Biodiesel Stability Enhancement Through Catalytic Transfer Hydrogenation Using Glycerol as Hydrogen Donor
Abstract
:1. Introduction
Compounds | Formula | ∆Gf° (kJ/mol) |
---|---|---|
Methyl linolenate | C17H29COOCH3 | 115.84 |
Methyl linoleate | C17H31COOCH3 | 35.62 |
Methyl oleate | C17H33COOCH3 | −44.60 |
Methyl stearate | C17H35COOCH3 | −124.82 |
Glycerol | C3H5(OH)3 | −438.52 |
DHA | CH2OHCOCH2OH | −428.18 |
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Catalyst Preparation
2.2.2. Catalytic Transfer Hydrogenation
2.2.3. Product Analysis
3. Results and Discussion
3.1. Catalyst Performance Results
3.1.1. Effect of Catalyst Species
3.1.2. Effect of Intermediate Solvent
3.1.3. Effect of Glycerol Quantity
3.1.4. Effect of Different Glycerol Form as Hydrogen Source
3.1.5. Comparative Study with Previous Findings
3.2. Theoretical Reaction Mechanism of Catalytic Transfer Hydrogenation
3.3. Future Research Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CN | Nitrogen-doped carbon |
CTAB | Cetyl-trimethyl-ammonium bromide |
CTH | Catalytic transfer hydrogenation |
DHA | Dihydroxyacetone |
DMF | Dimethylformamide |
FAME | Fatty acid methyl ester |
FAO | Food and Agriculture Organization |
GVL | γ-valerolactone |
IV | Iodine value |
NADH | Reduced nicotinamide-adenine dinucleotide |
NAD+ | Oxidized nicotinamide-adenine dinucleotide |
OB | Organobentonite |
OECD | Organisation for Economic Co-operation and Development |
OMC | Ordered mesoporous carbon |
OS | Oxidative stability |
PV | Peroxide value |
SBA-15 | Santa Barbara Amorphous-15 |
References
- Li, H.; Liu, W.; Han, Z.; Bingwa, N.; Wang, T.; Li, H.; Wang, Y.; Guo, F.; Ma, X.; Sun, C. Microwave absorbing alkaline catalyst for biodiesel production via MIL-100(Fe): Catalytic optimization, characterizations, kinetics, and distillation simulation. Chem. Eng. J. 2024, 495, 153559. [Google Scholar] [CrossRef]
- Pradana, Y.S.; Sadewo, B.R.; Haryanto, S.A.; Sudibyo, H. Selection of oil extraction process from Chlorella species of microalgae by using multi-criteria decision analysis technique for biodiesel production. Open Chem. 2021, 19, 1029–1042. [Google Scholar] [CrossRef]
- Pranta, M.H.; Cho, H.M. A comprehensive review of the evolution of biodiesel production technologies. Energy Convers. Manag. 2025, 328, 119623. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD); Food and Agriculture Organization (FAO). OECD-FAO Agricultural Outlook 2024–2033; OECD Publishing: Paris, France, 2024. [Google Scholar]
- Adu-Mensah, D.; Mei, D.; Zuo, L.; Zhang, Q.; Wang, J. A review on partial hydrogenation of biodiesel and its influence on fuel properties. Fuel 2019, 251, 660–668. [Google Scholar] [CrossRef]
- Amran, N.A.; Bello, U.; Hazwan Ruslan, M.S. The role of antioxidants in improving biodiesel’s oxidative stability, poor cold flow properties, and the effects of the duo on engine performance: A review. Heliyon 2022, 8, e09846. [Google Scholar] [CrossRef]
- Li, H.; Wang, T.; Guo, D.; Bingwa, N.; Xu, Y.; Liu, R.; Xiao, Q.; Li, G.; Wang, Y.; Yu, H.; et al. A robust microwave-absorbing solid alkaline catalyst synthesis via CaSr-BTC for green and efficient biodiesel production. Chem. Eng. J. 2025, 507, 160771. [Google Scholar] [CrossRef]
- Chen, S.Y.; Attanatho, L.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y.; Kumpidet, C.; Somwonhsa, P.; Lao-ubol, S. Upgrading of palm biodiesel fuel over supported palladium catalysts. C. R. Chim. 2016, 19, 1166–1173. [Google Scholar] [CrossRef]
