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Abstract: Adverse childhood experiences (ACEs) may predict markers of neurocognitive perfor-
mance (i.e., executive function; EF) and brain health/plasticity (i.e., brain-derived neurotrophic
factor; BDNF). This pilot examined: (1) ACES history and current EF performance, (2) ACEs history
and current BDNF levels, and (3) current EF performance and BDNF levels. We hypothesized
that higher ACEs would be associated with lower EF scores and that these patterns would be
associated with serum BDNF levels. Given the pilot nature of the study, emphasis was placed
on effect size vs. significance. Participants were 37 middle-aged women. Higher ACEs were not
directly associated with EF scores (β = 0.08, p = 0.635) but showed potentially meaningful negative
beta coefficients with proBDNF levels (β = −0.22, p = 0.200) and positive coefficients with mature
BDNF (β = 0.28, p = 0.094). EF scores and proBDNF showed a positive relationship that did not
reach significance (r = 0.28, p = 0.100) similar to EF scores and mature BDNF (r = 0.14, p = 0.406). In
a modest pilot sample of middle-aged women with excess weight, higher ACEs were potentially
associated with lower proBDNF and higher mature BDNF. Larger follow-up studies are warranted
given the size of the detected coefficients and theoretical implications of ACEs and obesity as
neurocognitively toxic for brain health and performance.

Keywords: cognitive function; obesity; overweight; adverse childhood experiences; early life adversity;
neurotrophins; neurotrophic factor

1. Introduction

Adverse childhood experiences (ACEs) and obesity are two interrelated and highly
prevalent predictors of negative biopsychosocial health outcomes, including relative neu-
rocognitive deficits. ACEs impact an estimated 64% of adults (≥1 ACE) and include
traumatic events such as abuse and neglect. Like ACEs, excess adiposity is also widespread
among adults, with 72% of adults aged 20 or older qualifying as overweight or obese [1].
Meta-analyses indicate that persons with childhood maltreatment are 1.4 times more likely
to develop obesity [2] and that the risk follows a dose-response relationship [3]. ACEs and
obesity also show a dose-response effect on health, such that the risk of multiple adverse
outcomes increases in a graded fashion as a person’s ACE score and/or obesity levels
increases. Such increases may result in neurocognitive injury via various sources, including
cognitive deprivation (e.g., in the case of neglect) [4], dysregulation of the body’s stress
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systems (e.g., hypothalamic-pituitary-adrenal axis alternations), and cardiometabolic and
inflammatory biologic changes [5–7]. More recent evidence has linked ACEs and obesity to
reduced cortical volume and differences in neural activation of brain regions associated
with language, memory, socio-emotional processing, and executive attention and control, as
well as neurological comorbidities, including mild cognitive impairment and neurodegen-
erative disease [4,8–14]. Thus, a growing evidence base identifies neurocognitive function
and associated neural health as key factors in the adverse health outcomes associated with
ACEs and obesity.

ACEs and obesity are linked to one another, and both appear to impact brain and
neurocognitive health independently. Accordingly, indicators of neurocognitive function
and brain health (e.g., neuropsychological performance, neurotrophins, white matter
integrity, etc.) should be examined in an effort to understand the implications of ACEs
history on adult obesity status. One such neurocognitive domain that appears to be highly
impactful for obesity onset and progression is executive function (EF), a performance
domain of fluid cognition. EF is a subdomain of neurocognition that typically includes
the following cognitive abilities: inhibitory control, cognitive flexibility, and working
memory. These EF skills are essential for the planning, organizing, problem-solving,
initiation, self-monitoring, and inhibition behaviors critical for implementing complex
goal-directed behaviors, such as obesity prevention or treatment in an obesogenic environ-
ment. Unfortunately, the biologic substrates and candidate mechanisms that characterize
high ACEs and fluid cognition or lower EF in obesity are unclear. One possible candidate
is neurotrophic factors, such as brain-derived neurotrophic factors (BDNF) [15–18].

