Adults. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Larsson, H.; Chang, Z.; D’Onofrio, B.M.; Lichtenstein, P. The Heritability of Clinically Diagnosed Attention Deficit Hyperactivity Disorder Across the Lifespan. Psychol. Med. 2014, 44, 2223–2229. [Google Scholar] [CrossRef]
- Karhunen, V.; Bond, T.A.; Zuber, V.; Hurtig, T.; Moilanen, I.; Järvelin, M.R.; Evangelou, M.; Rodriguez, A. The Link between Attention Deficit Hyperactivity Disorder (ADHD) Symptoms and Obesity-Related Traits: Genetic and Prenatal Explanations. Transl. Psychiatry 2021, 11, 455. [Google Scholar] [CrossRef]
- Gambini, J.; Stromsnes, K. Oxidative Stress and Inflammation: From Mechanisms to Therapeutic Approaches. Biomedicines 2022, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Corona, J.C. Role of Oxidative Stress and Neuroinflammation in Attention-Deficit/Hyperactivity Disorder. Antioxidants 2020, 9, 1039. [Google Scholar] [CrossRef]
- Schnorr, I.; Siegl, A.; Luckhardt, S.; Wenz, S.; Friedrichsen, H.; El Jomaa, H.; Steinmann, A.; Kilencz, T.; Arteaga-Henríquez, G.; Ramos-Sayalero, C.; et al. Inflammatory biotype of ADHD is linked to chronic stress: A data-driven analysis of the inflammatory proteome. Transl. Psychiatry. 2024, 14, 37. [Google Scholar] [CrossRef]
- Misiak, B.; Wójta-Kempa, M.; Samochowiec, J.; Schiweck, C.; Aichholzer, M.; Reif, A.; Samochowiec, A.; Stańczykiewicz, B. Peripheral blood inflammatory markers in patients with attention deficit/hyperactivity disorder (ADHD): A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2022, 118, 110581. [Google Scholar] [CrossRef]
- Gruol, D.L. IL-6 regulation of synaptic function in the CNS. Neuropharmacology. 2015, 96, 42–54. [Google Scholar] [CrossRef]
- Stampanoni Bassi, M.; Iezzi, E.; Mori, F.; Simonelli, I.; Gilio, L.; Buttari, F.; Sica, F.; De Paolis, N.; Mandolesi, G.; Musella, A.; et al. Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis. Neurorehabil Neural Repair. 2019, 33, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Caturano, A.; Galiero, R.; Vetrano, E.; Sardu, C.; Rinaldi, L.; Russo, V.; Monda, M.; Marfella, R.; Sasso, F.C. Insulin–Heart Axis: Bridging Physiology to Insulin Resistance. Int. J. Mol. Sci. 2024, 25, 8369. [Google Scholar] [CrossRef] [PubMed]
- Castelli, V.; Kacem, H.; Brandolini, L.; Giorgio, C.; Scenna, M.S.; Allegretti, M.; Cimini, A.; d’Angelo, M. TNFα-CXCR1/2 partners in crime in insulin resistance conditions. Cell Death Discov. 2024, 10, 486. [Google Scholar] [CrossRef]
- Caturano, A.; Vetrano, E.; Galiero, R.; Sardu, C.; Rinaldi, L.; Russo, V.; Monda, M.; Marfella, R.; Sasso, F.C. Advances in the Insulin–Heart Axis: Current Therapies and Future Directions. Int. J. Mol. Sci. 2024, 25, 10173. [Google Scholar] [CrossRef]
- Olmos, G.; Lladó, J. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediat. Inflamm. 2014, 2014, 861231. [Google Scholar] [CrossRef]
- Rolver, M.G.; Emanuelsson, F.; Nordestgaard, B.G.; Benn, M. Contributions of elevated CRP, hyperglycaemia, and type 2 diabetes to cardiovascular risk in the general population: Observational and Mendelian randomization studies. Cardiovasc. Diabetol. 2024, 23, 165. [Google Scholar] [CrossRef] [PubMed]
- Amezcua-Castillo, E.; González-Pacheco, H.; Sáenz-San Martín, A.; Méndez-Ocampo, P.; Gutierrez-Moctezuma, I.; Massó, F.; Sierra-Lara, D.; Springall, R.; Rodríguez, E.; Arias-Mendoza, A.; et al. C-Reactive Protein: The Quintessential Marker of Systemic Inflammation in Coronary Artery Disease—Advancing toward Precision Medicine. Biomedicines 2023, 11, 2444. [Google Scholar] [CrossRef]
- Chortis, V.; Breault, D.T. Inflammation-induced adrenal dysfunction. Nat. Rev. Endocrinol. 2023, 19, 622–623. [Google Scholar] [CrossRef]
- Knezevic, E.; Nenic, K.; Milanovic, V.; Knezevic, N.N. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023, 12, 2726. [Google Scholar] [CrossRef]
- de Guia, R.M. Stress, glucocorticoid signaling pathway, and metabolic disorders. Diabetes Metab. Syndr. 2020, 14, 1273–1280. [Google Scholar] [CrossRef]