- Pradana, Y.S.; Makertihartha, I.G.B.N.; Indarto, A.; Prakoso, T.; Soerawidjaja, T.H. A Review of Biodiesel Cold Flow Properties and Its Improvement Methods: Towards Sustainable Biodiesel Application. Energies 2024, 17, 4543. [Google Scholar] [CrossRef]
- Devitasari, R.D.; Fathurrahman, N.A.; Katili, M.; Wibowo, C.S.; Bethari, S.A.; Anggarani, R.; Aisyah, L.; Maymuchar. Determination of Oxidation Stability of Palm-Oil Biodiesel and Biodiesel-Diesel Blends by Rancimat and RSSOT Methods. IOP Conf. Ser. Earth Environ. Sci. 2022, 1034, 012040. [Google Scholar] [CrossRef]
- Fu, J.; Le, P.K.; Turn, S.Q. Impacts of antioxidants on stability of biodiesel derived from waste frying oil. Biofuels Bioprod. Biorefining 2023, 17, 1496–1501. [Google Scholar] [CrossRef]
- Saeidabad, N.G.; Noh, Y.S.; Eslami, A.A.; Song, H.T.; Kim, H.D.; Fazeli, A.; Moon, D.J. A Review on Catalysts Development for Steam Reforming of Biodiesel Derived Glycerol; Promoters and Supports. Catalysts 2020, 10, 910. [Google Scholar] [CrossRef]
- Knothe, G. Analysis of oxidized biodiesel by 1H-NMR and effect of contact area with air. Eur. J. Lipid Sci. Technol. 2006, 108, 493–500. [Google Scholar] [CrossRef]
- Kongolo, E.; Ameh, A.E.; De Jager, D.; Oyekola, O. Improvement of the Oxidation Stability of Biodiesel from Waste Cooking Oil Using Various Antioxidants. Waste Biomass Valorization 2024, 15, 6145–6157. [Google Scholar] [CrossRef]
- Knothe, G. Some aspects of biodiesel oxidative stability. Fuel Process. Technol. 2007, 88, 669–677. [Google Scholar] [CrossRef]
- Kongprawes, G.; Wongsawaeng, D.; Ngaosuwan, K.; Kiatkittipong, W.; Assabumrungrat, S. Low-temperature and atmospheric pressure plasma for palm biodiesel hydrogenation. Sci. Rep. 2021, 11, 14224. [Google Scholar] [CrossRef]
- Lanjekar, R.D.; Deshmukh, D. A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties. Renew. Sustain. Energy Rev. 2016, 54, 1401–1411. [Google Scholar] [CrossRef]
- Lau, C.H.; Lau, H.L.N.; Ng, H.K.; Thangalazhy-Gopakumar, S.; Lee, L.Y.; Gan, S. Evaluation of synthetic and bio-based additives on the oxidation stability of palm biodiesel: Parametric, kinetics and thermodynamics studies. Sustain. Energy Technol. Assess. 2024, 64, 103738. [Google Scholar] [CrossRef]
- Oleinik, G.; Soares, L.C.; Benvegnú, D.M.; Lima, F.O.; Rodrigues, P.R.P.; Gallina, A.L. Rubber tree (Hevea brasiliensis) seed shell extracts as a promising green antioxidant alternative to increase biodiesel oxidation stability. Process Saf. Environ. Prot. 2024, 190, 429–437. [Google Scholar] [CrossRef]
- Kumar, S.A.; Suresh, G.; Hariprasad, V.; Deepak, G.; Akhil, P. Enhancement of oxidative stability and cold flow properties of coconut oil using natural antioxidant additives for development of bio-lubricant. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 758–764. [Google Scholar] [CrossRef]
- Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Arbab, M.I.; Masum, B.M.; Sanjid, A. Impacts of NOx reducing antioxidant additive on performance and emissions of a multi-cylinder diesel engine fueled with Jatropha biodiesel blends. Energy Convers. Manag. 2014, 77, 577–585. [Google Scholar] [CrossRef]
- Boshui, C.; Yuqiu, S.; Jianhua, F.; Jiu, W.; Jiang, W. Effect of cold flow improvers on flow properties of soybean biodiesel. Biomass Bioenergy 2010, 34, 1309–1313. [Google Scholar] [CrossRef]