BDNF is part of the family of growth factors that also includes the nerve growth
factor, neurotrophin-3, and neurotrophin-4/5 [19]. BDNF is synthesized in the cell as
a precursor molecule pro-BDNF and later converted into mature BDNF [20]. Indeed,
BDNF is the only neurotrophin secreted in an activity-dependent manner which has been
shown to be critical for hippocampus-dependent memory in humans [21] and potentially
ET. Both BNDF isoforms are biologically active, and some speculation is around their
different functional role; therefore, the need to identify which of the BDNF isoforms are
related to the ET in the sample of our study [22,23]. BDNF has a long history of being
associated with adverse mental health conditions, such as depression. This factor [24]
is of most interest to the current study given that its serum/plasma levels, as well as
certain BDNF genetic variants (e.g., Val66Met polymorphism rs6265 [25], T-allele carriers
for variant rs10767664 [26]), have also been implicated in hippocampal size, memory
recovery [21] and the hypothalamic melanocortin pathways that control body weight and
response to weight loss interventions and, thus, BDNF likely contribute to functions that
control eating, drinking, body weight, and changes to insulin parameters [26–29]. BDNF
also changes in response to exercise and/or energy expenditure [30], and lower serum
levels have been linked to sedentary behaviors like higher television screen time [31].
In addition to its links with metabolic/energy indicators, BDNF levels may also be
useful as indicators of cognitive impairment in young, otherwise healthy adults with
obesity [18]. Thus, BDNF may be critical to obesity and its behavioral concomitants via
neurocognitive pathways—though it should be noted that null findings for BDNF-obesity
relationships have also been reported in the literature [32]. These patterns—if present—
may be especially important given previous evidence that higher ACEs have also been
linked to lower levels of BDNF in various samples [15–17]. It seems possible that the
cognitive and brain alternations observed in individuals with ACEs, obesity, or both may
be linked to disruptions in BDNF. However, the relationships between ACEs history and
markers of cognitive performance and brain health in individuals with excess weight
have not been widely examined. Accordingly, the present study will clarify and advance
the science of ACEs and obesity by simultaneously examining the relationships between
(1) ACEs history and current EF, (2) ACEs history and current BDNF isoform, and (3) EF
and BDNF in a sample with overweight/obesity. This pilot will test if the adverse effects
of ACEs are detectable using EF performance and a neurotrophic marker in a preliminary
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sample of women with excess weight. Such results may point to valuable targets in
the shared neurobiological pathways by which ACEs contribute to future obesity. We
hypothesized that higher ACEs would be meaningfully associated with lower EF scores.
We also hypothesized that higher ACEs and lower EF scores would be meaningfully
associated with serum BNDF levels but made no a priori hypotheses about the direction
of the associations, given mixed findings in the literature.

2. Materials and Methods
2.1. Participants

Participants (n = 37) were English-speaking women with overweight or obesity
(BMI ≥ 25) with no significant medical or psychiatric comorbidities who were seeking
weight loss treatment. Exclusion criteria included: (1) not using weight loss medications or
participating in a weight loss program, (2) not pregnant or breastfeeding, (3) no history of
bariatric surgery, (4) not participated in vigorous exercise in the past 24 h, and (5) not taken
any anti-inflammatory medications in the past 24 h. These criteria were included given
that these behaviors or conditions may be associated with cognitive function or BDNF
levels [33]. See Table 1 for participant characteristics. Basic clinical variables are included in
Table 1 as indicators of the health of the sample: fasting glucose, blood pressure, C-reactive
protein, interleukin-6, tumor necrosis factor-alpha, and cortisol.

Table 1. Participant Demographics, Clinically Relevant Biomarkers, and Key Study Variables (n = 37).

