Bridging Innovation and Application: Advancing Artificial Intelligence in Engineering Systems
1. Introduction
2. Harnessing Brainwaves: Deep Learning for EEG-Based Motor Control
3. Implications for Diabetic Care and Future Research Directions
4. Advanced Cotton Boll Detection: A Breakthrough in Agricultural Technology
5. Exploring a New Approach: PSO Dynamic Model vs. HOMER for Hybrid PV–Hydrogen Energy Systems
6. Insights into Advanced Technologies and Machine Learning Solutions for Passenger Counting in Public Transport
7. The Promise of MTEC for Real-World Power System Applications
8. Revolutionizing Pet Emotion Recognition: A Groundbreaking Deep Learning Study
9. Branching-Out Solution Algorithms for Fault Detection in Photovoltaic Systems: A Critical Analysis
10. Harnessing Digital Twins and AI Decision Models to Revolutionize Cost Modeling in Off-Site Construction
11. Explore Advanced Control Techniques for PMSM: Neural Network Model and Robust UKF Estimation
12. Cutting-Edge AI Models to Predict Fouling Resistance in Heat Exchangers
Conflicts of Interest
References
- Blinowska, K.; Durka, P. Electroencephalography (eeg). Wiley Encycl. Biomed. Eng. 2006, 10, 9780471740360. [Google Scholar]
- Niedermeyer, E.; da Silva, F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Limchesing, T.J.C.; Vidad, A.J.P.; Munsayac, F.E.T.; Bugtai, N.T.; Baldovino, R.G. Application of EEG Device and BCI for the Brain-controlled Automated Wheelchair. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines,, 29–31 December 2021; pp. 1–4. [Google Scholar]
- OpenBCI Community. Publicly Available EEG Datasets. Available online: https://openbci.com/community/publicly-available-eeg-datasets/ (accessed on 5 May 2025).
- Angelakis, D.; Ventouras, E.C.; Kostopoulos, S.; Asvestas, P. Comparative analysis of deep learning models for optimal EEG-based real-time servo motor control. Eng 2024, 5, 1708–1736. [Google Scholar] [CrossRef]
- Ahourag, A.; El Moutaouakil, K.; Cheggour, M.; Chellak, S.; Baizri, H. Multiobjective optimization to optimal moroccan diet using genetic algorithm. Int. J. Eng. Model. 2023, 36, 67–79. [Google Scholar] [CrossRef]
- He, F.; Chen, C.; Li, F.; Qi, Y.; Lin, X.; Liang, P.; Ren, M.; Yan, L. An optimal glycemic load range is better for reducing obesity and diabetes risk among middle-aged and elderly adults. Nutr. Metab. 2021, 18, 31. [Google Scholar] [CrossRef] [PubMed]
- Deepa, S.; Alli, A.; Sheetac; Gokila, S. Machine learning regression model for material synthesis prices prediction in agriculture. Mater. Today Proc. 2023, 81, 989–993. [Google Scholar] [CrossRef]
- Dube, N.; Bryant, B.; Sari-Sarraf, H.; Ritchie, G.L. Cotton boll distribution and yield estimation using three-dimensional point cloud data. Agron. J. 2020, 112, 4976–4989. [Google Scholar] [CrossRef]
- Bahgaat, N.K. Estimation of renewable energy systems for mobile network based on real measurements using HOMER software in Egypt. Sci. Rep. 2023, 13, 16713. [Google Scholar] [CrossRef]
- Akhtari, M.R.; Baneshi, M. Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer. Energy Convers. Manag. 2019, 188, 131–141. [Google Scholar] [CrossRef]
- Ammari, C.; Belatrache, D.; Touhami, B.; Makhloufi, S. Sizing, optimization, control and energy management of hybrid renewable energy system—A review. Energy Built Environ. 2022, 3, 399–411. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, D.W.; Baek, N.C.; Kwon, H.M.; Lee, C.J. Preliminary determination of optimal size for renewable energy resources in buildings using RETScreen. Energy 2012, 47, 83–96. [Google Scholar] [CrossRef]
- Singh, S.; Chauhan, P.; Singh, N. Capacity optimization of grid connected solar/fuel cell energy system using hybrid ABC-PSO algorithm. Int. J. Hydrogen Energy 2020, 45, 10070–10088. [Google Scholar] [CrossRef]
- Radovan, A.; Mršić, L.; Đambić, G.; Mihaljević, B. A review of passenger counting in public transport concepts with solution proposal based on image processing and machine learning. Eng 2024, 5, 3284–3315. [Google Scholar] [CrossRef]
- Nasir, A.; Gharib, N.; Jaafar, H. Automatic passenger counting system using image processing based on skin colour detection approach. In Proceedings of the 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), Kuching, Malaysia, 15–17 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Thomas, J.B.; Chaudhari, S.G.; Verma, N.K. CNN-based transformer model for fault detection in power system networks. IEEE Trans. Instrum. Meas. 2023, 72, 2504210. [Google Scholar] [CrossRef]
- Dalvi, C.; Rathod, M.; Patil, S.; Gite, S.; Kotecha, K. A survey of ai-based facial emotion recognition: Features, ml & dl techniques, age-wise datasets and future directions. IEEE Access 2021, 9, 165806–165840. [Google Scholar]