- Rizwanul Fattah, I.M.; Masjuki, H.H.; Kalam, M.A.; Mofijur, M.; Abedin, M.J. Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Convers. Manag. 2014, 79, 265–272. [Google Scholar] [CrossRef]
- Rajendran, S.; Dhairiyasamy, R.; Duraisamy, B.; Prakash, C.; Pant, R. Long-term oxidative stability of Jatropha biodiesel and its diesel blends: A comprehensive evaluation using advanced analytical techniques. Ind. Crops Prod. 2025, 225, 120482. [Google Scholar] [CrossRef]
- Yaakob, Z.; Narayanan, B.N.; Padikkaparambil, S.; Unni, K.S.; Akbar, P.M. A review on the oxidation stability of biodiesel. Renew. Sustain. Energy Rev. 2014, 35, 136–153. [Google Scholar] [CrossRef]
- Kumar, N. Oxidative stability of biodiesel: Causes, effects and prevention. Fuel 2017, 190, 328–350. [Google Scholar] [CrossRef]
- Pradana, Y.S.; Dewi, R.N.; Di Livia, K.; Arisa, F.; Rochmadi; Cahyono, R.B.; Budiman, A. Advancing biodiesel production from microalgae Spirulina sp. by a simultaneous extraction-transesterification process using palm oil as a co-solvent of methanol. Open Chem. 2020, 18, 833–842. [Google Scholar] [CrossRef]
- Iqbal, M.d.A.; Varman, M.; Hassan, M.H.j.; Kalam, M.d.A.; Hossain, S.; Sayeed, I. Tailoring fuel properties using jatropha, palm and coconut biodiesel to improve CI engine performance and emission characteristics. J. Clean. Prod. 2015, 101, 262–270. [Google Scholar] [CrossRef]
- Helwani, Z.; Zahrina, I.; Yelmida; Neonufa, G.; Syamsuddin, Y.; Rahmasari, A.; Othman, M.R.; Idroes, R. Production of high-performance biodiesel with a high oxidation stability through a fractionation method using urea. S. Afr. J. Chem. Eng. 2023, 45, 162–171. [Google Scholar] [CrossRef]
- Iakovlieva, A.; Boichenko, S.; Lejda, K.; Vovk, O.; Shkilniuk, I. Vacuum Distillation of Rapeseed Oil Esters for Production of Jet Fuel Bio-Additives. Procedia Eng. 2017, 187, 363–370. [Google Scholar] [CrossRef]
- Yeong, S.P.; Chan, Y.S.; Law, M.C.; Ling, J.K.U. Improving cold flow properties of palm fatty acid distillate biodiesel through vacuum distillation. J. Bioresour. Bioprod. 2022, 7, 43–51. [Google Scholar] [CrossRef]
- Knothe, G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2009, 2, 759. [Google Scholar] [CrossRef]
- Tajima, H.; Abe, M.; Komatsu, H.; Yamagiwa, K. Feasibility of additive winterization of biodiesel fuel derived from various eatable oils and fat. Fuel 2021, 305, 121479. [Google Scholar] [CrossRef]
- Liu, W.; Lu, G.; Yang, G.; Bi, Y. Improving oxidative stability of biodiesel by cis-trans isomerization of carbon-carbon double bonds in unsaturated fatty acid methyl esters. Fuel 2019, 242, 133–139. [Google Scholar] [CrossRef]
- Anwar, A.; Garforth, A. Challenges and opportunities of enhancing cold flow properties of biodiesel via heterogeneous catalysis. Fuel 2016, 173, 189–208. [Google Scholar] [CrossRef]
- Maghrebi, R.; Buffi, M.; Bondioli, P.; Chiaramonti, D. Isomerization of long-chain fatty acids and long-chain hydrocarbons: A review. Renew. Sustain. Energy Rev. 2021, 149, 111264. [Google Scholar] [CrossRef]
- Numwong, N.; Prabnasak, P.; Prayoonpunratn, P.; Triphatthanaphong, P.; Thunyaratchatanon, C.; Mochizuki, T.; Chen, S.Y.; Luengnaruemitchai, A.; Sooknoi, T. Effect of Pd particle size on activity and cis-trans selectivity in partial hydrogenation of soybean oil-derived FAMEs over Pd/SiO2 catalysts. Fuel Process. Technol. 2020, 203, 106393. [Google Scholar] [CrossRef]
