Pilot Associations between Adverse Childhood Experiences, Executive Function, and Brain-Derived Neurotrophic Factor (BDNF) among Adults with Excess Adiposity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. ACES
2.2.2. Executive Function
2.2.3. Brain-Derived Neurotrophic Factor (BDNF)
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. ACEs and Executive Function
3.2. ACEs and BDNF
3.3. Executive Function and BDNF
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Center for Disease Control National Center for Health Statistics. Overweight and Obesity. 3 May 2017–11 December 2018. Available online: https://www.cdc.gov/nchs/fastats/obesity-overweight.htm (accessed on 1 January 2020).
- Danese, A.; Tan, M. Childhood maltreatment and obesity: Systematic review and meta-analysis. Mol. Psychiatry 2014, 19, 544. [Google Scholar] [CrossRef]
- Hemmingsson, E.; Johansson, K.; Reynisdottir, S. Effects of childhood abuse on adult obesity: A systematic review and meta-analysis. Obes. Rev. 2014, 15, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Merz, E.C.; Noble, K.G. Neural Development in Context: Differences in Neural Structure and Function Associated with Adverse Childhood Experiences. In The Wiley Handbook of Early Childhood Development Programs, Practices, and Policies; Wiley: Hoboken, NJ, USA, 2017; pp. 135–160. [Google Scholar]
- Shonkoff, J.P.; Garner, A.S.; Committee on Psychosocial Aspects of Child and Family Health; Committee on Early Childhood, Adoption, and Dependent Care; Section on Developmental and Behavioral Pediatrics. The lifelong effects of early childhood adversity and toxic stress. Pediatrics 2012, 129, e232–e246. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.A.; Spencer, S.J. Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behav. Immun. 2014, 42, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Kellar, D.; Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: Mechanisms and therapeutic approaches. Lancet Neurol. 2020, 19, 758–766. [Google Scholar] [CrossRef]
- Carvalho, J.C.N.; Donat, J.C.; Brunnet, A.E.; Silva, T.G.; Silva, G.R.; Kristensen, C. Cognitive, Neurobiological and Psychopathological Alterations Associated with Child Maltreatment: A Review of Systematic Reviews. Child Indic. Res. 2015, 9, 389–406. [Google Scholar] [CrossRef]
- Irigaray, T.; Pacheco, J.B.; Grassi-Oliveira, R.; Fonseca, R.P.; Leite, J.C.D.C.; Kristensen, C.H. Child maltreatment and later cognitive functioning: A systematic review. Psicol. Reflex. Crít. 2013, 26, 376–387. [Google Scholar] [CrossRef]
- Sylvestre, A.; Bussières, È.-L.; Bouchard, C. Language problems among abused and neglected children: A meta-analytic review. Child Maltreatment 2016, 21, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Toussaint, L.; Micoli, A.; Lynch, B. Obesity, putative biological mediators, and cognitive function in a national sample of children and adolescents. Prev. Med. 2021, 150, 106659. [Google Scholar] [CrossRef] [PubMed]
