Biochar as Additive and Modifier in Bitumen and Asphalt Mixtures
Abstract
1. Introduction
2. Methodology
3. Production and Properties of Biochar
3.1. Biochar Feedstock
| Feedstock Type | Pyrolysis Method/Temperature | Reference | |
|---|---|---|---|
| Agricultural byproducts & forestry waste | Rice straw | Fast pyrolysis, Tempertaure-400–600 °C | [15] |
| Crop straw biochar | Muffle furnace −450 °C for 2 h | [30] | |
| Cherry waste and Sour cherry waste | Slow pyrolysis, 500 °C at a rate of 10 °C/min | [16] | |
| Mesua ferrea seed cover waste | 450 °C, heating rate-40 °C/min | [9] | |
| Brazil-nut hedgehog | 600 °C (1 h) | [19] | |
| Straw stalk (Commercial biochar DS-510F) | Continuous augur pyrolysis at 450 °C under N2 atmosphere | [1] | |
| Switchgrass | Tube furnace method (400 °C or 500 °C) | [20] | |
| Late-harvest grass (from periodically flooded polder areas, Germany) | Partial oxidation, stalk based. | [21] | |
| Coconut shell | Slow pyrolysis (tube furnace, at 300–800 °C) | [18] | |
| Factory tea waste fibers | Industrial reactors at 500–550 °C under oxygen-free conditions | [22] | |
| Acacia wood and silver grass | Fast pyrolysis at 500 °C | [24] | |
| Animal manure and urban solid waste | Cow dung (CD) | Carbonization at 500 °C under N2, | [26] |
| Chicken manure (CM) | Slow pyrolysis at 550–600 °C for 24 h (dry pyrolysis, atmospheric pressure) | [27] | |
| Slaughterhouse cud waste + paper waste (composite biochar) | Slow pyrolysis; heating at 24 °C/min, max 167 °C (low-temperature pyrolysis) | [28] | |
| Municipal sewage sludge | Tube furnace pyrolysis | [29] | |
3.2. Biochar Production Methods and Conditions
3.3. Physical, Chemical, and Structural Properties
| Feedstock Type | Microstructural Features | Reference |
|---|---|---|
| Rice straw | Fibrous, porous, hollow tubes, rough surface, and complex texture | [15] |
| Crop straw biochar | Octahedron-like particles, some fibrous | [30] |
| Cherry waste and Sour cherry waste | CW-Rough, microporous; particles 30–60 µm. SCW-Rough, microporous; particles 20–40 µm | [16] |
| Mesua ferrea seed cover waste | Highly Irregular, porous, rough texture | [9] |
| Brazil-nut hedgehog | Amorphous, uneven/rough compact surface with clusters and small fractures | [19] |
| Straw stalk (Commercial biochar DS-510F) | Porous, fibrous, irregular/rough surface with high interfacial area | [1] |
| Switchgrass | Irregular, fibrous, porous structure; more complex surface with high surface area. | [20] |
| Late-harvest grass (from periodically flooded polder areas, Germany) | Well-developed pore network | [21] |
| Coconut shell | Porous carbon structure | [18] |
| Waste wood biochar | Porous, tubular/flake, rough | [23] |
| Woody biomass by Prosopis Juliflora | Porous structure with high carbon content | [25] |
| Cow dung (CD) | Porous, fragmented, rough | [26] |
| Chicken manure (CM) | Porous structure with high carbon content | [27] |
| Slaughterhouse cud waste + paper waste (composite biochar) | Cud biochar- porous, alkaline, higher organic carbon and nitrogen retention. Paper biochar- less porous, lower nutrient retention | [28] |
| Municipal sewage sludge | Sludge biochar—distinct crystalline phases, rough, porous particles. Wood biochar—more amorphous, broad scattering peaks, less crystalline but with porous morphology | [29] |
4. Application of Biochar as an Additive and Bitumen Modifier
4.1. Mechanisms of Bitumen Modification Using Biochar
4.2. Effects of Biochar on Bitumen Binder
4.2.1. Conventional Properties
4.2.2. Rheological Properties
| Reference | Biochar Feedstock | Rheological Factor Evaluated | Measurement Method (Test and Conditions) | Major Outcomes |