- Supabunnapong, T.; Rungsi, A.N.; Luengnaruemitchai, A.; Chen, S.Y.; Mochizuki, T.; Numwong, N.; Chollacoop, N. Effects of synthetic conditions on the Pd particle sizes of Pd/SBA-15 catalysts and their performance for the partial hydrogenation of biodiesel fuels. Biomass Convers. Biorefinery 2024, 14, 16005–16018. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, L.; Li, Z.; Wei, G.; Xin, Z.; Luo, B. Synthesis of bentonite-based nickel catalyst using [Ni(NH3)6](NO3)2 as precursor for enhanced hydrogenation of biodiesel. Mater. Lett. 2019, 256, 126585. [Google Scholar] [CrossRef]
- Na Rungsi, A.; Luengnaruemitchai, A.; Chollacoop, N.; Chen, S.Y.; Mochizuki, T.; Takagi, H.; Yoshimura, Y. Preparation of MCM-41-supported Pd–Pt catalysts with enhanced activity and sulfur resistance for partial hydrogenation of soybean oil-derived biodiesel fuel. Appl. Catal. A Gen. 2020, 590, 117351. [Google Scholar] [CrossRef]
- Na Rungsi, A.; Truong, T.H.; Thunyaratchatanon, C.; Luengnaruemitchai, A.; Chollacoop, N.; Chen, S.Y.; Mochizuki, T.; Takagi, H.; Yoshimura, Y. Tuning the porosity of sulfur-resistant Pd-Pt/MCM-41 bimetallic catalysts for partial hydrogenation of soybean oil-derived biodiesel. Fuel 2021, 298, 120658. [Google Scholar] [CrossRef]
- Ramayeni, E.; Susanto, B.H.; Pratama, D.F. Palm H-FAME Production through Partially Hydrogenation using Nickel/Carbon Catalyst to Increase Oxidation Stability. MATEC Web Conf. 2018, 156, 03004. [Google Scholar] [CrossRef]
- Sukjit, E.; Tongroon, M.; Chollacoop, N.; Yoshimura, Y.; Poapongsakorn, P.; Lapuerta, M.; Dearn, K.D. Improvement of the tribological behaviour of palm biodiesel via partial hydrogenation of unsaturated fatty acid methyl esters. Wear 2019, 426–427, 813–818. [Google Scholar] [CrossRef]
- Asiedu, A.; Kumar, S. Kinetics and Optimization of Catalytic Transfer Hydrogenation of WCO Using 2-Propanol as a Hydrogen Donor over NiOx –MoOx–CoOx/Zeolite. Ind. Eng. Chem. Res. 2019, 58, 15787–15802. [Google Scholar] [CrossRef]
- Lee, H.S.; Seo, H.; Kim, D.; Lee, Y.W. One-pot supercritical transesterification and partial hydrogenation of soybean oil in the presence of Pd/Al2O3 or Cu or Ni catalyst without H2. J. Supercrit. Fluids 2020, 156, 104683. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, K.; Wei, G.; Gao, L.; Xin, Z.; Li, J. Intensification of catalytic transfer hydrogenation of fatty acid methyl esters by using ultrasound. Chem. Eng. Process.-Process Intensif. 2022, 170, 108645. [Google Scholar] [CrossRef]
- Zuo, L.; Wang, J.; Mei, D.; Adu-Mensah, D.; Gao, Y. Ultrasonic-assisted catalytic transfer hydrogenation of cottonseed biodiesel using Raney-Ni catalyst in aqueous environment. Chem. Eng. J. 2022, 437, 135193. [Google Scholar] [CrossRef]
- Xin, Z.; Wei, G.; Zhang, L.; Gao, L.; Li, Z.; Zhao, W. Partial hydrogenation of fatty acid methyl esters under mild conditions using sodium borohydride as hydrogen donor. Fuel 2021, 299, 120877. [Google Scholar] [CrossRef]
- Tamošiūnas, A.; Valatkevičius, P.; Grigaitienė, V.; Valinčius, V.; Striūgas, N. A cleaner production of synthesis gas from glycerol using thermal water steam plasma. J. Clean. Prod. 2016, 130, 187–194. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, J.; Jin, X.; Qian, Y.; Zhou, M.; Jia, X.; Sun, F.; Jiang, J.; Xu, W.; Sun, B. Combined dehydrogenation of glycerol with catalytic transfer hydrogenation of H2 acceptors to chemicals: Opportunities and challenges. Front. Chem. 2022, 10, 962579. [Google Scholar] [CrossRef]