- Prickett, C.; Brennan, L.; Stolwyk, R. Examining the relationship between obesity and cognitive function: A systematic literature review. Obes. Res. Clin. Pract. 2015, 9, 93–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Woodward, M.; Batty, G.D.; Beiser, A.S.; Bell, S.; Berr, C.; Bjertness, E.; Chalmers, J.; Clarke, R.; Dartigues, J.-F.; et al. Association of anthropometry and weight change with risk of dementia and its major subtypes: A meta-analysis consisting 2.8 million adults with 57,294 cases of dementia. Obes. Rev. 2020, 21, e12989. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Hu, H.-Y.; Ou, Y.-N.; Shen, X.-N.; Xu, W.; Wang, Z.-T.; Dong, Q.; Tan, L.; Yu, J.-T. Association of body mass index with risk of cognitive impairment and dementia: A systematic review and meta-analysis of prospective studies. Neurosci. Biobehav. Rev. 2020, 115, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Şimşek, Y.; Yüksel, T.; Kaplan, I.; Uysal, C.; Alaca, R. Examining the levels of BDNF and cortisol in children and adolescent victims of sexual abuse—A preliminary study. Compr. Psychiatry 2015, 61, 23–27. [Google Scholar] [CrossRef] [PubMed]
- de Castro Bins, H.D.; Panichi, R.M.D.; Taborda, J.G.V.; Ferrão, Y.A. Childhood trauma, psychiatric disorders, and criminality in women: Associations with serum levels of brain-derived neurotrophic factor. Int. J. Law Psychiatry 2020, 71, 101574. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Rocha, V.; Kelly-Irving, M.; Stringhini, S.; Fraga, S. Adverse Childhood Events and Health Biomarkers: A Systematic Review. Front. Public Health 2021, 9, 649825. [Google Scholar] [CrossRef]
- Katuri, R.B.; Gaur, G.S.; Sahoo, J.P.; Bobby, Z.; Shanmugavel, K. Association of Circulating Brain-Derived Neurotrophic Factor with Cognition among Adult Obese Population. J. Obes. Metab. Syndr. 2021, 30, 163–172. [Google Scholar] [CrossRef] [PubMed]
- de Assis, G.G.; de Almondes, K.M. Exercise-dependent BDNF as a modulatory factor for the executive processing of individuals in course of cognitive decline. A systematic review. Front. Psychol. 2017, 8, 584. [Google Scholar] [CrossRef] [PubMed]
- Je, H.S.; Yang, F.; Ji, Y.; Nagappan, G.; Hempstead, B.L.; Lu, B. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc. Natl. Acad. Sci. USA 2012, 109, 15924–15929. [Google Scholar] [CrossRef]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef]
- Massague, J. The transforming growth factor-beta family. Annu. Rev. Cell Biol. 1990, 6, 597–641. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Sun, L.H.; Yang, W.; Cui, R.J.; Xu, S.B. The Role of BDNF in the Neuroimmune Axis Regulation of Mood Disorders. Front. Neurol. 2019, 10, 515. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ezquerro, J.D.; Rendón-Macías, M.E.; Zamora-Mendoza, G.; Serrano-Meneses, J.; Rosales-Rodríguez, B.; Escalante-Bautista, D.; Rodríguez-Cruz, M.; Sánchez-González, R.; Arellano-Pineda, Y.; López-Alarcón, M.; et al. Association Between the Brain-derived Neurotrophic Factor Val66Met Polymorphism and Overweight/Obesity in Pediatric Population. Arch. Med. Res. 2017, 48, 599–608. [Google Scholar] [CrossRef]
- Primo, D.; Izaola, O.; Lopez, J.J.; de Luis, D.A. Brain derived neurotrophic factor (BDNF) polymorphism rs 10,767,664 affects metabolic parameters after weight loss secondary to high fat hypocaloric diet with Mediterranean pattern. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1944–1953. [Google Scholar] [PubMed]
- Wisse, B.E.; Schwartz, M.W. The skinny on neurotrophins. Nat. Neurosci. 2003, 6, 655–656. [Google Scholar] [CrossRef]
- Department of Health & Human Services. BDNF Gene. Lister Hill National Center for Biomedical Communications; 2018. Available online: https://ghr.nlm.nih.gov/gene/BDNF#resources (accessed on 1 January 2020).