- Corominas, M.; Ramos-Quiroga, J.A.; Ferrer, M.; Sáez-Francàs, N.; Palomar, G.; Bosch, R.; Casas, M. Cortisol responses in children and adults with attention deficit hyperactivity disorder (ADHD): A possible marker of inhibition deficits. Atten. Defic. Hyperact. Disord. 2012, 4, 63–75. [Google Scholar] [CrossRef]
- Ma, P.; Ou, Y. Correlation between the dopaminergic system and inflammation disease: A review. Mol. Biol. Rep. 2023, 50, 7043–7053. [Google Scholar] [CrossRef] [PubMed]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr. Issues Mol. Biol. 2023, 45, 6651–6666. [Google Scholar] [CrossRef]
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 124. [Google Scholar] [CrossRef]
- Öğütlü, H.; Kaşak, M.; Tutku Tabur, S. Mitochondrial Dysfunction in Attention Deficit Hyperactivity Disorder. Eurasian J. Med. 2022, 54, 187–195. [Google Scholar] [CrossRef]
- Joseph, N.; Zhang-James, Y.; Perl, A.; Faraone, S.V. Oxidative Stress and ADHD: A Meta-Analysis. J. Atten. Disord. 2015, 19, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Leffa, D.T.; Torres, I.L.S.; Rohde, L.A. A Review on the Role of Inflammation in Attention-Deficit/Hyperactivity Disorder. Neuroimmunomodulation 2018, 25, 328–333. [Google Scholar] [CrossRef]
- Kim, M.E.; Lee, J.S. Mechanisms and Emerging Regulators of Neuroinflammation: Exploring New Therapeutic Strategies for Neurological Disorders. Curr. Issues Mol. Biol. 2025, 47, 8. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Yin, J.; Chen, J.; Ma, X.; Wu, M.; Liu, G.; Yao, K.; Tan, B.; Yin, Y. Mitochondria-Targeted Antioxidants: A Step towards Disease Treatment. Oxid. Med. Cell Longev. 2020, 2020, 8837893. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Del-Ponte, B.; Quinte, G.C.; Cruz, S.; Grellert, M.; Santos, I.S. Dietary Patterns and Attention Deficit/Hyperactivity Disorder (ADHD): A Systematic Review and Meta-Analysis. J. Affect. Disord. 2019, 252, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Mambrini, S.P.; Menichetti, F.; Ravella, S.; Pellizzari, M.; De Amicis, R.; Foppiani, A.; Battezzati, A.; Bertoli, S.; Leone, A. Ultra-Processed Food Consumption and Incidence of Obesity and Cardiometabolic Risk Factors in Adults: A Systematic Review of Prospective Studies. Nutrients 2023, 15, 2583. [Google Scholar] [CrossRef]
- Ríos-Hernández, A.; Alda, J.A.; Farran-Codina, A.; Ferreira-García, E.; Izquierdo-Pulido, M. The Mediterranean Diet and ADHD in Children and Adolescents. Pediatrics 2017, 139, e20162027. [Google Scholar] [CrossRef] [PubMed]
- Granero, R.; Pardo-Garrido, A.; Carpio-Toro, I.L.; Ramírez-Coronel, A.A.; Martínez-Suárez, P.C.; Reivan-Ortiz, G.G. The Role of Iron and Zinc in the Treatment of ADHD among Children and Adolescents: A Systematic Review of Randomized Clinical Trials. Nutrients 2021, 13, 4059. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, J.Y.; Lee, J.; Jeong, G.H.; Lee, E.; Lee, S.; Lee, K.H.; Kronbichler, A.; Stubbs, B.; Solmi, M.; et al. Environmental Risk Factors, Protective Factors, and Peripheral Biomarkers for ADHD: An Umbrella Review. Lancet Psychiatry 2020, 7, 955–970. [Google Scholar] [CrossRef] [PubMed]
- Arango, C.; Dragioti, E.; Solmi, M.; Cortese, S.; Domschke, K.; Murray, R.M.; Jones, P.B.; Uher, R.; Carvalho, A.F.; Reichenberg, A.; et al. Risk and Protective Factors for Mental Disorders Beyond Genetics: An Evidence-Based Atlas. World Psychiatry 2021, 20, 417–436. [Google Scholar] [CrossRef]
- Suchert, V.; Pedersen, A.; Hanewinkel, R.; Isensee, B. Relationship between Attention-Deficit/Hyperactivity Disorder and Sedentary Behavior in Adolescence: A Cross-Sectional Study. Atten. Defic. Hyperact. Disord. 2017, 9, 213–218. [Google Scholar] [CrossRef]
- Khalife, N.; Kantomaa, M.; Glover, V.; Tammelin, T.; Laitinen, J.; Ebeling, H.; Hurtig, T.; Jarvelin, M.R.; Rodriguez, A. Childhood Attention-Deficit/Hyperactivity Disorder Symptoms Are Risk Factors for Obesity and Physical Inactivity in Adolescence. J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 425–436. [Google Scholar] [CrossRef]
- Banerjee, T.D.; Middleton, F.; Faraone, S.V. Environmental Risk Factors for Attention-Deficit Hyperactivity Disorder. Acta Paediatr. 2007, 96, 1269–1274. [Google Scholar] [CrossRef]