- Hongloi, N.; Prapainainar, C.; Sudsakorn, K.; Kiatkittipong, W.; Seubsai, A.; Limphirat, W.; Prapainainar, P. Hydrogenation of palmitic acid without external H2: The role of H-donor solvents and Ni-based catalysts in biofuel production. Fuel 2025, 392, 134874. [Google Scholar] [CrossRef]
- Mendonça, V.G.S.; Freitas, I.C.; Manfro, R.L.; Souza, M.M.V.M. Effect of MgO addition to Cu-Ni/Al2O3 catalysts on glycerol hydrogenolysis in continuous reactor without external hydrogen. Appl. Catal. A Gen. 2022, 645, 118838. [Google Scholar] [CrossRef]
- Costa, A.; de Oliveira, A.; Esposito, R.; Len, C.; Luque, R.; Noronha, R.; Rocha Filho, G.; Nascimento, L. Glycerol and Catalysis by Waste/Low-Cost Materials—A Review. Catalysts 2022, 12, 570. [Google Scholar] [CrossRef]
- Valter, M.; Santos, E.C.d.; Pettersson, L.G.M.; Hellman, A. Selectivity of the First Two Glycerol Dehydrogenation Steps Determined Using Scaling Relationships. ACS Catal. 2021, 11, 3487–3497. [Google Scholar] [CrossRef]
- Tang, Z.; Cao, H.; Tao, Y.; Heeres, H.J.; Pescarmona, P.P. Transfer hydrogenation from glycerol over a Ni-Co/CeO2 catalyst: A highly efficient and sustainable route to produce lactic acid. Appl. Catal. B 2020, 263, 118273. [Google Scholar] [CrossRef]
- Crabtree, R.H. Transfer Hydrogenation with Glycerol as H-Donor: Catalyst Activation, Deactivation and Homogeneity. ACS Sustain. Chem. Eng. 2019, 7, 15845–15853. [Google Scholar] [CrossRef]
- Wolfson, A.; Dlugy, C.; Shotland, Y.; Tavor, D. Glycerol as solvent and hydrogen donor in transfer hydrogenation–dehydrogenation reactions. Tetrahedron Lett. 2009, 50, 5951–5953. [Google Scholar] [CrossRef]
- Taleb, B.; Jahjah, R.; Cornu, D.; Bechelany, M.; Al Ajami, M.; Kataya, G.; Hijazi, A.; El-Dakdouki, M.H. Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction. Molecules 2023, 28, 7541. [Google Scholar] [CrossRef]
- Oh, W.T.; Ham, J.; Kim, S.; Koh, W.G. Enzymatic conversion of glycerol to dihydroxyacetone using a hydrogel bioreactor entrapping glycerol dehydrogenase immobilized on silica nanoparticles. Chem. Eng. J. 2025, 505, 159250. [Google Scholar] [CrossRef]
- Yang, X.; Shao, S.; Li, X.; Tang, D. Catalytic transfer hydrogenation of bio-oil over biochar-based CuO catalyst using methanol as hydrogen donor. Renew. Energy 2023, 211, 21–30. [Google Scholar] [CrossRef]
- Lu, C.; Gao, L.; Zhang, L.; Liu, K.; Hou, Y.; He, T.; Zhou, Y.; Wei, G. Selective catalytic transfer hydrogenation of polyunsaturated fatty acid methyl esters using Pd/organobentonite as catalyst under microwave heating. Chem. Eng. Process.-Process Intensif. 2022, 182, 109206. [Google Scholar] [CrossRef]
- Pischetola, C.; Collado, L.; Aguado-Molina, R.; Martín-Treceño, S.; Keane, M.A.; Cárdenas-Lizana, F. Continuous furfuryl alcohol production via coupled dehydrogenation-hydrogenation over supported Cu and Au catalysts: A consideration of hydrogen generation and transfer. Mol. Catal. 2020, 492, 110912. [Google Scholar] [CrossRef]
- Phumpradit, S.; Reubroycharoen, P.; Kuchonthara, P.; Ngamcharussrivichai, C.; Hinchiranan, N. Partial Hydrogenation of Palm Oil-Derived Biodiesel over Ni/Electrospun Silica Fiber Catalysts. Catalysts 2020, 10, 993. [Google Scholar] [CrossRef]
- Singh, T.; Chakraborty, S. Chromium-catalyzed transfer hydrogenation of CO2 to formate using isopropanol under ambient pressure. Catal. Sci. Technol. 2025, 15, 689–695. [Google Scholar] [CrossRef]