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef]
- Szuhany, K.L.; Bugatti, M.; Otto, M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 2015, 60, 56–64. [Google Scholar] [CrossRef]
- Goldfield, G.S.; Cameron, J.D.; Sigal, R.J.; Kenny, G.P.; Holcik, M.; Prud’Homme, D.; Guerin, E.; Alberga, A.S.; D’Angiulli, A.; Tremblay, M.S.; et al. Screen time is independently associated with serum brain-derived neurotrophic factor (BDNF) in youth with obesity. Appl. Physiol. Nutr. Metab. 2021, 46, 1083–1090. [Google Scholar] [CrossRef]
- Sandrini, L.; Di Minno, A.; Amadio, P.; Ieraci, A.; Tremoli, E.; Barbieri, S.S. Association between Obesity and Circulating Brain-Derived Neurotrophic Factor (BDNF) Levels: Systematic Review of Literature and Meta-Analysis. Int. J. Mol. Sci. 2018, 19, 2281. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, D.-C.; Tan, Y.-L.; Tan, S.-P.; Wang, Z.-R.; Yang, F.-D.; Xiu, M.-H.; Hui, L.; Lv, M.-H.; Zunta-Soares, G.B.; et al. Gender difference in association of cognition with BDNF in chronic schizophrenia. Psychoneuroendocrinology 2014, 48, 136–146. [Google Scholar] [CrossRef]
- Felitti, V.J. The relationship of adult health status to childhood abuse and household dysfunction. Am. J. Prev. Med. 1998, 14, 245–258. [Google Scholar] [CrossRef]
- Weintraub, S.; Dikmen, S.S.; Heaton, R.K.; Tulsky, D.S.; Zelazo, P.D.; Bauer, P.J.; Carlozzi, N.E.; Slotkin, J.; Blitz, D.; Wallner-Allen, K.; et al. Cognition assessment using the NIH Toolbox. Neurology 2013, 80, S54–S64. [Google Scholar] [CrossRef] [PubMed]
- Polacchini, A.; Metelli, G.; Francavilla, R.; Baj, G.; Florean, M.; Mascaretti, L.G.; Tongiorgi, E. A method for reproducible measurements of serum BDNF: Comparison of the performance of six commercial assays. Sci. Rep. 2015, 5, 17989. [Google Scholar] [CrossRef]
- Lavagnino, L.; Arnone, D.; Cao, B.; Soares, J.C.; Selvaraj, S. Inhibitory control in obesity and binge eating disorder: A systematic review and meta-analysis of neurocognitive and neuroimaging studies. Neurosci. Biobehav. Rev. 2016, 68, 714–726. [Google Scholar] [CrossRef]
- Hawkins, M.A.; Keirns, N.G.; Baraldi, A.N.; Layman, H.M.; Stout, M.E.; Smith, C.E.; Gunstad, J.; Hildebrand, D.A.; Vohs, K.D.; Lovallo, W.R. Baseline associations between biomarkers, cognitive function, and self-regulation indices in the Cognitive and Self-regulatory Mechanisms of Obesity Study (COSMOS). Obes. Sci. Pract. 2021, 7, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Je, H.S.; Yang, F.; Ji, Y.; Potluri, S.; Fu, X.-Q.; Luo, Z.-G.; Nagappan, G.; Chan, J.P.; Hempstead, B.; Son, Y.-J.; et al. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J. Neurosci. 2013, 33, 9957–9962. [Google Scholar] [CrossRef]
- Lu, B.; Pang, P.T.; Woo, N.H. The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 2005, 6, 603–614. [Google Scholar] [CrossRef]
- Qiao, H.; An, S.-C.; Xu, C.; Ma, X.-M. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res. 2017, 1663, 29–37. [Google Scholar] [CrossRef]
- Taliaz, D.; Loya, A.; Gersner, R.; Haramati, S.; Chen, A.; Zangen, A. Resilience to Chronic Stress Is Mediated by Hippocampal Brain-Derived Neurotrophic Factor. J. Neurosci. 2011, 31, 4475–4483. [Google Scholar] [CrossRef]