- Lagerström, M.; Johnsson, P.; Orrenius, B.; Järvholm, K.; Olbers, T.; Engström, M. Internalized Shame in Treatment-Seeking Adults with Obesity Class II-III and Its Association with Quality of Life, Body Image, and Self-Esteem. Obes. Facts 2025, 5, 1–12. [Google Scholar] [CrossRef]
- Visser, M.J.; Peters, R.M.H.; Luman, M. Unmet Needs of Children and Young Adults with ADHD: Insights from Key Stakeholders on Priorities for Stigma Reduction. J. Atten. Disord. 2025, 29, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Pyszkowska, A.; Nowacki, A.; Celban, J. The Daydream Spectrum: The Role of Emotional Dysregulation, Internalized Stigma and Self-Esteem in Maladaptive Daydreaming Among Adults with ADHD, ASD, and Double Diagnosis. J. Atten. Disord. 2025, 29, 53–69. [Google Scholar] [CrossRef]
- Anthony, D.C.; Probert, F.; Gorlova, A.; Hebert, J.; Radford-Smith, D.; Nefedova, Z.; Umriukhin, A.; Nedorubov, A.; Cespuglio, R.; Shulgin, B.; et al. Impact of Serotonin Transporter Absence on Brain Insulin Receptor Expression, Plasma Metabolome Changes, and ADHD-like Behavior in Mice Fed a Western Diet. Biomolecules 2024, 14, 884. [Google Scholar] [CrossRef]
- Hur, S.; Oh, B.; Kim, H.; Kwon, O. Associations of Diet Quality and Sleep Quality with Obesity. Nutrients 2021, 13, 3181. [Google Scholar] [CrossRef]
- Elagizi, A.; Kachur, S.; Carbone, S.; Lavie, C.J.; Blair, S.N. A Review of Obesity, Physical Activity, and Cardiovascular Disease. Curr. Obes. Rep. 2020, 9, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Cortese, S.; Moreira-Maia, C.R.; St Fleur, D.; Morcillo-Peñalver, C.; Rohde, L.A.; Faraone, S.V. Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis. Am. J. Psychiatry 2016, 173, 34–43. [Google Scholar] [CrossRef]
- Colomer, C.; Berenguer, C.; Roselló, B.; Baixauli, I.; Miranda, A. The Impact of Inattention, Hyperactivity/Impulsivity Symptoms, and Executive Functions on Learning Behaviors of Children with ADHD. Front. Psychol. 2017, 8, 540. [Google Scholar] [CrossRef] [PubMed]
- Aster, H.C.; Waltmann, M.; Busch, A.; Romanos, M.; Gamer, M.; van Noort, B.M.; Beck, A.; Kappel, V.; Deserno, L. Impaired Flexible Reward Learning in ADHD Patients Is Associated with Blunted Reinforcement Sensitivity and Neural Signals in Ventral Striatum and Parietal Cortex. Neuroimage Clin. 2024, 42, 103588. [Google Scholar] [CrossRef]
- Killeen, P.R.; Russell, V.A.; Sergeant, J.A. A Behavioral Neuroenergetics Theory of ADHD. Neurosci. Biobehav. Rev. 2013, 37, 625–657. [Google Scholar] [CrossRef]
- Gonzalez, J.T.; Batterham, A.M.; Atkinson, G.; Thompson, D. Perspective: Is the Response of Human Energy Expenditure to Increased Physical Activity Additive or Constrained? Adv. Nutr. 2023, 14, 406–419. [Google Scholar] [CrossRef]
- Miklós, M.; Futó, J.; Komáromy, D.; Balázs, J. Executive Function and Attention Performance in Children with ADHD: Effects of Medication and Comparison with Typically Developing Children. Int. J. Environ. Res. Public Health 2019, 16, 3822. [Google Scholar] [CrossRef]
- Devi, K.A.; Singh, S.K. The Hazards of Excessive Screen Time: Impacts on Physical Health, Mental Health, and Overall Well-Being. J. Educ. Health Promot. 2023, 12, 413. [Google Scholar] [CrossRef] [PubMed]
- Kurnik Mesarič, K.; Pajek, J.; Logar Zakrajšek, B.; Bogataj, Š.; Kodrič, J. Cognitive Behavioral Therapy for Lifestyle Changes in Patients with Obesity and Type 2 Diabetes: A Systematic Review and Meta-Analysis. Sci. Rep. 2023, 13, 12793. [Google Scholar] [CrossRef]
- Palakodeti, S.S.; Sarangi, A.; Mehta, T.R. The ADHD Conundrum—A Review of Non-pharmacological Approach to Management. Curr. Dev. Disord. Rep. 2024, 12, 6. [Google Scholar] [CrossRef]
- Cortese, S.; Vincenzi, B. Obesity and ADHD: Clinical and Neurobiological Implications. Curr. Top. Behav. Neurosci. 2012, 9, 199–218. [Google Scholar] [CrossRef]
- Bulik, C.M.; Coleman, J.R.I.; Hardaway, J.A.; Breithaupt, L.; Watson, H.J.; Bryant, C.D.; Breen, G. Genetics and Neurobiology of Eating Disorders. Nat. Neurosci. 2022, 25, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Le Thuc, O.; Stobbe, K.; Cansell, C.; Nahon, J.L.; Blondeau, N.; Rovère, C. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines. Front. Endocrinol. 2017, 8, 197. [Google Scholar] [CrossRef]
