Next Issue
Volume 5, March
Previous Issue
Volume 4, September
 
 

Polysaccharides, Volume 4, Issue 4 (December 2023) – 5 articles

Cover Story (view full-size image): Arabinoxylans (AXs) are structural polysaccharides in cereal cell walls. These polysaccharides can be recovered from maize by-products, such as distillers dried grains with solubles (DDGS) from bioethanol production. Studying AXs’ structure is crucial for designing biomaterials based on this polysaccharide. We investigated the influence of the enzymatic treatment of AXs from DDGSs on the fabrication of covalent electro-sprayed nanoparticles. The AXs’ gelling capability improved after the enzyme treatment, while the fabrication of electro-sprayed covalent nanoparticles was not affected. The AX nanoparticles presented a spherical morphology (307–328 nm in diameter) and negative Z potential values. These materials could be attractive for diverse pharmaceutical and biomedical applications due to the polysaccharides’ biocompatibility and biodegradability properties. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 5651 KiB  
Article
Efficient (Bio)emulsification/Degradation of Crude Oil Using Cellulose Nanocrystals
by Petr Sitnikov, Philipp Legki, Mikhail Torlopov, Yulia Druz, Vasily Mikhaylov, Dmitriy Tarabukin, Irina Vaseneva, Maria Markarova, Nikita Ushakov and Elena Udoratina
Polysaccharides 2023, 4(4), 402-420; https://doi.org/10.3390/polysaccharides4040024 - 10 Nov 2023
Viewed by 969
Abstract
This study has investigated the influence of cellulose nanocrystals (CNCs) with partially acetylated surfaces on the formation, stability, rheology and biodegradability of the Pickering emulsion in a crude oil/water (co/w) system. In all investigated systems, it was observed that the CNC concentrations of [...] Read more.
This study has investigated the influence of cellulose nanocrystals (CNCs) with partially acetylated surfaces on the formation, stability, rheology and biodegradability of the Pickering emulsion in a crude oil/water (co/w) system. In all investigated systems, it was observed that the CNC concentrations of 7 mg/mL led to the emulsions showing stability over time. It was also noticed that the increase in concentration of background electrolyte (NaCl) leds to the droplets of emulsions becoming smaller. It was demonstrated that the rheology of the o/w emulsions of the oil products and crude oil stabilized by CNCs depends, to a large extent, on the colloid chemical properties of nanocellulose particles. Calculations and experimental methods were used to study the changes in the acid–base properties of CNCs on the surface of emulsion droplets, depending on a type of hydrophobic components (crude oil and liquid paraffin). The formation of Pickering emulsions leads to the oxidation of oil by Rhodococcus egvi in aerobic conditions becoming more effective, provided that the environment includes mineral salts of nitrogen, potassium and phosphorus. The results obtained present a scientific basis for the development of technologies for the disposal of oil spills on water surfaces. Full article
Show Figures

Figure 1

12 pages, 3734 KiB  
Article
Advancing Paper Industry Applications with Extruded Cationic Wheat Starch as an Environmentally Friendly Biopolymer
by Ahmed Tara
Polysaccharides 2023, 4(4), 390-401; https://doi.org/10.3390/polysaccharides4040023 - 2 Nov 2023
Viewed by 955
Abstract
Within the domain of starch modification, the study delved into cationization of wheat starch through a laboratory-scale twin-screw extruder, exploring various processing conditions. Cationic starch, a crucial component for enhancing paper attributes like dry strength and printability, took center stage. The focus shifted [...] Read more.
Within the domain of starch modification, the study delved into cationization of wheat starch through a laboratory-scale twin-screw extruder, exploring various processing conditions. Cationic starch, a crucial component for enhancing paper attributes like dry strength and printability, took center stage. The focus shifted towards integration into papermaking, investigating the transformative potential of reactive extrusion. By contrasting it with conventional dry-process methodology, innovative strides were unveiled. The study extended to pilot-scale extrusion, bridging the gap between laboratory experimentation and potential industrial implementation. Infused with scientific rigor, the investigation navigated the benefits brought about by reactive extrusion. Empirical insights highlighted a significant reduction in the intrinsic viscosity of extruded starch, decreasing from 170 mL·g−1 (native starch) to 100 mL·g−1 at a specific mechanical energy (SME) input of 800 kWh·t−1, demonstrating remarkable stability despite increased mechanical treatment. Moreover, beyond the critical threshold of 220 kWh·t−1, retention efficiency reached a stable plateau at 78%. The study revealed that utilizing a larger extruder slightly improved the mechanical properties of the paper, emphasizing the advantage of scaling up the production process and the consistency of results across different extruder sizes. Full article
Show Figures

Figure 1

19 pages, 1816 KiB  
Review
Algal Polysaccharides-Based Nanomaterials: General Aspects and Potential Applications in Food and Biomedical Fields
by Juliana Botelho Moreira, Thaisa Duarte Santos, Camila Gonzales Cruz, Jéssica Teixeira da Silveira, Lisiane Fernandes de Carvalho, Michele Greque de Morais and Jorge Alberto Vieira Costa
Polysaccharides 2023, 4(4), 371-389; https://doi.org/10.3390/polysaccharides4040022 - 4 Oct 2023
Cited by 1 | Viewed by 2388
Abstract
The use of natural polymers has increased due to concern about environmental pollution caused by plastics and emerging pollutants from fossil fuels. In this context, polysaccharides from macroalgae and microalgae arise as natural and abundant resources for various biological, biomedical, and food applications. [...] Read more.
The use of natural polymers has increased due to concern about environmental pollution caused by plastics and emerging pollutants from fossil fuels. In this context, polysaccharides from macroalgae and microalgae arise as natural and abundant resources for various biological, biomedical, and food applications. Different nanomaterials are produced from these polysaccharides to act as effective carriers in the food and pharmaceutical industry: drug and nutrient carriers, active compound encapsulation, and delivery of therapeutic agents to tumor tissues. Polysaccharides-based nanomaterials applied as functional ingredients incorporated into foods can improve texture properties and decrease the caloric density of food products. These nanostructures also present the potential for developing food packaging with antioxidant and antimicrobial properties. In addition, polysaccharides-based nanomaterials are biocompatible, biodegradable, and safe for medical practices to prevent and manage various chronic diseases, such as diabetes, obesity, and cardiovascular disease. In this sense, this review article addresses the use of algal polysaccharides for manufacturing nanomaterials and their potential applications in food and biomedical areas. In addition, the paper discusses the general aspects of algae as a source of polysaccharides, the nanomaterials produced from these polymers, as well as recent studies and the potential use of algal polysaccharides for industries. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Figure 1