- Sartorius, A.; Hellweg, R.; Litzke, J.; Vogt, M.; Dormann, C.; Vollmayr, B.; Danker-Hopfe, H.; Gass, P. Correlations and Discrepancies between Serum and Brain Tissue Levels of Neurotrophins after Electroconvulsive Treatment in Rats. Pharmacopsychiatry 2009, 42, 270–276. [Google Scholar] [CrossRef]
Mean (SD), n (%) | |
---|---|
Demographics | |
Age (years) | 31.7 (7.933) |
Race/ethnicity | 26 (70.3%) white 11 (29.7%) Other/more than one race 34 (91.9%) Non-Hispanic 3 (8.1%) Hispanic/Latino/a |
Highest level of education | 12 (32.4%) Some college/associate’s degree 16 (43.2%) Bachelor’s degree 6 (16.2%) Master’s degree 3 (8.1%) Professional degree |
Mother’s highest level of education | 3 (8.1%) < High school graduate 9 (24.3%) High school graduate 9 (24.3%) Some college/associate’s degree 9 (24.3%) Bachelor’s degree 5 (13.5%) Master’s degree 2 (5.4%) Professional degree |
Clinical Biomarkers | |
Fasting glucose (mg/dL) | 97.0 (29.9) |
Systolic blood pressure (mmHg) | 110.9 (16.2) |
Diastolic blood pressure (mmHg) | 74.0 (12.7) |
C-reactive protein (CRP) | 5.2 (5.8) |
Interleukin-6 (IL-6) | 0.5 (0.4) |
Tumor necrosis factor-alpha (TNF-α) | 2.4 (1.6) |
Cortisol (mcg/L) | 10.4 (5.1) |
Key Study Variables | |
BMI (kg/m2) | 32.54 (6.3) |
Body fat (%) | 42.78 (5.5) |
Total ACE score (1–10) | 2.24 (1.98) |
Fluid cognition/executive function T-score | 49.38 (12.58) |
MatureBDNF pre-task (ng/mL) | 24.22 (5.08) |
ProBDNF pre-task (ng/mL) | 1.48 (4.37) |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
1. Age | - | ||||
2. BMI | 0.17 | - | |||
3. ACES | 0.17 | −0.09 | - | ||
4. Fluid cognition/executive function a | 0.15 | 0.15 | 0.09 | - | |
5. proBDNF | 0.17 | 0.07 | −0.22 † | 0.26 † | - |
6. Mature BDNF | 0.54 ** | 0.21 † | 0.26 † | 0.20 † | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsotsoros, C.E.; Stout, M.E.; Medlin, A.R.; Wideman, L.; Sanroman, D.V.; Tan, C.; Teague, T.K.; Hawkins, M.A.W. Pilot Associations between Adverse Childhood Experiences, Executive Function, and Brain-Derived Neurotrophic Factor (BDNF) among Adults with Excess Adiposity. Obesities 2022, 2, 276-284. https://doi.org/10.3390/obesities2030022
Tsotsoros CE, Stout ME, Medlin AR, Wideman L, Sanroman DV, Tan C, Teague TK, Hawkins MAW. Pilot Associations between Adverse Childhood Experiences, Executive Function, and Brain-Derived Neurotrophic Factor (BDNF) among Adults with Excess Adiposity. Obesities. 2022; 2(3):276-284. https://doi.org/10.3390/obesities2030022
Chicago/Turabian StyleTsotsoros, Cindy E., Madison E. Stout, Austin R. Medlin, Laurie Wideman, Dolores Vazquez Sanroman, Chibing Tan, T. Kent Teague, and Misty A. W. Hawkins. 2022. "Pilot Associations between Adverse Childhood Experiences, Executive Function, and Brain-Derived Neurotrophic Factor (BDNF) among Adults with Excess Adiposity" Obesities 2, no. 3: 276-284. https://doi.org/10.3390/obesities2030022
APA StyleTsotsoros, C. E., Stout, M. E., Medlin, A. R., Wideman, L., Sanroman, D. V., Tan, C., Teague, T. K., & Hawkins, M. A. W. (2022). Pilot Associations between Adverse Childhood Experiences, Executive Function, and Brain-Derived Neurotrophic Factor (BDNF) among Adults with Excess Adiposity. Obesities, 2(3), 276-284. https://doi.org/10.3390/obesities2030022