- Ferres, K.; Schloesser, T.; Gloor, P.A. Predicting dog emotions based on posture analysis using deeplabcut. Future Internet 2022, 14, 97. [Google Scholar] [CrossRef]
- Feighelstein, M.; Shimshoni, I.; Finka, L.R.; Luna, S.P.; Mills, D.S.; Zamansky, A. Automated recognition of pain in cats. Sci. Rep. 2022, 12, 9575. [Google Scholar] [CrossRef]
- Jamil, W.J.; Rahman, H.A.; Shaari, S.; Salam, Z. Performance degradation of photovoltaic power system: Review on mitigation methods. Renew. Sustain. Energy Rev. 2017, 67, 876–891. [Google Scholar] [CrossRef]
- Hassan, I.; Alhamrouni, I.; Younes, Z.; Azhan, N.H.; Mekhilef, S.; Seyedmahmoudian, M.; Stojcevski, A. Explainable deep learning model for grid-connected photovoltaic system performance assessment for improving system relaibility. IEEE Access 2024, 12, 120729–120746. [Google Scholar] [CrossRef]
- Alimi, O.A.; Meyer, E.L.; Olayiwola, O.I. Solar photovoltaic modules’ performance reliability and degradation analysis—A review. Energies 2022, 15, 5964. [Google Scholar] [CrossRef]
- Al Mahdi, H.; Leahy, P.G.; Alghoul, M.; Morrison, A.P. A review of photovoltaic module failure and degradation mechanisms: Causes and detection techniques. Solar 2024, 4, 43–82. [Google Scholar] [CrossRef]
- Vilas-Boas, J.L.; Rodrigues, J.J.; Alberti, A.M. Convergence of Distributed Ledger Technologies with Digital Twins, IoT, and AI for fresh food logistics: Challenges and opportunities. J. Ind. Inf. Integr. 2023, 31, 100393. [Google Scholar] [CrossRef]
- Kabir, M.R.; Halder, D.; Ray, S. Digital Twins for IoT-Driven Energy Systems: A Survey. IEEE Access 2024, 12, 177123–177143. [Google Scholar] [CrossRef]
- Huang, Z.; Shen, Y.; Li, J.; Fey, M.; Brecher, C. A survey on AI-driven digital twins in industry 4.0: Smart manufacturing and advanced robotics. Sensors 2021, 21, 6340. [Google Scholar] [CrossRef] [PubMed]
- Yitmen, I.; Almusaed, A.; Hussein, M.; Almssad, A. AI-Driven Digital Twins for Enhancing Indoor Environmental Quality and Energy Efficiency in Smart Building Systems. Buildings 2025, 15, 1030. [Google Scholar] [CrossRef]
- Leng, J.; Wang, D.; Shen, W.; Li, X.; Liu, Q.; Chen, X. Digital twins-based smart manufacturing system design in Industry 4.0: A review. J. Manuf. Syst. 2021, 60, 119–137. [Google Scholar] [CrossRef]
- Velarde-Gomez, S.; Giraldo, E. Real-time identification and nonlinear control of a permanent-magnet synchronous motor based on a physics-informed neural network and exact feedback linearization. Information 2024, 15, 577. [Google Scholar] [CrossRef]
- Mohanty, D.K. Application of neural network model for predicting fouling behaviour of a shell and tube heat exchanger. Int. J. Ind. Syst. Eng. 2017, 26, 228–246. [Google Scholar] [CrossRef]
- Ilyunin, O.; Bezsonov, O.; Rudenko, S.; Serdiuk, N.; Udovenko, S.; Kapustenko, P.; Plankovskyy, S.; Arsenyeva, O. The neural network approach for estimation of heat transfer coefficient in heat exchangers considering the fouling formation dynamic. Therm. Sci. Eng. Prog. 2024, 51, 102615. [Google Scholar] [CrossRef]
- Jradi, R.; Marvillet, C.; Jeday, M.R. Application of an artificial neural networks method for the prediction of the tube-side fouling resistance in a shell-and-tube heat exchanger. Fluid Dyn. Mater. Process 2022, 18, 1511–1519. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Krishnaswamy, H.; Thanikodi, S.; Sundaresan, D.; Venkatraman, V. Support vector machine for modelling and simulation of heat exchangers. Therm. Sci. 2020, 24, 499–503. [Google Scholar] [CrossRef]
- El-Said, E.M.; Abd Elaziz, M.; Elsheikh, A.H. Machine learning algorithms for improving the prediction of air injection effect on the thermohydraulic performance of shell and tube heat exchanger. Appl. Therm. Eng. 2021, 185, 116471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aceves-Fernández, M.A.; Odry, A.; Álvarez-Alvarado, J.M.; Aviles, M.; Rodriguez-Resendiz, J. Bridging Innovation and Application: Advancing Artificial Intelligence in Engineering Systems. Eng 2025, 6, 202. https://doi.org/10.3390/eng6080202
Aceves-Fernández MA, Odry A, Álvarez-Alvarado JM, Aviles M, Rodriguez-Resendiz J. Bridging Innovation and Application: Advancing Artificial Intelligence in Engineering Systems. Eng. 2025; 6(8):202. https://doi.org/10.3390/eng6080202
Chicago/Turabian StyleAceves-Fernández, Marco Antonio, Akos Odry, José M. Álvarez-Alvarado, Marcos Aviles, and Juvenal Rodriguez-Resendiz. 2025. "Bridging Innovation and Application: Advancing Artificial Intelligence in Engineering Systems" Eng 6, no. 8: 202. https://doi.org/10.3390/eng6080202
APA StyleAceves-Fernández, M. A., Odry, A., Álvarez-Alvarado, J. M., Aviles, M., & Rodriguez-Resendiz, J. (2025). Bridging Innovation and Application: Advancing Artificial Intelligence in Engineering Systems. Eng, 6(8), 202. https://doi.org/10.3390/eng6080202