Mean (SD), n (%)

Demographics
Age (years) 31.7 (7.933)

Race/ethnicity

26 (70.3%) white
11 (29.7%) Other/more than one race
34 (91.9%) Non-Hispanic
3 (8.1%) Hispanic/Latino/a

Highest level of education

12 (32.4%) Some college/associate’s degree
16 (43.2%) Bachelor’s degree
6 (16.2%) Master’s degree
3 (8.1%) Professional degree

Mother’s highest level of education

3 (8.1%) < High school graduate
9 (24.3%) High school graduate
9 (24.3%) Some college/associate’s degree
9 (24.3%) Bachelor’s degree
5 (13.5%) Master’s degree
2 (5.4%) Professional degree

Clinical Biomarkers
Fasting glucose (mg/dL) 97.0 (29.9)
Systolic blood pressure (mmHg) 110.9 (16.2)
Diastolic blood pressure (mmHg) 74.0 (12.7)
C-reactive protein (CRP) 5.2 (5.8)
Interleukin-6 (IL-6) 0.5 (0.4)
Tumor necrosis factor-alpha (TNF-α) 2.4 (1.6)
Cortisol (mcg/L) 10.4 (5.1)
Key Study Variables
BMI (kg/m2) 32.54 (6.3)
Body fat (%) 42.78 (5.5)
Total ACE score (1–10) 2.24 (1.98)
Fluid cognition/executive function T-score 49.38 (12.58)
MatureBDNF pre-task (ng/mL) 24.22 (5.08)
ProBDNF pre-task (ng/mL) 1.48 (4.37)
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2.2. Measures
2.2.1. ACES

Participants completed the ACES checklist, which included 10 different adverse events
that may have occurred before the age of 18 [34]. Adverse events include abuse (physical,
emotional, and sexual), neglect (physical and emotional), and household dysfunction,
which includes having a household member with a substance use or psychological disorder,
having a household member incarcerated, having a mother treated violently, and having
divorced parents.

2.2.2. Executive Function

Participants completed a portion of the NIH Toolbox-Cognition Battery (NIHTB-CB) [35].
This NIHTB-CB is a neuropsychological battery delivered via iPad that assesses multiple
cognitive domains, including executive function, attention, speed, and/or fluid cognition
subscales. The NIHTB-CB was created by the NIH and is normed for participants aged 3 to
85 years and was chosen because it is valid, time- and cost-efficient, and allows researchers
to compare results across existing NIHTB-CB studies. All tests in the battery have been
validated against gold-standard instruments and normed for use in the age range in the
current study [35]. The specific tests chosen for the present investigation were Flanker
Inhibitory Control and Attention, Dimensional Change Card Sort, List Sorting Working
Memory Test, Pattern Comparison Processing Speed Test, and Picture Sequence Memory.
This battery takes approximately 25 min to administer. A fluid cognition T-score composite
(M = 50, SD = 10) was generated by compiling scores from the aforementioned tests and
correcting for age and gender.

2.2.3. Brain-Derived Neurotrophic Factor (BDNF)

Participants provided a fasted blood sample when they arrived in the lab for their
baseline assessment. Whole blood was collected via venipuncture into vacutainer tubes
to obtain serum per tube manufacturer instructions. Serum was aliquoted and stored
in a −80 ◦C freezer until time of assay. Serum levels of pro- and mature peripheral
BDNF (proBDNF and mBDNF, respectively) were analyzed using Biosensis (catalog#
BEK2241) [36] human ELISA kits. Cortisol was analyzed using human ELISA kits from
R&D Systems. BDNF and cortisol plates were read on a Bio-Rad iMark plate reader. Serum
samples were analyzed for levels of CRP, TNFα, and IL-6 using Meso Scale Discovery
(MSD) V-PLEX kits and a MESO QuickPlex SQ 120 instrument. Samples were analyzed in
duplicate according to the manufacturer’s instructions.

2.3. Procedure

Participants were recruited locally through the university and community by on-
line/phone screenings. Eligible participants interested in enrolling provided written in-
formed consent. All procedures were approved by the university’s IRB and adhered to
APA ethical guidelines. Demographic variables, ACEs, and eligibility criteria (e.g., medical
and psychiatric comorbidities, BMI) were assessed via online surveys. At the start of the
baseline assessment, a trained phlebotomist took a fasted blood draw between approxi-
mately 8 and 8:30 am. Then, neurocognitive testing was administered by trained research
staff. Participants received USD 60 reimbursement for completing the visit.