13 pages, 2827 KiB  
Article
Enzymatic Treatment of Ferulated Arabinoxylans from Distillers Dried Grains with Solubles: Influence on the Fabrication of Covalent Electro-Sprayed Nanoparticles
by Yubia De Anda-Flores, Jaime Lizardi-Mendoza, Agustín Rascón-Chu, Judith Tanori-Cordova, Ana Luisa Martínez-López and Elizabeth Carvajal-Millan
Polysaccharides 2023, 4(4), 358-370; https://doi.org/10.3390/polysaccharides4040021 - 2 Oct 2023
Viewed by 1161
Abstract
Arabinoxylans (AXs) extracted from distillers dried grains with solubles (DDGSs) were treated with amylase, amyloglucosidase, and protease, to evaluate their effect on the polysaccharide capability to form covalent electro-sprayed nanoparticles. Enzymatically treated arabinoxylans (AXPPs) presented a significant decrease in protein content and molecular [...] Read more.
Arabinoxylans (AXs) extracted from distillers dried grains with solubles (DDGSs) were treated with amylase, amyloglucosidase, and protease, to evaluate their effect on the polysaccharide capability to form covalent electro-sprayed nanoparticles. Enzymatically treated arabinoxylans (AXPPs) presented a significant decrease in protein content and molecular weight (31 and 37%, respectively), while the ferulic acid content and the arabinose-to-xylose ratio (A/X) were not statistically modified. The Fourier transform infrared spectra of the AXPPs showed a diminution in the intensity of amide I and amide II bands concerning AXs. The AXPP gels (1% w/v) induced via laccase registered a slight increase in the dimers of ferulic acid cross-linking content (9%) and the G’ value (27%) about the AX gels. The electro-sprayed nanoparticles of AXs and AXPPs (NAXs and NAXPPs, respectively) revealed a spherical and regular morphology via transmission electron microscopy. The nanoparticle diameter was not different for the NAXs and NAXPPs, while the NAXPPs show a significant reduction in Z potential value compared to NAXs. Confocal laser microscopy observations were conducted, to analyze the protein content in the AX network, and a decrease in illuminated areas was observed in the AXPP gels and the NAXPPs. These results indicate that the enzymatical treatment of an AX improves the polysaccharide gelling capability, but does not influence the fabrication of electro-sprayed covalent nanoparticles. NAXs and NAXPPs could be attractive biomaterials for diverse pharmaceutical and biomedical applications. Full article
Show Figures

Figure 1

15 pages, 3223 KiB  
Article
In Vitro Biological Properties of Cyclodextrin-Based Polymers: Interaction with Human Serum Albumin, Red Blood Cells and Bacteria
by Linara R. Yakupova, Anna A. Skuredina, Tatina Yu. Kopnova and Elena V. Kudryashova
Polysaccharides 2023, 4(4), 343-357; https://doi.org/10.3390/polysaccharides4040020 - 28 Sep 2023
Cited by 2 | Viewed by 1146
Abstract
The aim of this work was to investigate the physico-chemical and biological properties of cyclodextrin-based polymers by the example of interaction with human serum albumin, erythrocytes, and bacteria to understand the prospects of their application as drug delivery systems. We synthesized polymers based [...] Read more.
The aim of this work was to investigate the physico-chemical and biological properties of cyclodextrin-based polymers by the example of interaction with human serum albumin, erythrocytes, and bacteria to understand the prospects of their application as drug delivery systems. We synthesized polymers based on one of cyclodextrin derivatives with nonpolar (-CH3) or polar (-CH2CH(OH)CH3) substituents by crosslinking with 1,6-hexamethylene diisocyanate or succinic anhydride. The polymers form particles with an average size of ~200 nm in the aqueous solutions; their structures were confirmed by FTIR and 1H NMR. Cyclodextrin derivatives and their polymers did not affect the secondary structure content of human serum albumin, which might mean a mild effect on the structural and functional properties of the main blood plasma protein. Polymers extract drug molecules from albumin + drug complex by 8–10%, which was demonstrated using ibuprofen and bromophenol blue as model bioactive molecules for site I and site II in protein; thus, the nanoparticles might slightly change the drug’s pharmacokinetics. Using the hemolysis test, we found that polymers interact with red blood cells and can be assigned to non-hemolytic and slightly hemolytic groups as biocompatible materials, which are safe for in vivo use. The cyclodextrins and their polymers did not extract proteins from bacterial cell walls and did not demonstrate any antibacterial activity against Gram-positive and Gram-negative strains. Thus, the cyclodextrin-based polymers possess variable properties depending on the substituent in the monomer and linker type; demonstrated biocompatibility, biodegradability, and negligible toxicity that opens up prospects for their application in biomedicine and ecology. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop