Removal of Iron, Manganese, Cadmium, and Nickel Ions Using Brewers’ Spent Grain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Brewers’ Spent Grain
2.1.2. Heavy Metal Salts
2.1.3. Ultrapure Water
2.1.4. pH Adjustment
2.1.5. Real Water Samples
2.1.6. ICP-OES Standard Solutions and Nitric Acid
2.2. Characterization
2.2.1. pH Measurements
2.2.2. Moisture Analysis
2.2.3. Streaming Potential vs. pH
2.2.4. Charge Density
2.2.5. Scanning Electron Microscopy
2.2.6. Thermogravimetric Analysis
2.2.7. Nitrogen Sorption
2.2.8. Carbon Dioxide Sorption
2.2.9. Inductively Coupled Plasma Optical Emission Spectrometry
2.2.10. Attenuated Total Reflection Infrared Spectroscopy
2.2.11. Scanning Electron Microscope with Energy-Dispersive X-ray Spectroscopy
2.2.12. Elemental Analysis
2.2.13. Elemental Content
2.2.14. Centrifugation
2.3. Adsorption Experiments
2.3.1. Batch Adsorption Experiments
2.3.2. Time-Dependent Adsorption Experiments
2.3.3. Adsorption Isotherms
2.3.4. pH-Dependent Adsorption Experiments
2.3.5. Swelling-Dependent Adsorption Experiments
2.3.6. Real Water Adsorption Experiments
2.4. Calculation and Theoretical Models
2.4.1. Sorption Efficiency and Sorption Capacity
2.4.2. Kinetic Models
2.4.3. Isotherm Models
3. Results and Discussion
3.1. Characterization of Brewers’ Spent Grains
3.2. Sorption Experiments
3.2.1. Time and pH-Dependent Experiments
3.2.2. Batch Adsorption Experiments with Simulated Water
3.2.3. Batch Adsorption Experiments with Surface Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Galán, M.; Baena-Moreno, F.M.; Vázquez, S.; Arroyo-Torralvo, F.; Vilches, L.F.; Zhang, Z. Remediation of acid mine drainage. Environ. Chem. Lett. 2019, 17, 1529–1538. [Google Scholar] [CrossRef]
- Neculita, C.M.; Rosa, E. A review of the implications and challenges of manganese removal from mine drainage. Chemosphere 2019, 214, 491–510. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef]
- Wisotzky, F.; Obermann, P. Acid mine groundwater in lignite overburden dumps and its prevention—the Rhineland lignite mining area (Germany). Ecol. Eng. 2001, 17, 115–123. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Viadero, R.C.; Zhang, S.; Hu, X.; Wei, X. Mine drainage: Remediation technology and resource recovery. Water Environ. Res. 2020, 92, 1533–1540. [Google Scholar] [CrossRef]
- Corral-Bobadilla, M.; González-Marcos, A.; Alba-Elías, F.; Diez de Santo Domingo, E. Valorization of bio-waste for the removal of aluminum from industrial wastewater. J. Clean. Prod. 2020, 264, 121608. [Google Scholar] [CrossRef]
- Kaveeshwar, A.R.; Sanders, M.; Ponnusamy, S.K.; Depan, D.; Subramaniam, R. Chitosan as a biosorbent for adsorption of iron (II) from fracking wastewater. Polym. Adv. Technol. 2018, 29, 961–969. [Google Scholar] [CrossRef]
- Fontana, I.B.; Peterson, M.; Cechinel, M.A.P. Application of brewing waste as biosorbent for the removal of metallic ions present in groundwater and surface waters from coal regions. J. Environ. Chem. Eng. 2018, 6, 660–670. [Google Scholar] [CrossRef]
- Sapci-Ayas, Z. Investigation of Direct Applicability of Modified Agricultural Waste for Contaminant Removal from Real Textile Wastewater. Water 2021, 13, 1354. [Google Scholar] [CrossRef]
- Charazińska, S.; Lochyński, P.; Burszta-Adamiak, E. Removal of heavy metal ions form acidic electrolyte for stainless steel electropolishing via adsorption using Polish peats. J. Water Process. Eng. 2021, 42, 102169. [Google Scholar] [CrossRef]
- Adekola, F.A.; Hodonou, D.S.S.; Adegoke, H.I. Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash. Appl. Water Sci. 2016, 6, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Feizi, M.; Jalali, M. Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues. J. Taiwan Inst. Chem. Eng. 2015, 54, 125–136. [Google Scholar] [CrossRef]
- Vaghetti, J.C.P.; Lima, E.C.; Royer, B.; da Cunha, B.M.; Cardoso, N.F.; Brasil, J.L.; Dias, S.L.P. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions. J. Hazard. Mater. 2009, 162, 270–280. [Google Scholar] [CrossRef]
- Corral Bobadilla, M.; Lostado Lorza, R.; Somovilla Gómez, F.; Escribano García, R. Adsorptive of Nickel in Wastewater by Olive Stone Waste: Optimization through Multi-Response Surface Methodology Using Desirability Functions. Water 2020, 12, 1320. [Google Scholar] [CrossRef]
- Corral-Bobadilla, M.; Lostado-Lorza, R.; Somovilla-Gómez, F.; Escribano-García, R. Effective use of activated carbon from olive stone waste in the biosorption removal of Fe(III) ions from aqueous solutions. J. Clean. Prod. 2021, 294, 126332. [Google Scholar] [CrossRef]
- Borchert, K.B.L.; Boughanmi, R.; Reis, B.; Zimmermann, P.; Steinbach, C.; Graichen, P.; Svirepa, A.; Schwarz, J.; Boldt, R.; Schwarz, S.; et al. Removal of Lead, Cadmium, and Aluminum Sulfate from Simulated and Real Water with Native and Oxidized Starches. Polysaccharides 2021, 2, 429–453. [Google Scholar] [CrossRef]
- Weißpflog, J.; Boldt, R.; Kohn, B.; Scheler, U.; Jehnichen, D.; Tyrpekl, V.; Schwarz, S. Investigation of mechanisms for simultaneous adsorption of iron and sulfate ions onto chitosan with formation of orthorhombic structures. Colloids Surf. A Physicochem. Eng. Asp. 2020, 592, 124575. [Google Scholar] [CrossRef]
- Weißpflog, J.; Gündel, A.; Vehlow, D.; Steinbach, C.; Müller, M.; Boldt, R.; Schwarz, S.; Schwarz, D. Solubility and Selectivity Effects of the Anion on the Adsorption of Different Heavy Metal Ions onto Chitosan. Molecules 2020, 25, 2482. [Google Scholar] [CrossRef]
- Akinpelu, E.A.; Fosso-Kankeu, E.; Waander, F. Biosorption of Fe (II) from Aqueous Solution by Brewing Waste: Equilibrium and Kinetic Studies. J. Water Environ. Technol. 2019, 17, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Izinyon, O.C.; Nwosu, O.E.; Akhigbe, L.; Ilaboya, I.R. Performance Evaluation of Fe (III) Adsorption onto Brewers’ Spent Grain. Niger. J. Technol. 2016, 35, 970–978. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Genève, Switzerland, 2019; p. 472. [Google Scholar]
- Dunkel, S. Biertreber. Wertvolles heimisches Eiweißfutter für Rinder. Thüringer Landesanstalt für Landwirtschaft. 2015. Available online: https://www.tll.de/www/daten/publikationen/merkblaetter/mb_biertr.pdf (accessed on 11 April 2022).
- Su, Y.; Böhm, W.; Wenzel, M.; Paasch, S.; Acker, M.; Doert, T.; Brunner, E.; Henle, T.; Weigand, J.J. Mild hydrothermally treated brewer’s spent grain for efficient removal of uranyl and rare earth metal ions. RSC Adv. 2020, 10, 45116–45129. [Google Scholar] [CrossRef]
- Wierzba, S.; Klos, A. Heavy metal sorption in biosorbents—Using spent grain from the brewing industry. J. Clean. Prod. 2019, 225, 112–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, X.; Lin, X.; Huang, S. A sorbent based on liquor distillers’ grains for the removal of Pb(II) and Cr(III) from aqueous solution. Procedia Environ. Sci 2016, 31, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Sillerová, H.; Komárek, M.; Chrastný, V.; Novák, M.; Vaněk, A.; Drábek, O. Brewers draff as a new low-cost sorbent for chromium (VI): Comparison with other biosorbents. J. Colloid Interface Sci. 2013, 396, 227–233. [Google Scholar] [CrossRef]
- Kim, T.Y.; Park, S.K.; Cho, S.Y.; Kim, H.B.; Kang, Y.; Kim, S.D.; Kim, S.J. Adsorption of heavy metals by brewery biomass. Korean J. Chem. Eng. 2005, 22, 91–98. [Google Scholar] [CrossRef]
- Lagergren, S. Ueber die Dämpfung electrischer Resonatoren. Ann. Phys. 1898, 300, 290–314. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Elovich, S.Y.H. International Congress of Surface Activity. In Proceedings of the Second International Congress on Surface Activity; Academic Press Inc.: New York, NY, USA, 1959. [Google Scholar]
- Elovich, S.Y.; Larinov, O. Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form,(II) verification of the equation of adsorption isotherm from solutions. Otd. Khim. Nauk Izv. Akad. Nauk. SSSR 1962, 2, 209–216. [Google Scholar]
- Dubinin, M.M. The Equation of the Characteristic Curve of Activated Charcoal. Dokl. Akad. Nauk. SSSR 1947, 55, 327–329. [Google Scholar]
- Zhou, X. Correction to the calculation of Polanyi potential from Dubinnin-Rudushkevich equation. J. Hazard. Mater. 2020, 384, 121101. [Google Scholar] [CrossRef]
- Liu, Y. Is the Free Energy Change of Adsorption Correctly Calculated? J. Chem. Eng. Data 2009, 54, 1981–1985. [Google Scholar] [CrossRef]
- Ferraz, A.; Amorim, C.; Tavares, T.; Teixeira, J. Chromium(III) biosorption onto spent grains residual from brewing industry: Equilibrium, kinetics and column studies. Int. J. Environ. Sci. Technol. 2014, 12, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Chai, L.; Yang, Z.; Wang, Q. Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions. Appl. Surf. Sci. 2009, 255, 4298–4303. [Google Scholar] [CrossRef]
- Coronado, M.A.; Montero, G.; Montes, D.G.; Valdez-Salas, B.; Ayala, J.R.; García, C.; Carrillo, M.; León, J.A.; Moreno, A. Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry. Sustainability 2020, 12, 7744. [Google Scholar] [CrossRef]
- Karlović, A.; Jurić, A.; Ćorić, N.; Habschied, K.; Krstanović, V.; Mastanjević, K. By-Products in the Malting and Brewing Industries—Re-Usage Possibilities. Fermentation 2020, 6, 82. [Google Scholar] [CrossRef]