- da Silva, B.S.; Grevet, E.H.; Silva, L.C.F.; Ramos, J.K.N.; Rovaris, D.L.; Bau, C.H.D. An Overview on Neurobiology and Therapeutics of Attention-Deficit/Hyperactivity Disorder. Discov. Ment. Health 2023, 3, 2. [Google Scholar] [CrossRef]
- Bellato, A.; Arora, I.; Hollis, C.; Groom, M.J. Is Autonomic Nervous System Function Atypical in Attention Deficit Hyperactivity Disorder (ADHD)? A Systematic Review of the Evidence. Neurosci. Biobehav. Rev. 2020, 108, 182–206. [Google Scholar] [CrossRef]
- Geiss, L.; Stemmler, M.; Beck, B.; Hillemacher, T.; Widder, M.; Hösl, K.M. Dysregulation of the Autonomic Nervous System in Adult Attention Deficit Hyperactivity Disorder: A Systematic Review. Cogn. Neuropsychiatry 2023, 28, 285–306. [Google Scholar] [CrossRef]
- Arnsten, A.F. Stimulants: Therapeutic Actions in ADHD. Neuropsychopharmacology 2006, 31, 2376–2383. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V. The Pharmacology of Amphetamine and Methylphenidate: Relevance to the Neurobiology of Attention-Deficit/Hyperactivity Disorder and Other Psychiatric Comorbidities. Neurosci. Biobehav. Rev. 2018, 87, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Reas, D.L.; Grilo, C.M. Pharmacological Treatment of Binge Eating Disorder: Update Review and Synthesis. Expert Opin. Pharmacother. 2015, 16, 1463–1478. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Akuly, H.A.; Hanna, T.A.; Ochoa, C.O.; Patti, S.J.; Ghaffar, Y.A.; Kaye, A.D.; Viswanath, O.; Urits, I.; Boyer, A.G.; et al. Selective Serotonin Reuptake Inhibitors and Adverse Effects: A Narrative Review. Neurol. Int. 2021, 13, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.L.; Garber, A.J. Metabolic syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef]
- Wynchank, D.; Bijlenga, D.; Lamers, F.; Kooij, J.J.S.; Bron, T.I.; Beekman, A.T.F.; Penninx, B.W.J.H. The Association Between Metabolic Syndrome, Obesity-Related Outcomes, and ADHD in Adults with Comorbid Affective Disorders. J. Atten. Disord. 2018, 22, 460–471. [Google Scholar] [CrossRef]
- Di Girolamo, G.; Bracco, I.F.; Portigliatti Pomeri, A.; Puglisi, S.; Oliva, F. Prevalence of Metabolic Syndrome and Insulin Resistance in a Sample of Adult ADHD Outpatients. Front. Psychiatry 2022, 13, 891479. [Google Scholar] [CrossRef]
- Xiang, A.H.; Wang, X.; Martinez, M.P.; Getahun, D.; Page, K.A.; Buchanan, T.A.; Feldman, K. Maternal Gestational Diabetes Mellitus, Type 1 Diabetes, and Type 2 Diabetes During Pregnancy and Risk of ADHD in Offspring. Diabetes Care 2018, 41, 2502–2508. [Google Scholar] [CrossRef]
- Guo, D.; Ju, R.; Zhou, Q.; Mao, J.; Tao, H.; Jing, H.; Zhu, C.; Dai, J. Association of Maternal Diabetes with Attention Deficit/Hyperactivity Disorder (ADHD) in Offspring: A Meta-Analysis and Review. Diabetes Res. Clin. Pract. 2020, 165, 108269. [Google Scholar] [CrossRef]
- Feig, D.S.; Artani, A.; Asaf, A.; Li, P.; Booth, G.L.; Shah, B.R. Long-Term Neurobehavioral and Metabolic Outcomes in Offspring of Mothers with Diabetes During Pregnancy: A Large, Population-Based Cohort Study in Ontario, Canada. Diabetes Care 2024, 47, 1568–1575. [Google Scholar] [CrossRef]
- Liu, S.; Kuja-Halkola, R.; Larsson, H.; Lichtenstein, P.; Ludvigsson, J.F.; Svensson, A.M.; Gudbjörnsdottir, S.; Tideman, M.; Serlachius, E.; Butwicka, A. Poor Glycaemic Control is Associated with Increased Risk of Neurodevelopmental Disorders in Childhood-Onset Type 1 Diabetes: A Population-Based Cohort Study. Diabetologia 2021, 64, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.N.; Lei, X.; Xiao, C.Y.; Li, Y.M.; Lei, X.Y. Association Between Type 1 Diabetes and Neurodevelopmental Disorders in Children and Adolescents: A Systematic Review and Meta-Analysis. Front. Psychiatry 2022, 13, 982696. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Lin, C.L.; Hsu, W.H.; Lin, C.C.; Fu, Y.C. Association of Attention Deficit Hyperactivity Disorder with Recurrent Hypoglycemia in Type 1 Diabetes Mellitus. Pediatr. Diabetes 2019, 20, 189–196. [Google Scholar] [CrossRef]