- Huo, Z. Catalytic Transfer Hydrogenation of Ethyl Levulinate into γ-Valerolactone Over Air-Stable Skeletal Cobalt Catalyst. In Diverse Hydrogen Sources for Biomass-Derivatives Conversion; Springer Nature Singapore: Singapore, 2023. [Google Scholar] [CrossRef]
- Ban, L.; Zhao, J.; Zhang, Y.; Huang, X.; Chen, Y.; Li, H.; Zhao, Y.; Liu, H. Atomically dispersed Zn-NxCy sites on N-doped carbon for catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone. Chem. Eng. J. 2024, 494, 153113. [Google Scholar] [CrossRef]
- Yamanaka, N.; Shimazu, S. Selective Hydrogenation Properties of Ni-Based Bimetallic Catalysts. Eng 2022, 3, 60–77. [Google Scholar] [CrossRef]
- Chitpakdee, C.; Boonyoung, P.; Pansakdanon, C.; Suttisintong, K.; Faungnawakij, K.; Khemthong, P.; Youngjan, S.; Kraithong, W.; Sattayaporn, S.; Tanthanuch, W.; et al. Mechanistic investigation of Ni and NiCu for catalytic transfer hydrogenation of methyl levulinate to γ-valerolactone: A combined experimental and DFT study. Appl. Catal. A Gen. 2023, 660, 119230. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, J.; Yang, J.H. Bimetallic Cu-Ni/MCM-41 catalyst for efficiently selective transfer hydrogenation of furfural into furfural alcohol. Mol. Catal. 2022, 517, 112065. [Google Scholar] [CrossRef]
- Philippov, A.A.; Nasokhov, D.E.; Prosvirin, I.P.; Martyanov, O.N. Bimetallic Ni-Co catalyst for improving selectivity in transfer hydrogenation of phenolic compounds. Mol. Catal. 2024, 561, 114200. [Google Scholar] [CrossRef]
- Regmi, Y.N.; Mann, J.K.; McBride, J.R.; Tao, J.; Barnes, C.E.; Labbé, N.; Chmely, S.C. Catalytic transfer hydrogenolysis of organosolv lignin using B-containing FeNi alloyed catalysts. Catal. Today 2018, 302, 190–195. [Google Scholar] [CrossRef]
- Tang, Y.; Fu, J.; Wang, Y.; Guo, H.; Qi, X. Bimetallic Ni-Zn@OMC catalyst for selective hydrogenation of levulinic acid to γ-valerolactone in water. Fuel Process. Technol. 2023, 240, 107559. [Google Scholar] [CrossRef]
- Hengne, A.M.; Malawadkar, A.V.; Biradar, N.S.; Rode, C.V. Surface synergism of an Ag–Ni/ZrO2 nanocomposite for the catalytic transfer hydrogenation of bio-derived platform molecules. RSC Adv. 2014, 4, 9730. [Google Scholar] [CrossRef]
- Mao, W.; Liu, J.; Yin, B.; Miao, S.; Li, Y.; Kong, D.; Wang, F. Co-Cr composite oxides efficiently catalyzed transfer hydrogenation of α, β-unsaturated aldehydes via N-doped carbon and interfacial electron migration. Mol. Catal. 2022, 524, 112257. [Google Scholar] [CrossRef]
- Dorofeeva, O.V.; Ryzhova, O.N.; Zverev, V.G. Computational study of the thermodynamic properties of organophosphorus(V) compounds. J. Mol. Struct. Theochem 2007, 811, 267–279. [Google Scholar] [CrossRef]
- Ruzheinikov, S.N.; Burke, J.; Sedelnikova, S.; Baker, P.J.; Taylor, R.; Bullough, P.A.; Muir, N.M.; Gore, M.G.; Rice, D.W. Glycerol Dehydrogenase: Structure, Specificity, and Mechanism of a Family III Polyol Dehydrogenase. Structure 2001, 9, 789–802. [Google Scholar] [CrossRef]
- Lykaki, M.; Stefa, S.; Varvoutis, G.; Binas, V.D.; Marnellos, G.E.; Konsolakis, M. Comparative Assessment of First-Row 3d Transition Metals (Ti-Zn) Supported on CeO2 Nanorods for CO2 Hydrogenation. Catalysts 2024, 14, 611. [Google Scholar] [CrossRef]
- Boehm, H.; Steinle, J.; Vieweger, C. [Zn2Cr(OH)6]X·2H2O, New Layer Compounds Capable of Anion Exchange and Intracrystalline Swelling. Angew. Chem. 1977, 16, 265–266. [Google Scholar] [CrossRef]