|---|---|---|---|---|
| [46] | Industrial hemp stalk biochar | Stiffness of bitumen binder at low temperatures | Bending Beam Rheometer (BBR) test (−6 and −12 °C temperatures) |
|
| Rotational viscosity | Rotational viscometer (RV) test |
| ||
| Fatigue parameter | DSR (PAV-aged) at 25–31 °C |
| ||
| Permanent deformation (rutting resistance) MSCR–Jnrdiff | Multiple Stress Creep Recovery (MSCR) |
| ||
| [45] | Household waste | High-temperature PG/G*/sinδ (rutting resistance) | DSR (Dynamic Shear Rheometer) |
|
| Rotational Viscosity | Rotational Viscosity (RV) Test |
| ||
| Storage stability | Tube segregation: Δ softening (top-bottom), Δ penetration |
| ||
| [49] | Corn straw biochar | Low-temperature performance | Bending Beam Rheometer (BBR) test (−12, −18 and −24 °C temperatures) |
|
| Rutting factor (|G*|/sin δ) and G*·sinδ critical fatigue temperature | DSR (Dynamic Shear Rheometer) |
| ||
| [30] | Crop straw biochar | Ductility (15 °C) | Conventional ductility at 15 °C |
|
| Rotational viscosity/construction temperatures | Rotational Viscosity (RV) Test |
| ||
| [9] | Mesua ferrea seed cover biochar | Fatigue parameter, Rutting resistance | DSR and MSCR test |
|
| High critical temperature (PG) | DSR; PG grading |
| ||
| Rotational viscosity (135 °C) | Brookfield viscosity at 135 °C |
| ||
| [1] | Straw stalk | Low-temperature properties | Bending Beam Rheometer (BBR) test (−12 °C)) |
|
| High critical temperature | DSR |
| ||
| [50] | Oat hulls biochar | Low-temperature Performance | Bending Beam Rheometer (BBR) test (−6/−12 °C, PAV) |
|
| Rutting resistance | DSR; G*/sin(δ) |
| ||
| Fatigue parameter | DSR; G*·sin δ |
| ||
| Storage ability | Storage stability test |
| ||
| [25] | Prosopis juliflora (woody biomass) biochar | Ductility | Ductility test |
|
| Storage Stability | Storage stability test (Difference in softening point) |
| ||
| Rotational Viscosity | Rotational viscosity |
| ||
| Failure Temperature/Rutting Factor (G*/sin δ) | Binder grading test |
| ||
| [16] | Cherry waste (CW) and sour cherry (SCW) | Rutting parameter | DSR |
|
| Fatigue parameters | LAS or DSR fatigue analysis |
| ||
| Elastic recovery, Creep recovery | MSCR |
| ||
| Penetration Index (PI) | Calculated from penetration and softening point |
| ||
| Rotational viscosity | Brookfield rotational viscosity at 135 °C and 165 °C |
| ||
| [2] | Waste wood–based biochar | Low-temperature properties | BBR—S and m at −18 °C (PAV-aged) |
|
| Rutting resistance High critical temperature | DSR; high critical temperature per Superpave |
| ||
| [53] | Cotton seed (CO), camellia seed shell (CA), coffee ground (CG) biochar | Low-temperature properties | BBR—S and m (−12/−18/−24 °C) |
|
| Storage stability | Conventional storage stability tube test |
|
4.2.3. Aging Resistance
4.3. Effects of Biochar on Asphalt Mixture
4.3.1. Rutting and High-Temperature Resistance
4.3.2. Cracking and Fatigue Resistance
4.3.3. Moisture Susceptibility and Workability
| Reference | Biochar Feedstock Type | Tests Conducted | Results |
|---|---|---|---|
| [22] | Factory tea waste | Indirect tensile strength (ITS), modified Lottman, load creep test |
|
| [64] | Biochar from swine manure conversion | Semi-circular Bend (SCB) test |
|
| [63] | Rice straw | The modified Lottman test, indirect tensile strength ratio test (ITSR), binder fundamental properties tests, Marshall parameters, water resistance, RSM modeling, and leaching assessment |
|
| [19] | Brazil-nut hedgehog biomass | Four-point bending, Huet–Sayegh rheological modeling |
|