- Koren, D. Growth and Development in Type 1 Diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 57–64. [Google Scholar] [CrossRef]
- Zare Dehnavi, A.; Elmitwalli, I.; Alsharif, H.O.H.; Shervin Razavi, A.; Gumpel, T.A.; Smith, A.; Weinstock, R.S.; Faraone, S.V.; Zhang-James, Y. Effects of ADHD and ADHD Treatment on Glycemic Management in Type 1 Diabetes: A Systematic Review and Meta-Analysis of Observational Studies. Diabetes Res. Clin. Pract. 2024, 209, 111566. [Google Scholar] [CrossRef]
- Jendle, J.; Agvall, B.; Galozy, A.; Adolfsson, P. Patterns and Predictors Associated with Long-Term Glycemic Control in Pediatric and Young Adult Patients with Type 1 Diabetes. J. Diabetes Sci. Technol. 2023, 17, 1243–1251. [Google Scholar] [CrossRef]
- Vinker-Shuster, M.; Golan-Cohen, A.; Merhasin, I.; Merzon, E. Attention-Deficit Hyperactivity Disorder in Pediatric Patients with Type 1 Diabetes Mellitus: Clinical Outcomes and Diabetes Control. J. Dev. Behav. Pediatr. 2019, 40, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Yazar, A.; Akın, F.; Akça, Ö.F.; Eklioğlu, B.S.; Türe, E.; Coşkun, F.; Atabek, M.E. The Effect of Attention Deficit/Hyperactivity Disorder and Other Psychiatric Disorders on the Treatment of Pediatric Diabetes Mellitus. Pediatr. Diabetes 2019, 20, 345–352. [Google Scholar] [CrossRef]
- Merzon, E.; Grossman, J.; Vinker, S.; Merhasin, I.; Levit, S.; Golan-Cohen, A. Factors Associated with Withdrawal from Insulin Pump Therapy: A Large-Population-Based Study. Diabetes Metab. Res. Rev. 2020, 36, e3288. [Google Scholar] [CrossRef]
- Dehnavi, A.Z.; Zhang-James, Y.; Draytsel, D.; Carguello, B.; Faraone, S.V.; Weinstock, R.S. Association of ADHD Symptoms with Type 2 Diabetes and Cardiovascular Comorbidities in Adults Receiving Outpatient Diabetes Care. J. Clin. Transl. Endocrinol. 2023, 32, 100318. [Google Scholar] [CrossRef]
- Garcia-Argibay, M.; Li, L.; Du Rietz, E.; Zhang, L.; Yao, H.; Jendle, J.; Ramos-Quiroga, J.A.; Ribasés, M.; Chang, Z.; Brikell, I.; et al. The Association between Type 2 Diabetes and Attention-Deficit/Hyperactivity Disorder: A Systematic Review, Meta-Analysis, and Population-Based Sibling Study. Neurosci. Biobehav. Rev. 2023, 147, 105076. [Google Scholar] [CrossRef]
- Liu, N.; Tan, J.S.; Liu, L.; Li, H.; Wang, Y.; Yang, Y.; Qian, Q. Roles of Obesity in Mediating the Causal Effect of Attention-Deficit/Hyperactivity Disorder on Diabetes. Epidemiol. Psychiatr. Sci. 2023, 32, e32. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, N.; Takatsuka, N.; Shimizu, H. Sleep Disturbance and Onset of Type 2 Diabetes. Diabetes Care 2004, 27, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Charach, G.; Karniel, E.; Grosskopf, I.; Rabinovich, A.; Charach, L. Methylphenidate Has Mild Hyperglycemic and Hypokalemia Effects and Increases Leukocyte and Neutrophil Counts. Medicine 2020, 99, e20931. [Google Scholar] [CrossRef] [PubMed]
- Baranova, A.; Chandhoke, V.; Cao, H.; Zhang, F. Shared Genetics and Bidirectional Causal Relationships Between Type 2 Diabetes and Attention-Deficit/Hyperactivity Disorder. Gen. Psychiatr. 2023, 36, e100996. [Google Scholar] [CrossRef]
- Ahlqvist, E.; Prasad, R.B.; Groop, L. Subtypes of Type 2 Diabetes Determined From Clinical Parameters. Diabetes 2020, 69, 2086–2093. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.A.; Jayyousi, A.; DeFronzo, R.A.; Asaad, N.; Al-Suwaidi, J. Insulin Resistance the Link between T2DM and CVD: Basic Mechanisms and Clinical Implications. Curr. Vasc. Pharmacol. 2019, 17, 153–163. [Google Scholar] [CrossRef]
- Thota, P.; Perez-Lopez, F.R.; Benites-Zapata, V.A.; Pasupuleti, V.; Hernandez, A.V. Obesity-related Insulin Resistance in Adolescents: A Systematic Review and Meta-Analysis of Observational Studies. Gynecol. Endocrinol. 2017, 33, 179–184. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose Clamp Technique: A Method for Quantifying Insulin Secretion and Resistance. Am. J. Physiol. 1979, 237, E214–E223. [Google Scholar] [CrossRef]