2.4. Data Analysis

First, bivariate associations were run for each key study variable and demographic
factors. Then, EF variables (i.e., fluid cognition composite) were regressed on ACES. Next,
BDNF variables (i.e., proBDNF and mBDNF) were regressed on ACES. Finally, the BDNF
variables were regressed on EF variables. Analyses were run using SPSS (Version 26.0,
IBM Corp, 2017) and adjusted for BMI, given that our cognitive composite was already
corrected for age and gender.
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3. Results

Bivariate correlations between all key study variables are presented in Table 2. The
variables that were most strongly associated were age and mBDNF, with higher age sig-
nificantly associated with higher mBDNF level at a strong effect size magnitude (r = 0.54,
p = 0.001). The next strongest associations were the small-to-medium effects observed
between both BDNF variables and ACEs (rs = −0.22 to 0.26) or the EF fluid cognition
composite (rs = 0.20 to 0.26). BMI also showed a small-to-medium association with mBDNF
(r = 0.21).

Table 2. Bivariate Correlations of Key Study Variables.

1 2 3 4 5

1. Age -
2. BMI 0.17 -
3. ACES 0.17 −0.09 -
4. Fluid cognition/executive function a 0.15 0.15 0.09 -
5. proBDNF 0.17 0.07 −0.22 † 0.26 † -
6. Mature BDNF 0.54 ** 0.21 † 0.26 † 0.20 † 0.19

Note. BMI = body mass index; ACES = Adverse Childhood Experiences Scale; ** p < 0.001. a Fluid cogni-
tion/executive function is a composite variable of Flanker Inhibitory Control and Attention, Dimensional Change
Card Sort, List Sorting Working Memory Test, Pattern Comparison Processing Speed Test, and Picture Sequence
Memory. † Meaningful effect size ≥ 0.20 (small-to-medium).

3.1. ACEs and Executive Function

Regressions adjusting for BMI showed that higher levels of ACEs were not directly
associated with overall EF fluid cognition composite scores (β = 0.08, p = 0.635), suggesting
that the effect size between adversity in childhood and adult EF scores was not substantial
in the present pilot sample with excess adiposity.

3.2. ACEs and BDNF

ACES did show a meaningful negative effect with non-significant but trending
p-values for proBDNF levels (β = −0.22, p = 0.200) and a meaningful positive effect with
similar significance levels for mBDNF levels (β = 0.28, p = 0.094) adjusting for BMI. Figure 1
shows the levels of the pro- and mature BDNF across the different levels of ACE exposure
(low = 0, medium = 1–2 ACEs, and high = 3+ ACEs) to show a potential dose-response
pattern for these variables. These findings suggest that adversity in childhood may have
small-to-moderate and opposing effects on two measures of brain health in adulthood in
the present pilot sample over and above any effects of weight status. Such associations
might reach significance in a well-powered sample.Obesities 2022, 3, FOR PEER REVIEW 6 
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3.3. Executive Function and BDNF

EF fluid cognition composite scores showed a meaningful positive coefficient that
did not reach significance with proBDNF (β = 0.28, p = 0.100). EF fluid cognition scores
showed a smaller positive coefficient that did not reach significance with mBDNF (β = 0.14,
p = 0.406). Again, the magnitude of these effects for proBDNF, especially, could suggest that
they may also be detectable and reach significance in a larger sample, suggesting additional
study is needed.

4. Discussion

The present study advanced the science of ACEs and obesity by simultaneously
examining the relationships between ACEs, EF, and BDNF in a pilot sample of women with
excess weight and adjusting for weight status. Our first hypothesis that higher ACEs would
be associated with poorer EF scores was not supported, as the effect sizes between these
variables were not substantive in this sample. This lack of association contrasts with prior
literature, showing that higher ACEs are linked to poorer function on EF indices [37,38]
and could be due to the restricted range in the EF variable in the present sample and/or
the fact that the entire sample exhibited excess adiposity. Specifically, prior work from
our laboratory and others has shown that samples with obesity have relatively lower EF
performance, especially in the domain of inhibitory control [37,38].