| [44] | Pine wood shavings | Conventional tests, SEM, Marshall, indirect tensile strength/TSR, Cantabro, resilient modulus, permanent deformation (rutting), and fatigue resistance |
|
| [61] | Biochar from landscape conservation and gardening of wood waste. | Marshall test, semi-circular bending (SCB) test, Uniaxial cyclic compression test, indirect tensile strength test |
|
| [65] | Coconut shell, rice straw, nutshell | Static leachate test of biochar, pavement infiltration tests, and Water quality test |
|
| [38] | Slow pyrolysis of white birch, fast pyrolysis of poplar bark. | Dynamic modulus (short/long-term aged), flow number (rutting), fracture energy, and flexibility index (before/after moisture conditioning) |
|
| [62] | Fine biochar passing 75 µm | Modified Lottman moisture susceptibility; compaction/workability observations |
|
5. Environmental Considerations
5.1. Waste Valorization and Carbon Sequestration
5.2. Life Cycle Assessment (LCA) Findings
6. Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, F.; Dai, J.; Fu, Z.; Li, C.; Wen, Y.; Jia, M.; Wang, Y.; Shi, K. Biochar for asphalt modification: A case of high-temperature properties improvement. Sci. Total Environ. 2022, 804, 150194. [Google Scholar] [CrossRef]
- Zhang, R.; Dai, Q.; You, Z.; Wang, H.; Peng, C. Rheological Performance of Bio-Char Modified Asphalt with Different Particle Sizes. Appl. Sci. 2018, 8, 1665. [Google Scholar] [CrossRef]
- Wani, I.; Garg, A. Critical review on use of biochar as a modifier in asphaltic binders for pavement construction. Environ. Dev. Sustain. 2024, 1–22. [Google Scholar] [CrossRef]
- Tiza, T.M.; Mogbo, O.; Singh, S.K.; Shaik, N.; Shettar, M.P. Bituminous pavement sustainability improvement strategies. Energy Nexus 2022, 6, 100065. [Google Scholar] [CrossRef]
- Celauro, C.; Teresi, R.; Dintcheva, N.T. Evaluation of Anti-Aging Effect in Biochar-Modified Bitumen. Sustainability 2023, 15, 10583. [Google Scholar] [CrossRef]
- Rahman, M.T.; Mohajerani, A.; Giustozzi, F. Recycling of Waste Materials for Asphalt Concrete and Bitumen: A Review. Materials 2020, 13, 1495. [Google Scholar] [CrossRef] [PubMed]
- Walters, R.; Begum, S.A.; Fini, E.H.; Abu-Lebdeh, T.M. Investigating Bio-Char as Flow Modifier and Water Treatment Agent for Sustainable Pavement Design. Am. J. Eng. Appl. Sci. 2015, 8, 138–146. [Google Scholar] [CrossRef]
- Saadeh, S.; Al-Zubi, Y.; Katawal, P.; Zaatarah, B.; Fini, E. Biochar effects on the performance of conventional and rubberized HMA. Road Mater. Pavement Des. 2023, 24, 156–172. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, R.; Narzari, R.; Kataki, R.; Shukla, S.K.; Chailleux, E. Evaluation of bio-asphalt binders modified with biochar: A pyrolysis by-product of Mesua ferrea seed cover waste. Cogent Eng. 2018, 5, 1548534. [Google Scholar] [CrossRef]
- Bindar, Y.; Budhi, Y.W.; Hernowo, P.; Wahyu, S.; Saquib, S.; Setiadi, T. Sustainable technologies for biochar production. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–40. [Google Scholar]
- Li, H.; Wang, L.; Zhang, Y.; Yang, J.; Tsang, D.C.W.; Mechtcherine, V. Biochar for sustainable construction industry. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 63–95. [Google Scholar]
- Rondón-Quintana, H.A.; Reyes-Lizcano, F.A.; Chaves-Pabón, S.B.; Bastidas-Martínez, J.G.; Zafra-Mejía, C.A. Use of Biochar in Asphalts: Review. Sustainability 2022, 14, 4745. [Google Scholar] [CrossRef]
- The International Biochar Initiative and The US Biochar Initiative. Global Biochar Market Report 2023. 2024. Available online: https://biochar-international.org/ (accessed on 27 August 2025).