- Ai, Y.; Zhao, J.; Liu, H.; Li, J.; Zhu, T. The Relationship Between Diabetes Mellitus and Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis. Front. Pediatr. 2022, 10, 936813. [Google Scholar] [CrossRef]
- Cameron, F.J.; Scratch, S.E.; Nadebaum, C.; Northam, E.A.; Koves, I.; Jennings, J.; Finney, K.; Neil, J.J.; Wellard, R.M.; Mackay, M.; et al. Neurological Consequences of Diabetic Ketoacidosis at Initial Presentation of Type 1 Diabetes in a Prospective Cohort Study of Children. Diabetes Care 2014, 37, 1554–1562. [Google Scholar] [CrossRef]
- Ehrmann, D.; Kulzer, B.; Roos, T.; Haak, T.; Al-Khatib, M.; Hermanns, N. Risk Factors and Prevention Strategies for Diabetic Ketoacidosis in People with Established Type 1 Diabetes. Lancet Diabetes Endocrinol. 2020, 8, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Teo, E.; Hassan, N.; Tam, W.; Koh, S. Effectiveness of Continuous Glucose Monitoring in Maintaining Glycaemic Control Among People with Type 1 Diabetes Mellitus: A Systematic Review of Randomised Controlled Trials and Meta-Analysis. Diabetologia 2022, 65, 604–619. [Google Scholar] [CrossRef] [PubMed]
- Nevola, R.; Alfano, M.; Pafundi, P.C.; Brin, C.; Gragnano, F.; Calabrò, P.; Adinolfi, L.E.; Rinaldi, L.; Sasso, F.C.; Caturano, A. Cardiorenal Impact of SGLT-2 Inhibitors: A Conceptual Revolution in The Management of Type 2 Diabetes, Heart Failure and Chronic Kidney Disease. Rev. Cardiovasc. Med. 2022, 23, 106. [Google Scholar] [CrossRef] [PubMed]
- Domanski, M.J.; Tian, X.; Wu, C.O.; Reis, J.P.; Dey, A.K.; Gu, Y.; Zhao, L.; Bae, S.; Liu, K.; Hasan, A.A.; et al. Time Course of LDL Cholesterol Exposure and Cardiovascular Disease Event Risk. J. Am. Coll. Cardiol. 2020, 76, 1507–1516. [Google Scholar] [CrossRef]
- Mormone, A.; Tortorella, G.; Esposito, F.; Caturano, A.; Marrone, A.; Cozzolino, D.; Galiero, R.; Marfella, R.; Sasso, F.C.; Rinaldi, L. Advances in Pharmacological Approaches for Managing Hypercholesterolemia: A Comprehensive Overview of Novel Treatments. Biomedicines 2024, 12, 432. [Google Scholar] [CrossRef]
- Russo, V.; Napolitano, N.; Ascrizzi, A.; Leonardi, S.; Pisacane, F.; Di Micco, P.; Imbalzano, E.; Sasso, F.C.; D’Andrea, A.; Caturano, A.; et al. The Lipid-Lowering Efficacy of a Nutraceutical Combination Including Leucoselect Phytosome, Red Yeast Rice, Policosanol and Folic Acid in Dyslipidaemia Patients: Real-World Insights. Pharmaceuticals 2024, 17, 447. [Google Scholar] [CrossRef]
- Li, L.; Yao, H.; Zhang, L.; Garcia-Argibay, M.; Du Rietz, E.; Brikell, I.; Solmi, M.; Cortese, S.; Ramos-Quiroga, J.A.; Ribasés, M.; et al. Attention-deficit/hyperactivity disorder is associated with increased risk of cardiovascular diseases: A systematic review and meta-analysis. J. Child Psychol. Psychiatry Adv. 2023, 3, e12158. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ezzatvar, Y.; Izquierdo, M.; López-Gil, J.F. Can an Active Lifestyle Reduce the Risk of Obesity in Adulthood among Adolescents with Attention-Deficit/Hyperactivity Disorder Symptoms? An Ambispective Cohort Study. Psychiatry Res. 2024, 334, 115770. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, B.; Kuang, D.; Zhu, X.; Bi, X.; Song, Y.; Quan, T.; Yang, Y.; Ren, Y. The Association between Physical Activity and Sleep in Adult ADHD Patients with Stimulant Medication Use. Front. Psychiatry 2023, 14, 1236636. [Google Scholar] [CrossRef]
- Mason, R.P.; Jacob, R.F.; Shrivastava, S.; Sherratt, S.C.R.; Chattopadhyay, A. Eicosapentaenoic Acid Reduces Membrane Fluidity, Inhibits Cholesterol Domain Formation, and Normalizes Bilayer Width in Atherosclerotic-Like Model Membranes. Biochim. Biophys. Acta 2016, 1858, 2614–2623. [Google Scholar] [CrossRef] [PubMed]
- San Mauro Martin, I.; Sanz Rojo, S.; González Cosano, L.; Conty de la Campa, R.; Garicano Vilar, E.; Blumenfeld Olivares, J.A. Impulsiveness in Children with Attention-Deficit/Hyperactivity Disorder after an 8-Week Intervention with the Mediterranean Diet and/or Omega-3 Fatty Acids: A Randomised Clinical Trial. Neurologia 2022, 37, 513–523. [Google Scholar] [CrossRef]
- Kimko, H.C.; Cross, J.T.; Abernethy, D.R. Pharmacokinetics and Clinical Effectiveness of Methylphenidate. Clin. Pharmacokinet. 1999, 37, 457–470. [Google Scholar] [CrossRef]