Our hypothesis that higher ACEs would be associated with BNDF levels was
supported—in a nuanced pattern—depending on whether examining mature BDNF or its
precursor proBDNF. The mature form of BDNF is synthesized from a precursor protein
(i.e., proBDNF), which serves different functions than its mature counterpart [20,39,40].
Notably, in this pilot sample, higher ACE levels exhibited negative associations with
proBDNF levels but positive associations with mature BDNF, possibly in a dose-response
manner for both. This pattern is consistent with previous work in animal models of
depression or chronic social defeat. In said animal models, the expression of proBDNF
was reduced, but that of mature BDNF was enhanced in brain regions in the reward
circuit, such as the nucleus accumbens and amygdala [41]. These seemingly opposing
effects make sense in light of the “yin-yang hypothesis” in which BDNF and its precursor
cause opposite biological cascades [40].

Specifically, proBDNF is known for its role in synaptic pruning, apoptosis, and promo-
tion of long-term depression (LTD) (i.e., a decrease in synaptic strength), whereas mature
BDNF stabilizes neural terminals, signals the receptor tyrosine kinase TrkB, and is essential
for early phase long-term potentiation (LTP) (i.e., an increase in synaptic strength) [20].
Thus, our results, if replicated in larger samples, could suggest that individuals with greater
adversity in early life might experience higher levels of BDNF as a response to chronic
stress. BDNF expression plays a critical role in resilience to chronic stress and is highly
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dependent on corticosterone secretion [42]. Thus, our study’s “see-saw” tendency of pro-
and matureBDNF levels can represent an adaptative response to previous exposure to
ACES. Such a pattern in the context of obesity may help elucidate parallel alterations
in reward pathways that contribute to an inability to resist palatable foods and/or be
hypersensitive to their appetitive properties (e.g., “brake” dysfunction in the context of
a sensitive “accelerator”). It should be noted that these BDNF patterns observed in the
reward circuit may not be the same as those found for hippocampal or prefrontal cortex
brain regions, in which BDNF has been found to be consistently lower [43], and that the
present pilot study cannot disentangle whether the pro- and mature BDNF level observed
are driven by alternations in specific brain regions, as the study variables were derived
from peripheral serum levels of pro- and mature BDNF.

Notably, proBDNF also showed a potentially small, positive relationship with per-
formance on neurocognitive tests of fluid cognition. This finding is consistent with those
of Katuri et al. (2021), who also found that lower serum BDNF levels were related to
multiple markers of greater cognitive decline in a sample with obesity, including several
markers of sustained attention, reaction time, and working memory [18]. Our finding is
also interesting in that fluid cognition (and executive function) encapsulates the ability
to inhibit so that higher scores can indicate greater inhibitory control. If this finding is
replicated and is shown to be significant in a larger sample, it could indicate that the ability
to perform well on tasks of inhibition might be paralleled by the brain’s levels of a peptide
that has a role in inhibiting synaptic strength.

Although the current brief report and pilot study illuminates some interesting potential
pathways linking ACEs with markers of brain health and plasticity in a sample with excess
weight, their preliminary and pilot nature requires additional, more extensive studies to
clarify the role of BDNF in early life adversity and obesity. Additionally, our study is
primarily middle-aged women with excess adiposity, so these patterns may not generalize
to younger, older, or other-gendered or weight status populations. Lastly, it would be
helpful to prospectively collect data on these topics to clarify the role of weight change
on observed associations. Although we controlled for BMI in the present analyses, being
able to track weight fluctuations over time and their relations to ACEs history and BDNF
expression will be a critical next step.

In conclusion, the current pilot results encourage the following specific recommen-
dations for future work. First, larger follow-up studies in more powered and diverse
samples over time are warranted to explore the relationship between ACEs, neurocog-
nitive performance indicators, and neurotrophic levels. Second, the size and opposing
directions of the detected coefficients for mature BDNF versus its precursor also call for
a nuanced analysis of this biomarker of brain health and plasticity. Failure to examine
mature vs. proBDNF levels may help explain inconsistencies in the literature. Third, the
potential differential patterns of BDNF response across hippocampal versus reward regions
need further explication in the context of weight status. If replicated and extended, the
current implications could be that ACEs are neurocognitively toxic for brain health and
performance in a manner associated with obesity.
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