- Zhou, L. A Review of Biomass-Derived Biochar and Its Potential in Asphalt Pavement Engineering. Mater. Sci.-Pol. 2024, 42, 81–99. [Google Scholar] [CrossRef]
- Zhou, J.; Dong, Z.; Yu, Y.; Sun, Z.; Zhou, T.; Chen, Z. Utilization of biochar derived from rice straw in petroleum bitumen: Agricultural waste recycling and pavement sustainability. J. Clean. Prod. 2025, 490, 144808. [Google Scholar] [CrossRef]
- Yegane, M.; Katanalp, B.Y.; Ahmedzade, P. Effects of using biochar materials obtained from cherry and sour cherry wastes on bitumen modification. Constr. Build. Mater. 2025, 489, 140609. [Google Scholar] [CrossRef]
- Narmadha, N.; Karunakaran, K.R. Growth Performance of Coconut Production in Global Scenario: A Quin-decadal Analysis. J. Exp. Agric. Int. 2022, 44, 7–15. [Google Scholar] [CrossRef]
- Ajien, A.; Idris, J.; Md Sofwan, N.; Husen, R.; Seli, H. Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. Waste Manag. Res. 2023, 41, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.P.; de Araújo, R.O.; de Souza Falcão, N.P.; de Castro, C.E.N.; da Frota, C.A. Asphalt mixtures modified by amazonian biochar. Int. J. Adv. Eng. Technol. 2024, 17, 120–132. [Google Scholar]
- Zhao, S.; Huang, B.; Ye, X.P.; Shu, X.; Jia, X. Utilizing bio-char as a bio-modifier for asphalt cement: A sustainable application of bio-fuel by-product. Fuel 2014, 133, 52–62. [Google Scholar] [CrossRef]
- Heinrich, T.; Park, H.; Orozco, R.; Ding, Z.; Álvarez-López, V.; Mosquera-Losada, M.R.; Steinbeis, L.; Hoffmann, T. Biochar production from late-harvest grass—Challenges and potential for farm-scale implementation. Sustain. Prod. Consum. 2023, 37, 256–267. [Google Scholar] [CrossRef]
- Aslan, M.; Kutuk-Sert, T.; İskender, E.; Aksoy, A.; İskender, C. Investigation of Biochar Additive as a Performance Enhancer in Asphalt Coatings. In Proceedings of the 4th International Conference on Advanced Engineering Technologies, Bayburt, Turkey, 28–30 September 2022. [Google Scholar]
- Zhang, R.; Wang, H.; Ji, J.; Wang, H. Viscoelastic Properties, Rutting Resistance, and Fatigue Resistance of Waste Wood-Based Biochar-Modified Asphalt. Coatings 2022, 12, 89. [Google Scholar] [CrossRef]
- Mousavi, M.; Park, K.-B.; Kim, J.-S.; Fini, E.H. Metal-rich biochar as an asphalt modifier to improve sustainability and reduce VOC emissions. Sustain. Mater. Technol. 2024, 40, e00903. [Google Scholar] [CrossRef]
- Nair, R.K.; Bandyopadhyay, A.; Sunitha, V. Rheological and Mechanical Behaviour of Biochar-Modified Bitumen Under High-Temperature Conditions. Int. J. Pavement Res. Technol. 2025, 1–17. [Google Scholar] [CrossRef]
- Chen, X.; Yu, G.; Chen, Y.; Tang, S.; Su, Y. Cow Dung-Based Biochar Materials Prepared via Mixed Base and Its Application in the Removal of Organic Pollutants. Int. J. Mol. Sci. 2022, 23, 94. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, S.K.; Liu, T.; Duan, Y.; Ren, X.; Zhang, Z.; Pandey, A.; Awasthi, M.K. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. J. Hazard. Mater. 2020, 389, 121908. [Google Scholar] [CrossRef]
- Nega, T.; Yeshanew, E.S.; Nallamothu, R.B.; Aswossie, E. Enhancing soil fertility through Biochar using slaughter-house waste as a feedstock. Sci. Rep. 2025, 15, 11109. [Google Scholar] [CrossRef]