- The MTA Cooperative Group. A 14-Month Randomized Clinical Trial of Treatment Strategies for Attention-Deficit/Hyperactivity Disorder. Arch. Gen. Psychiatry 1999, 56, 1073–1086. [Google Scholar] [CrossRef]
- Edwards, K.; Li, X.; Lingvay, I. Clinical and Safety Outcomes with GLP-1 Receptor Agonists and SGLT2 Inhibitors in Type 1 Diabetes: A Real-World Study. J. Clin. Endocrinol. Metab. 2023, 108, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Gallwitz, B. The Cardiovascular Benefits Associated with the Use of Sodium-Glucose Cotransporter 2 Inhibitors—Real-World Data. Eur. Endocrinol. 2018, 14, 17–23. [Google Scholar] [CrossRef]
- Fadini, G.P.; Longato, E.; Morieri, M.L.; Del Prato, S.; Avogaro, A.; Solini, A.; DARWIN-Renal Study Investigators. Long-term Benefits of Dapagliflozin on Renal Outcomes of Type 2 Diabetes under Routine Care: A Comparative Effectiveness Study on Propensity Score Matched Cohorts at Low Renal Risk. Lancet Reg. Health Eur. 2024, 38, 100847. [Google Scholar] [CrossRef] [PubMed]
- Marx, N.; Husain, M.; Lehrke, M.; Verma, S.; Sattar, N. GLP-1 Receptor Agonists for the Reduction of Atherosclerotic Cardiovascular Risk in Patients with Type 2 Diabetes. Circulation 2022, 146, 1882–1894. [Google Scholar] [CrossRef]
- Kanwal, F.; Kramer, J.R.; Li, L.; Yang, Y.X.; Cao, Y.; Yu, X.; Samuel, R.; Ali, B.; Desiderio, R.; Cholankeril, G.; et al. GLP-1 Receptor Agonists and Risk for Cirrhosis and Related Complications in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. JAMA Intern. Med. 2024, 184, 1314–1323. [Google Scholar] [CrossRef]
- Popoviciu, M.-S.; Păduraru, L.; Yahya, G.; Metwally, K.; Cavalu, S. Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. Int. J. Mol. Sci. 2023, 24, 10449. [Google Scholar] [CrossRef]
- Monney, M.; Jornayvaz, F.R.; Gariani, K. GLP-1 receptor agonists effect on cognitive function in patients with and without type 2 diabetes. Diabetes Metab. 2023, 49, 101470. [Google Scholar] [CrossRef] [PubMed]
- Karaivazoglou, K.; Aggeletopoulou, I.; Triantos, C. The Contribution of the Brain-Gut Axis to the Human Reward System. Biomedicines 2024, 12, 1861. [Google Scholar] [CrossRef]
- Tabatabaei Malazy, O.; Bandarian, F.; Qorbani, M.; Mohseni, S.; Mirsadeghi, S.; Peimani, M.; Larijani, B. The effect of metformin on cognitive function: A systematic review and meta-analysis. J. Psychopharmacol. 2022, 36, 666–679. [Google Scholar] [CrossRef]
- Levy-Shraga, Y.; Madi, L.R.; Shalev, M.; Mazor-Aronovitch, K.; Schwartz-Lifshitz, M.; Gothelf, D. Effectiveness of Metformin for Weight Reduction in Children and Adolescents Treated with Mixed Dopamine and Serotonin Receptor Antagonists: A Naturalistic Cohort Study. J. Child Adolesc. Psychopharmacol. 2021, 31, 376–380. [Google Scholar] [CrossRef]
- Dickinson, K.; Parmar, P.; Reyes, A.B.; Hale, E.W. Bariatric Surgery Is Highly Effective and Underutilized in Patients with ADHD: A 5-Year Retrospective Cohort Study. Obes. Surg. 2024, 34, 2066–2072. [Google Scholar] [CrossRef]
- Mocanu, V.; Tavakoli, I.; MacDonald, A.; Dang, J.T.; Switzer, N.; Birch, D.W.; Karmali, S. The Impact of ADHD on Outcomes Following Bariatric Surgery: A Systematic Review and Meta-Analysis. Obes. Surg. 2019, 29, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Galiero, R.; Caturano, A.; Vetrano, E.; Monda, M.; Marfella, R.; Sardu, C.; Salvatore, T.; Rinaldi, L.; Sasso, F.C. Precision Medicine in Type 2 Diabetes Mellitus: Utility and Limitations. Diabetes Metab. Syndr. Obes. Targets Ther. 2023, 16, 3669–3689. [Google Scholar] [CrossRef] [PubMed]
- Dhieb, D.; Bastaki, K. Pharmaco-Multiomics: A New Frontier in Precision Psychiatry. Int. J. Mol. Sci. 2025, 26, 1082. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; di Filippo, L.; Facciorusso, A.; Adler, R.A.; Binkley, N.; Bollerslev, J.; Bouillon, R.; Casanueva, F.F.; Cavestro, G.M.; Chakhtoura, M.; et al. Vitamin D Status and Supplementation Before and After Bariatric Surgery: Recommendations Based on a Systematic Review and Meta-Analysis. Rev. Endocr. Metab. Disord. 2023, 24, 1011–1029. [Google Scholar] [CrossRef]