- Chen, L.C.; Lin, S.D. The ethanol steam reforming over Cu-Ni/SiO2 catalysts: Effect of Cu/Ni ratio. Appl. Catal. B 2011, 106, 639–649. [Google Scholar] [CrossRef]
- Thiagarajan, T.; Tang, T.S. Refinery Practices and Oil Quality. PORIM Int. Palm Oil Conf. (Chem. Technol.) 1991, 1, 254–266. [Google Scholar]
- Guo, Y.; Jin, Y.; Huang, J.; Chen, X.; Luo, F.; Yang, L.; Zhu, X.; Chen, X.; Wu, J.; Wen, T.; et al. CuxFe12−x/Fe2O3/CuO cooperate with Pd as a highly effective and durable electrocatalyst for formate oxidation reaction. J. Solid. State Chem. 2025, 343, 125146. [Google Scholar] [CrossRef]
- Zuleta, E.C.; Baena, L.; Rios, L.A.; Calderón, J.A. The oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: A review. J. Braz. Chem. Soc. 2012, 23, 2159–2175. [Google Scholar] [CrossRef]
- Gao, L.; Liu, K.; Zhang, L.; Xin, Z.; Yang, Y.; Wei, G.; Yuan, T. Microwave-assisted catalytic transfer hydrogenation of fatty acid methyl esters using metal-doped nickel-boride-cetyltrimethylammonium bromide amorphous alloy catalyst. Int. J. Energy Res. 2021, 45, 13098–13116. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, Z.; Liu, Z.; Ou, Y.; Ye, Z.; Li, Z.; Wei, G. Microwave-assisted catalytic transfer hydrogenation of biodiesel at constant microwave power. Fuel 2020, 270, 117510. [Google Scholar] [CrossRef]
- Sancheti, S.V.; Gogate, P.R. Ultrasound assisted selective catalytic transfer hydrogenation of soybean oil using 5% Pd/C as catalyst under ambient conditions in water. Ultrason. Sonochem. 2017, 38, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Cherepakhin, V.; Kapenstein, T.; Williams, T.J. Upgrading Biodiesel from Vegetable Oils by Hydrogen Transfer to Its Fatty Esters. ACS Sustain. Chem. Eng. 2018, 6, 5749–5753. [Google Scholar] [CrossRef]
- Wei, G.; Liu, Z.; Zhang, L.; Li, Z. Catalytic upgrading of Jatropha oil biodiesel by partial hydrogenation using Raney-Ni as catalyst under microwave heating. Energy Convers. Manag. 2018, 163, 208–218. [Google Scholar] [CrossRef]
- Li, P.; Wei, G.; Wang, W.; Zhou, Y.; Zhang, L.; Pang, H.; Tang, L.; Zhang, Y.; Yang, Y. Ultrasound-assisted catalytic transfer hydrogenation of fatty acid methyl esters using Ni-La-B/organobentonite composite catalyst: Fabrication, application and mechanisms. Energy Convers. Manag. 2024, 302, 118158. [Google Scholar] [CrossRef]
- Indarto, A.; Giordana, A.; Ghigo, G.; Maranzana, A.; Tonachini, G. Polycyclic aromatic hydrocarbon formation mechanism in the “particle phase”. A theoretical study. Phys. Chem. Chem. Phys. 2010, 12, 9429–9440. [Google Scholar] [CrossRef]
Catalysts | ΔIV (g-I2/100 g) | ΔPV (meq-O2/kg) | ΔOS (h) |
---|---|---|---|
Zn-Cr-bicarbonate | −3.8 ± 0.15 | −4.4 ± 0.20 | −9.9 |
Zn-Cr-formate | −2.1 ± 0.05 | −9.9 ± 0.05 | −4.9 |
Zn-Cr-Ni | 0.2 ± 0.05 | 2.3 ± 0.21 | −3.7 |
Cu-Ni/SiO2 | −4.9 ± 0.40 | −5.2 ± 0.03 | 4.3 |
Catalyst | Sample | ΔOS (h) |
---|---|---|
Zn-Cr-bicarbonate | 1 | 0.6 |
2 | 3.2 |
Catalysts | Solvent | ΔIV (g-I2/100 g) | ΔPV (meq-O2/kg) |
---|---|---|---|
Zn-Cr-bicarbonate | DMF | −3.8 ± 0.15 | −3.5 ± 0.20 |
n-butanol | −4.1 ± 0.20 | −1.7 ± 0.25 | |
No solvent | −1.5 ± 0.20 | 14.0 ± 0.30 | |
Zn-Cr-formate | DMF | −2.1 ± 0.05 | −9.9 ± 0.05 |
n-butanol | 0.1 ± 0.10 | −8.8 ± 0.03 | |
No solvent | −5.4 ± 0.95 | −1.0 ± 0.18 | |
Zn-Cr-Ni | DMF | 0.2 ± 0.05 | 0.0 ± 0.20 |
n-butanol | −0.4 ± 0.01 | 2.3 ± 0.20 | |
No solvent | −0.3 ± 0.05 | 0.3 ± 0.06 |
Catalysts | Glycerol Feed (wt%) | ΔIV (g-I2/100 g) | ΔPV (meq-O2/kg) | Phase (1 atm, 25 °C) |