- Li, Q.; Xu, L.; Chen, X.; Li, W.; Li, Y.; Wang, H.; Liu, K. Study on the Adhesion Performance of Biochar-Modified Asphalt Based on Surface Free Energy and Atomic Force Microscopy. Coatings 2024, 14, 1390. [Google Scholar] [CrossRef]
- Gan, X.; Zhang, W. Application of biochar from crop straw in asphalt modification. PLoS ONE 2021, 16, e0247390. [Google Scholar] [CrossRef]
- Tan, H.; Lee, C.T.; Ong, P.Y.; Wong, K.Y.; Bong, C.P.C.; Li, C.; Gao, Y. A Review on the Comparison Between Slow Pyrolysis and Fast Pyrolysis on The Quality of Lignocellulosic and Lignin-Based Biochar. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1051, 012075. [Google Scholar] [CrossRef]
- Zhou, X.; Moghaddam, T.B.; Chen, M.; Wu, S.; Zhang, Y.; Zhang, X.; Adhikari, S.; Zhang, X. Effects of pyrolysis parameters on physicochemical properties of biochar and bio-oil and application in asphalt. Sci. Total Environ. 2021, 780, 146448. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V. Production of biochar from elephant grass (Pernisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels 2019, 12, 1283–1290. [Google Scholar] [CrossRef]
- Dong, W.; Ma, F.; Li, C.; Fu, Z.; Huang, Y.; Liu, J. Evaluation of Anti-Aging Performance of Biochar Modified Asphalt Binder. Coatings 2020, 10, 1037. [Google Scholar] [CrossRef]
- Maniraj, J.; Ramesh, M.; Kumar, S.G.; Sahayaraj, A.F. Introduction of Biochar: Sources, Composition, and Recent Updates. In Biochar and Its Composites; Materials Horizons: From Nature to Nanomaterials; Springer Nature: Singapore, 2023; pp. 1–17. [Google Scholar]
- Owolabi, O.O. The Effect of Biochar in Asphalt Mixture; The University of New Brunswick: Fredericton, NB, Canada, 2019. [Google Scholar]
- Daly, W.H. Relationship Between Chemical Makeup of Binders and Engineering Performance; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2017. [Google Scholar]
- Honarmand, M.; Tanzadeh, J.; Beiranvand, M. Bitumen and Its Modifier for Use in Pavement Engineering. In Sustainable Construction and Building Materials; Hemeda, S., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Yaro, N.S.A.; Sutanto, M.H.; Habib, N.Z.; Usman, A.; Kaura, J.M.; Murana, A.A.; Birniwa, A.H.; Jagaba, A.H. A Comprehensive Review of Biochar Utilization for Low-Carbon Flexible Asphalt Pavements. Sustainability 2023, 15, 6729. [Google Scholar] [CrossRef]
- Kua, H.W. Biochar as building and road materials. In Biochar for Environmental Management; Routledge: London, UK, 2024; pp. 719–733. [Google Scholar]
- Loise, V.; Calandra, P.; Policicchio, A.; Madeo, L.; Oliviero Rossi, C.; Porto, M.; Abe, A.; Agostino, R.G.; Caputo, P. The efficiency of bio-char as bitumen modifier. Heliyon 2024, 10, e23192. [Google Scholar] [CrossRef]
- Chaves-Pabón, S.B.; Rondón-Quintana, H.A.; Bastidas-Martínez, J.G. Mechanical Performance Assessment of a Hot-Mix Asphalt Modified with Biochar Obtained from Pine Wood Shavings. Coatings 2024, 14, 1212. [Google Scholar] [CrossRef]
- Atasağun, N. High-Temperature Rheological Properties and Storage Stability of Bitumen Modified with the Char Produced from Co-Pyrolysis of Different Wastes. Sustainability 2023, 15, 8119. [Google Scholar] [CrossRef]