- Huige, N. Handbook of Brewing; Priest, F.G., Ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Kumar, S.; Soukup, M.; Elbaum, R. Silicification in Grasses: Variation between Different Cell Types. Front. Plant. Sci. 2017, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Hu, Y.; Xie, Z.; Feng, S.; Li, B.; Mi, X. Characterization of biosorption process of acid orange 7 on waste brewery’s yeast. Appl. Biochem. Biotechnol. 2011, 163, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Boyd, G.E.; Adamson, A.W.; Myers, L.S. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics. J. Am. Chem. Soc. 1947, 69, 2836–2848. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 5, 751–767. [Google Scholar] [CrossRef]
- Richens, D.T. The Chemistry of Aqua Ions: Synthesis, Structure and Reactivity: A Tour Through the Periodic Table of the Elements; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Federal Ministry for the Environment. Verordnung zum Schutz der Oberflächengewässer (Oberflächengewässerverordnung—OGewV) Anlage 7 (zu § 5 Absatz 4 Satz 2); Fundstelle: Anlage 7 (zu § 5 Absatz 4 Satz 2); BMU: Berlin, Germany, 20 July 2016. [Google Scholar]
- Khidzir, K.M.; Abdullah, N.; Agamuthu, P. Brewery Spent Grain: Chemical Characteristics and utilization as an Enzyme Substrate. Malaysian J. Sci. 2010, 29, 41–51. [Google Scholar] [CrossRef]
- Ahmad, A.; Bhat, A.H.; Buang, A. Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: Kinetic and equilibrium modeling. J. Cleaner Prod. 2018, 171, 1361–1375. [Google Scholar] [CrossRef]
- Moreno-Piraján, J.C.; Garcia-Cuello, V.S.; Giraldo, L. The removal and kinetic study of Mn, Fe, Ni and Cu ions from wastewater onto activated carbon from coconut shells. Adsorption 2010, 505–514. [Google Scholar] [CrossRef]
- Moreno, J.C.; Gómez, R.; Giraldo, L. Removal of Mn, Fe, Ni and Cu Ions from Wastewater Using Cow Bone Charcoal. Materials 2010, 3, 452–466. [Google Scholar] [CrossRef] [Green Version]
- Esfandiar, N.; Nasernejad, B.; Ebadi, T. Removal of Mn(II) from groundwater by sugarcane bagasse and activated carbon (a comparative study): Application of response surface methodology (RSM). J. Ind. Eng. Chem. 2014, 20, 3726–3736. [Google Scholar] [CrossRef]
- Veglió, F.; Beolchini, F.; Gasbarro, A. Biosorption of toxic metals: An equilibrium study using free cells of Arthrobacter sp. Process Biochem. 1997, 32, 99–105. [Google Scholar] [CrossRef]
- Fernández-González, R.; Martín-Lara, M.A.; Iáñez-Rodríguez, I.; Calero, M. Removal of heavy metals from acid mining effluents by hydrolyzed olive cake. Bioresour. Technol. 2018, 268, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Anguile, J.J.; Ona-Mbega, M.; Makani, T.; Ketcha-Mbadcam, J. Adsorption of manganese (II) ions from aqueous solution on to volcanic ash and geopolymer based volcanic ash. Int. J. Basic Appl. Chem. Sci. 2013, 3, 7–18. [Google Scholar]
- Kara, I.; Tunc, D.; Sayin, F.; Akar, S.T. Study on the performance of metakaolin based geopolymer for Mn(II) and Co(II) removal. Appl. Clay Sci. 2018, 161, 184–193. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, T.; Ren, B.; Hursthouse, A.; Zhang, Y. Removal of Mn (II) by Sodium Alginate/Graphene Oxide Composite Double-Network Hydrogel Beads from Aqueous Solutions. Sci. Rep. 2018, 8, 10717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemik, Ö.; Ngwabebhoh, F.A.; Yildiz, U. A response surface modelling study for sorption of Cu2+, Ni2+, Zn2+ and Cd2+ using chemically modified poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-methylacrylate) hydrogels. Adsorption Sci. Technol. 2016, 35, 263–283. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J. Environ. Manag. 2010, 798–806. [Google Scholar] [CrossRef]