---|---|---|---|---|
Zn-Cr-bicarbonate | 4 | 0.5 ± 0.15 | 1.7 ± 0.28 | Liquid |
10 | −1.5 ± 0.20 | 11.9 ± 0.30 | Partly solid | |
Zn-Cr-formate | 4 | −0.3 ± 0.0 | 1.2 ± 0.51 | Liquid |
10 | −6.7 ± 0.95 | −1.0 ± 0.18 | Partly solid |
Catalysts | Glycerol Form | ΔIV (g-I2/100 g) | ΔPV (meq-O2/kg) |
---|---|---|---|
Zn-Cr-bicarbonate | glycerol | −4.1 ± 0.20 | −1.7 ± 0.25 |
tricalcium octaglyceroxide | −1.7 ± 0.40 | −1.7 ± 0.50 | |
Zn-Cr-formate | glycerol | 0.1 ± 0.10 | −8.8 ± 0.03 |
tricalcium octaglyceroxide | −6.2 ± 0.20 | −10.5 ± 0.05 |
Feed | Catalyst | Hydrogen Donor | Solvent | Temp. (°C) | ΔIV (g-I2/100 g) | ΔOS (h) | Ref |
---|---|---|---|---|---|---|---|
Cottonseed biodiesel | Reney-Ni | Isopropyl alcohol | H2O | 80 | −31.1 | n.a. | [47] |
Jatropha biodiesel | Raney-Ni | Isopropyl alcohol | H2O | 70–86 | −26.9 | 39.2 | [84] |
Jatropha biodiesel | Raney-Ni | Isopropyl alcohol | H2O | 85 | −24.4 | n.a. | [87] |
Highly unsaturated FAMEs | Ni-La-B | NaBH4 | H2O | 35 | −65.3 | 4.36 | [46] |
Highly unsaturated FAMEs | Ni-La-B | NaBH4 | H2O | 85 | −75.8 | 31.2 | [48] |
Highly unsaturated FAMEs | Ni-La-B/OB | NaBH4 | H2O | 75 | −62.7 | n.a. | [88] |
Highly unsaturated FAMEs | Ni-Cr-B-CTAB | Isopropyl alcohol | H2O | 85 | −60.0 | 5.0 | [83] |
Highly unsaturated FAMEs | Pd/OB | Ammonium formate | H2O | 80 | −57.9 | n.a. | [61] |
Soybean oil | Pd/C | Ammonium formate | H2O | 30 | −40.0 | n.a. | [85] |
Pd/C | Sodium formate | H2O | 30 | −33.0 | n.a. | [85] | |
Pd/C | Potassium formate | H2O | 30 | −26.0 | n.a. | [85] | |
Pd/C | Formic acid | H2O | 30 | −25.0 | n.a. | [85] | |
Corn oil | Ir | Glycerol | No solvent | 120 | n.a. (%-H = 95%) | n.a. | [86] |
Ir-Fe | Glycerol | No solvent | 120 | n.a. (%-H = 90%) | n.a. | [86] | |
Palm biodiesel | Cu-Ni/SiO2 | Glycerol | DMF | 150 | −4.9 ± 0.40 | 4.3 | This study |
Zn-Cr-formate | Glycerol | n-butanol | 115 | −6.2 ± 0.20 | n.a. | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugito, G.; Pamungkas, A.Y.; Realdi, M.N.D.; Alam, A.K.; Egiyawati, C.; Pradana, Y.S.; Adhi, T.P.; Soerawidjaja, T.H.; Makertihartha, I.G.B.N.; Mohtar, W.H.M.W.; et al. Biodiesel Stability Enhancement Through Catalytic Transfer Hydrogenation Using Glycerol as Hydrogen Donor. Eng 2025, 6, 94. https://doi.org/10.3390/eng6050094
Lugito G, Pamungkas AY, Realdi MND, Alam AK, Egiyawati C, Pradana YS, Adhi TP, Soerawidjaja TH, Makertihartha IGBN, Mohtar WHMW, et al. Biodiesel Stability Enhancement Through Catalytic Transfer Hydrogenation Using Glycerol as Hydrogen Donor. Eng. 2025; 6(5):94. https://doi.org/10.3390/eng6050094
Chicago/Turabian StyleLugito, Graecia, Andreas Yulius Pamungkas, Muhammad Naufaal Daffa Realdi, Alif Kembara Alam, Candra Egiyawati, Yano Surya Pradana, Tri Partono Adhi, Tatang Hernas Soerawidjaja, I Gusti Bagus Ngurah Makertihartha, Wan Hanna Melini Wan Mohtar, and et al. 2025. "Biodiesel Stability Enhancement Through Catalytic Transfer Hydrogenation Using Glycerol as Hydrogen Donor" Eng 6, no. 5: 94. https://doi.org/10.3390/eng6050094
APA StyleLugito, G., Pamungkas, A. Y., Realdi, M. N. D., Alam, A. K., Egiyawati, C., Pradana, Y. S., Adhi, T. P., Soerawidjaja, T. H., Makertihartha, I. G. B. N., Mohtar, W. H. M. W., Kurnia, I., & Indarto, A. (2025). Biodiesel Stability Enhancement Through Catalytic Transfer Hydrogenation Using Glycerol as Hydrogen Donor. Eng, 6(5), 94. https://doi.org/10.3390/eng6050094