- Aslan, I.; Tasdemir, F.; Tasdemir, Y. Utilization of biochar derived from industrial hemp stalks with various cooling methods for asphalt binder modification. PLoS ONE 2025, 20, e0325943. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, X.; Varamini, S. Effect of Biochar Type in the Performance of Biochar-Modified Binder. Rev. Ing. Construcción 2024, 39, 1–9. [Google Scholar] [CrossRef]
- Rondón-Quintana, H.A.; Romero-Patiño, N.E.; Bastidas-Martínez, J.G. Performance Properties of a Hot-Mix Asphalt Modified with Oil Palm Kernel Shell–Based Biochar for Road Pavements. J. Transp. Eng. Part B Pavements 2025, 151, 05024003. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, P.; Li, Y.; Wang, H.; Zheng, C.; Ma, R.; Nian, T.; Wang, M. Application of corn straw biochar in pavement asphalt: Suppression of hazardous fume emissions and maintenance of rheological properties. Constr. Build. Mater. 2025, 481, 141635. [Google Scholar] [CrossRef]
- Martinez-Toledo, C.; Valdes-Vidal, G.; Calabi-Floody, A.; Gonzalez, M.E.; Reyes-Ortiz, O. Evaluation of Rheological Properties of Asphalt Binder Modified with Biochar from Oat Hulls. Materials 2024, 17, 4312. [Google Scholar] [CrossRef]
- Xie, J.; Zhou, Y.; Huang, H.; Jiang, Y.; Liu, L. Effect of biochar-clay mineral composites on rubber modified asphalt: Performance optimization and high-temperature emission suppression. Constr. Build. Mater. 2025, 492, 142942. [Google Scholar] [CrossRef]
- Liu, B.; Hou, W. Influence of storage conditions on the stability of asphalt emulsion. Pet. Sci. Technol. 2017, 35, 1217–1223. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Xue, Y. Biochars from Cotton Seed, Camelia Seed Shell, and Coffee Ground in Modification of Asphalt: Fundamental Properties, Rheological Performance, and Inhibition of VOC Emissions. Materials 2025, 18, 1504. [Google Scholar] [CrossRef]
- ASTM D7173-20; Standard Practice for Determining the Separation Tendency of Polymer from Polymer-Modified Asphalt. ASTM International: West Conshohocken, PA, USA, 2024.
- Prosperi, E.; Bocci, E. A Review on Bitumen Aging and Rejuvenation Chemistry: Processes, Materials and Analyses. Sustainability 2021, 13, 6523. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, G.; Wu, S.; Tighe, S.; Pickel, D.; Chen, M.; Adhikari, S.; Gao, Y. Effects of biochar on the chemical changes and phase separation of bio-asphalt under different aging conditions. J. Clean. Prod. 2020, 263, 121532. [Google Scholar] [CrossRef]
- Rajib, A.; Saadeh, S.; Katawal, P.; Mobasher, B.; Fini, E.H. Enhancing Biomass Value Chain by Utilizing Biochar as A Free Radical Scavenger to Delay Ultraviolet Aging of Bituminous Composites Used in Outdoor Construction. Resour. Conserv. Recycl. 2021, 168, 105302. [Google Scholar] [CrossRef]
- Zhou, X.; Moghaddam, T.B.; Chen, M.; Wu, S.; Adhikari, S. Biochar removes volatile organic compounds generated from asphalt. Sci. Total Environ. 2020, 745, 141096. [Google Scholar] [CrossRef] [PubMed]
- Celauro, C.; Teresi, R. UV Aging Resistance of Modified Bitumen: Comparison of SBS and Biochar. In Proceedings of the Proceedings of the 10th International Conference on Maintenance and Rehabilitation of Pavements, Guimarães, Portugal, 24–26 July 2024; pp. 13–21. [Google Scholar]