- Reis, B.; Gerlach, N.; Steinbach, C.; Haro Carrasco, K.; Oelmann, M.; Schwarz, S.; Müller, M.; Schwarz, D. A Complementery und Revised View on the N-Acylation of Chitosan with Hexanoyl Chloride. Mar. Drugs 2021, 19, 385. [Google Scholar] [CrossRef]
- Rao, K.S.; Anand, S.; Venkateswarlu, P. Adsorption of Cadmium from Aqueous Solution by Ficus religiosa Leaf Powder and Characterization of Loaded Biosorbent. Clean Soil Air Water 2011, 39, 384–391. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liao, X.; Wang, L.; Huang, Z. Adsorption of cadmium and lead in wastewater by four kinds of biomass xanthates. Water Sci. Technol. 2019, 79, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.; Wu, X.; Yu, J.-G.; Jiang, X.-Y.; Wu, Z.-L.; Hao, X. Soluble starch functionalized graphene oxide as an efficient adsorbent for aqueous removal of Cd(II): The adsorption thermodynamic, kinetics and isotherms. J. Sol-Gel Sci. Technol. 2017, 82, 440–449. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zhong, B.H.; Fang, W. Adsorption characterization of lead(II) and cadmium(II) on crosslinked carboxymethyl starch. J. Appl. Polym. Sci. 2011, 124, 5010–5020. [Google Scholar] [CrossRef]
- Ghiorghita, C.-A.; Borchert, K.; Vasiliu, A.-L.; Zaharia, M.-M.; Schwarz, D.; Mihai, M. Porous thiourea-grafted-chitosan hydrogels: Synthesis and sorption of toxic metal ions from contaminated waters. Colloids Surfaces A 2020, 607, 125504. [Google Scholar] [CrossRef]
- Dzul Erosa, M.S.; Saucedo Medina, T.I.; Navarro Mendoza, R.; Avila Rodriguez, M.; Guibal, E. Cadmium sorption on chitosan sorbents: Kinetic and equilibrium studies. Hydrometallurgy 2001, 61, 157–167. [Google Scholar] [CrossRef]
- Vilela, P.; Matias, C.; Dalalibera, A.; Becegato, V.; Paulino, A. Polyacrylic Acid-Based And Chitosan-Based Hydrogels For Adsorption Of Cadmium: Equilibrium Isotherm, Kinetic and Thermodynamic Studies. J. Environ. Chem. Eng. 2019, 7, 103327. [Google Scholar] [CrossRef]
- Sharififard, H.; Shahraki, Z.; Rezvanpanah, E.; Rad, S. A Novel Natural Chitosan/Activated Carbon/Iron Bio-Nanocomposite: Sonochemical Synthesis, Characterization, And Application For Cadmium Removal In Batch And Continuous Adsorption Process. Bioresour. Technol. 2018, 270, 562–569. [Google Scholar] [CrossRef]
Samples | C (wt.%) | H (wt.%) | N (wt.%) | S (wt.%) | Residue (wt.%) |
---|---|---|---|---|---|
H-BSG | 48.1 | 6.1 | 3.6 | n.a.1 | 42.2 |
WB-BSG | 47.6 | 6.2 | 3.7 | n.a.1 | 42.5 |
Charge Density in µeq/g | |||
---|---|---|---|
Material | pH = 3 | pH = 5.5 | pH = 7 |
H-BSG | +0.64 | −4.20 | −7.67 |
WB-BSG | +0.54 | −1.09 | −2.46 |
Native wheat starch [17] | +0.21 | −0.82 (at pH = 5.0) | n.a. |
Native corn starch [17] | +0.10 | −0.28 (at pH = 5.0) | n.a. |
Chitosan | +5907 | +5833 | +3486 |
Kinetic Model | Fe2+/3+ | Mn2+ | ||
---|---|---|---|---|
Parameters | H-BSG | WB-BSG | H-BSG | WB-BSG |
Pseudo-First Order | ||||
qeq (mmol/g) | 0.100 | 0.101 | 0.040 | 0.057 |
K1 (g/mmol∙h) | 0.904 | 0.691 | 2.477 | 1.375 |
R2 | 0.90 | 0.83 | 0.53 | 0.47 |
Pseudo-Second Order | ||||
qeq (mmol/g) | 0.107 | 0.108 | 0.041 | 0.061 |
K2 (g/mmol∙h) | 138.448 | 115.854 | 530.518 | 186.752 |
R2 | 0.96 | 0.91 | 0.67 | 0.68 |
Intraparticle Diffusion | ||||
kWM(mmol/(g∙h1/2)) | 0.013 | 0.013 | 0.002 | 0.006 |
C (mmol/g) | 0.044 | 0.042 | 0.032 | 0.034 |