- Luo, Y.; Blakey, R.; Gkatzionis, A.; Stergiakouli, E.; Dardani, C. Investigating the Relationship between Attention-Deficit Hyperactivity Disorder (ADHD) and C-Reactive Protein (CRP): Observational, Polygenic Risk Score, and Mendelian Randomization Analyses. Psychol. Med. 2025, 55, e103. [Google Scholar] [CrossRef]
- Mavroconstanti, T.; Halmøy, A.; Haavik, J. Decreased Serum Levels of Adiponectin in Adult Attention Deficit Hyperactivity Disorder. Psychiatry Res. 2014, 216, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Predescu, E.; Vaidean, T.; Rapciuc, A.-M.; Sipos, R. Metabolomic Markers in Attention-Deficit/Hyperactivity Disorder (ADHD) among Children and Adolescents—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 4385. [Google Scholar] [CrossRef]
- Dark, C.; Homman-Ludiye, J.; Bryson-Richardson, R.J. The role of ADHD associated genes in neurodevelopment. Dev. Biol. 2018, 438, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Checa-Ros, A.; Jeréz-Calero, A.; Molina-Carballo, A.; Campoy, C.; Muñoz-Hoyos, A. Current Evidence on the Role of the Gut Microbiome in ADHD Pathophysiology and Therapeutic Implications. Nutrients 2021, 13, 249. [Google Scholar] [CrossRef]
- Ludyga, S.; Held, S.; Rappelt, L.; Donath, L.; Klatt, S. A network meta-analysis comparing the effects of exercise and cognitive training on executive function in young and middle-aged adults. Eur. J. Sport Sci. 2023, 23, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, E.; Magkos, F.; Conte, C.; Mittendorfer, B.; Patterson, B.W.; Okunade, A.L.; Klein, S. Validation of a Novel Index to Assess Insulin Resistance of Adipose Tissue Lipolytic Activity in Obese Subjects. J. Lipid Res. 2012, 53, 321–324. [Google Scholar] [CrossRef]
- Becker, S.P. ADHD and sleep: Recent advances and future directions. Curr. Opin. Psychol. 2020, 34, 50–56. [Google Scholar] [CrossRef]
- Cortese, S. The Association between ADHD and Obesity: Intriguing, Progressively More Investigated, but Still Puzzling. Brain Sci. 2019, 9, 256. [Google Scholar] [CrossRef]
- Antza, C.; Kostopoulos, G.; Mostafa, S.; Nirantharakumar, K.; Tahrani, A. The Links Between Sleep Duration, Obesity, and Type 2 Diabetes Mellitus. J. Endocrinol. 2021, 252, 125–141. [Google Scholar] [CrossRef]
- Khorram-Manesh, A.; Dulebenets, M.A.; Goniewicz, K. Implementing Public Health Strategies—The Need for Educational Initiatives: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5888. [Google Scholar] [CrossRef]
- Caron, R.M.; Noel, K.; Reed, R.N.; Sibel, J.; Smith, H.J. Health Promotion, Health Protection, and Disease Prevention: Challenges and Opportunities in a Dynamic Landscape. AJPM Focus. 2023, 3, 100167. [Google Scholar] [CrossRef] [PubMed]
- Riley, W.J. Health Disparities: Gaps in Access, Quality and Affordability of Medical Care. Trans. Am. Clin. Climatol. Assoc. 2012, 123, 167–172, discussion 172–174. [Google Scholar] [PubMed]
- Agurs-Collins, T.; Persky, S.; Paskett, E.D.; Barkin, S.L.; Meissner, H.I.; Nansel, T.R.; Arteaga, S.S.; Zhang, X.; Das, R.; Farhat, T. Designing and Assessing Multilevel Interventions to Improve Minority Health and Reduce Health Disparities. Am. J. Public Health 2019, 109, S86–S93. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcelli, I.; Capece, U.; Caturano, A. Bridging ADHD and Metabolic Disorders: Insights into Shared Mechanisms and Clinical Implications. Diabetology 2025, 6, 40. https://doi.org/10.3390/diabetology6050040
Marcelli I, Capece U, Caturano A. Bridging ADHD and Metabolic Disorders: Insights into Shared Mechanisms and Clinical Implications. Diabetology. 2025; 6(5):40. https://doi.org/10.3390/diabetology6050040
Chicago/Turabian StyleMarcelli, Ilaria, Umberto Capece, and Alfredo Caturano. 2025. "Bridging ADHD and Metabolic Disorders: Insights into Shared Mechanisms and Clinical Implications" Diabetology 6, no. 5: 40. https://doi.org/10.3390/diabetology6050040
APA StyleMarcelli, I., Capece, U., & Caturano, A. (2025). Bridging ADHD and Metabolic Disorders: Insights into Shared Mechanisms and Clinical Implications. Diabetology, 6(5), 40. https://doi.org/10.3390/diabetology6050040