- Zhao, S.; Huang, B.; Shu, X.; Ye, P. Laboratory Investigation of Biochar-Modified Asphalt Mixture. Transp. Res. Rec. J. Transp. Res. Board 2014, 2445, 56–63. [Google Scholar] [CrossRef]
- Grossegger, D.; Wyrzykowski, M.; Toropovs, N.; Lura, P. Exploring the carbon sequestration of an asphalt base course mixture containing novel cold-bonded biochar-rich lightweight aggregates. Mater. Struct. 2025, 58, 1–17. [Google Scholar] [CrossRef]
- Sanchez, X.; Somers, T.; Dhasmana, H.; Owolabi, O. Effect of biochar on the basic characteristics of asphalt mixtures. In Advances in Materials and Pavement Performance Prediction II; CRC Press: Boca Raton, FL, USA, 2020; pp. 343–346. [Google Scholar]
- Yaro, N.S.A.; Sutanto, M.H.; Habib, N.Z.; Usman, A.; Tanjung, L.E.; Aliyu, I.; Jagaba, A.H. Optimizing biochar-based geopolymer composites for enhanced water resistance in asphalt mixes: An experimental, microstructural, and multi-objective analysis. J. Eng. Appl. Sci. 2023, 70, 151. [Google Scholar] [CrossRef]
- Saadeh, S.; Alzubi, Y.; Zaatarah, B.; Fini, E.H.; Katawal, P. Performance Testing of Hot Mix Asphalt Containing Biochar. In Proceedings of the RILEM International Symposium on Bituminous Materials RILEM Bookseries, Proceedings of the ISBM 2020, Lyon, France, 14–16 December 2020; Springer: Cham, Switzerland, 2022; pp. 1465–1471. [Google Scholar]
- Liu, J.; Li, H.; Harvey, J.; Zhang, H.; Tian, Y. Application of Biochar on the runoff purification performance of porous asphalt pavement. Transp. Saf. Environ. 2021, 3, tdab026. [Google Scholar] [CrossRef]
- Kumar, K.K.; Omal, N.M.; Sharma, V.K.; Kandy, S.B.; Ağbulut, Ü. CO2 storage behavior of rice husk biochar–bitumen mixture at different pressures and temperatures: A detailed experimental investigation. J. Therm. Anal. Calorim. 2025, 150, 4599–4616. [Google Scholar] [CrossRef]
- Samieadel, A.; Schimmel, K.; Fini, E.H. Comparative life cycle assessment (LCA) of bio-modified binder and conventional asphalt binder. Clean. Technol. Environ. Policy 2018, 20, 191–200. [Google Scholar] [CrossRef]
- Singhal, S. Biochar as a cost-effective and eco-friendly substitute for binder in concrete: A review. Eur. J. Environ. Civ. Eng. 2023, 27, 984–1009. [Google Scholar] [CrossRef]
- Mashaan, N.S.; Dassanayake, C. Rutting and Aging Properties of Recycled Polymer-Modified Pavement Materials. Recycling 2025, 10, 60. [Google Scholar] [CrossRef]
- Iqbal, A.; Mashaan, N.S.; Paraskeva, T. Mining Waste in Asphalt Pavements: A Critical Review of Waste Rock and Tailings Applications. J. Compos. Sci. 2025, 9, 402. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dassanayake, C.; Mashaan, N.S. Biochar as Additive and Modifier in Bitumen and Asphalt Mixtures. Eng 2025, 6, 341. https://doi.org/10.3390/eng6120341
Dassanayake C, Mashaan NS. Biochar as Additive and Modifier in Bitumen and Asphalt Mixtures. Eng. 2025; 6(12):341. https://doi.org/10.3390/eng6120341
Chicago/Turabian StyleDassanayake, Chathurika, and Nuha S. Mashaan. 2025. "Biochar as Additive and Modifier in Bitumen and Asphalt Mixtures" Eng 6, no. 12: 341. https://doi.org/10.3390/eng6120341
APA StyleDassanayake, C., & Mashaan, N. S. (2025). Biochar as Additive and Modifier in Bitumen and Asphalt Mixtures. Eng, 6(12), 341. https://doi.org/10.3390/eng6120341