R2 | 0.65 | 0.72 | 0.75 | 0.94 |
Adsorption Parameters | Fe2+/3+ | Mn2+ | ||
---|---|---|---|---|
H-BSG | WB-BSG | H-BSG | WB-BSG | |
Langmuir | ||||
Qm,L (mmol/g) | 0.191 | 0.226 | 0.0674 | 0.101 |
KL (L/mmol) | 9.585 | 11.443 | 5.718 | 8.489 |
R2 | 0.884 | 0.869 | 0.964 | 0.951 |
ΔG° (kJ/mol) | −22.72 | −23.15 | −21.44 | −22.41 |
Freundlich | ||||
n | 3.494 | 3.852 | 2.805 | 2.937 |
KF (L/mmol)1/n | 0.153 | 0.185 | 0.0561 | 0.0909 |
R2 | 0.791 | 0.729 | 0.91 | 0.89 |
Elovich | ||||
Qm,E (mmol/g) | 0.0474 | 0.0514 | 0.0213 | 0.0301 |
KE | 103.734 | 166.266 | 38.598 | 63.712 |
R2 | 0.844 | 0.795 | 0.945 | 0.942 |
Sips | ||||
qsat,S (mmol/g) | 0.182 | 0.209 | 0.0678 | 0.104 |
KS (Ln/mmoln) | 22.145 | 786.822 | 5.471 | 6.793 |
n | 1.2798 | 2.6196 | 0.98428 | 0.93208 |
R2 | 0.888 | 0.894 | 0.964 | 0.952 |
Dubinin-Radushkevich | ||||
qsat,DR (mmol/g) | 0.376 | 0.417 | 0.163 | 0.244 |
β (10−9 mol2/J2) | 2.931 | 2.649 | 3.616 | 3.342 |
R2 | 0.824 | 0.773 | 0.934 | 0.927 |
Eads (kJ/mol) | 13.06 | 13.74 | 11.76 | 12.23 |
Adsorption; Parameters | Ni2+ | Cd2+ | ||
---|---|---|---|---|
H-BSG | WB-BSG | H-BSG | WB-BSG | |
Sips | ||||
Qsat.S (mmol/g) | 0.0476 | 0.104 | 0.0595 | 0.101 |
KS (Ln/mmoln) | 20.984 | 2.730 | 78.559 | 92.796 |
n | 1.098 | 0.849 | 1.280 | 1.262 |
R2 | 0.9670 | 0.979 | 0.969 | 0.979 |
Langmuir | ||||
Qsat.L (mmol/g) | 0.048 | 0.095 | 0.061 | 0.104 |
KL (L/mmol) | 15.889 | 4.017 | 29.228 | 34.638 |
ΔG° (kJ/mol) from KL | −23.97 | −20.56 | −25.48 | −25.90 |
R2 | 0.969 | 0.977 | 0.966 | 0.976 |
Freundlich | ||||
n | 4.777 | 2.930 | 4.238 | 4.263 |
KF (L/mmol)1/n | 0.045 | 0.073 | 0.058 | 0.100 |
R2 | 0.837 | 0.943 | 0.833 | 0.843 |
Elovich | ||||
Qm,E (mmol/g) | 0.009 | 0.030 | 0.012 | 0.020 |
KE | 644.423 | 30.079 | 751.719 | 963.399 |
R2 | 0.908 | 0.972 | 0.908 | 0.922 |
Dubinin–Radushkevich | ||||
Qm,DR (mmol/g) | 0.084 | 0.215 | 0.112 | 0.189 |
β (10−9 mol2/J2) | 2.087 | 3.632 | 2.165 | 2.110 |
R2 | 0.889 | 0.963 | 0.882 | 0.894 |
EAds,DR (kJ/mol) | 15.48 | 11.73 | 15.2 | 15.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco, K.H.; Höfgen, E.G.; Brunner, D.; Borchert, K.B.L.; Reis, B.; Steinbach, C.; Mayer, M.; Schwarz, S.; Glas, K.; Schwarz, D. Removal of Iron, Manganese, Cadmium, and Nickel Ions Using Brewers’ Spent Grain. Polysaccharides 2022, 3, 356-379. https://doi.org/10.3390/polysaccharides3020021
Carrasco KH, Höfgen EG, Brunner D, Borchert KBL, Reis B, Steinbach C, Mayer M, Schwarz S, Glas K, Schwarz D. Removal of Iron, Manganese, Cadmium, and Nickel Ions Using Brewers’ Spent Grain. Polysaccharides. 2022; 3(2):356-379. https://doi.org/10.3390/polysaccharides3020021
Chicago/Turabian StyleCarrasco, Karina Haro, Egon Götz Höfgen, Dominik Brunner, Konstantin B. L. Borchert, Berthold Reis, Christine Steinbach, Martin Mayer, Simona Schwarz, Karl Glas, and Dana Schwarz. 2022. "Removal of Iron, Manganese, Cadmium, and Nickel Ions Using Brewers’ Spent Grain" Polysaccharides 3, no. 2: 356-379. https://doi.org/10.3390/polysaccharides3020021
APA StyleCarrasco, K. H., Höfgen, E. G., Brunner, D., Borchert, K. B. L., Reis, B., Steinbach, C., Mayer, M., Schwarz, S., Glas, K., & Schwarz, D. (2022). Removal of Iron, Manganese, Cadmium, and Nickel Ions Using Brewers’ Spent Grain. Polysaccharides, 3(2), 356-379. https://doi.org/10.3390/polysaccharides3020021