# Enhancing Seismic Resilience: Evaluating Buildings with Passive Energy Dissipation Strategies

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Description of the Buildings

#### 2.1. Damper Characteristics

_{y}) equal to 1000 kN.

_{y}) were similar to the yield force (P

_{y}) in the hysteretic damper, whereas the stiffness was increased by a factor of 10 as compared to the hysteretic damper.

_{EFF}” equal to t times the damping coefficient was used. The effective stiffness refers to the ratio of the modulus loss to the storage modulus in smaller frequency responses, indicating a reasonable level of stiffness.

#### 2.2. Damper Variations

#### 2.3. Limitations of the Study

## 3. Results and Discussion

#### 3.1. Building Behaviour without Installing Dampers

#### 3.2. Response of Buildings with Dampers

#### 3.2.1. Effect of Variation in Damping Parameters on Displacement

#### Hysteretic Damper

#### Friction Damper

#### Viscous Damper

#### Viscoelastic Damper

#### 3.2.2. Effect of Variation in Damping Parameters on Base Shear

#### Hysteretic Damper

#### Friction Damper

#### Viscous Damper

#### Viscoelastic Damper

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

DP | Damping parameter |

ETABS | Extended tall analysis of buildings and structures |

F | Friction |

g | Gravitational acceleration |

H | Hysteretic |

PEDD | Passive energy dissipation devices |

PGA | Peak ground acceleration |

R | Reverse-triangular distribution |

T | Triangular distribution |

U | Uniform distribution |

V | Viscous |

VE | Viscoelastic |

## References

- Desramaut, N.; Modaressi, H.; Le Cozannet, G. Earthquake Damage BT—Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 223–225. ISBN 978-1-4020-4399-4. [Google Scholar]
- Shaban, N.; Caner, A. Prototype Testing of a New Passive Energy Dissipation Device for Seismic Retrofit of Bridges. Front. Built Environ.
**2016**, 2, 23. [Google Scholar] [CrossRef] - Safi, W.A.; Hibino, Y.; Kusunoki, K.; Mukai, T.; Sanada, Y. The Structural Performance of Reinforced Concrete Members with Monolithic Non-Structural Walls. Buildings
**2020**, 10, 87. [Google Scholar] [CrossRef] - Ibrahim, Y.E.; Hameed, A.; Qazi, A.U.; Rasool, A.M.; Latif, M.F.; Qureshi, M.U. Experimental response of cold-formed steel stud shear wall with hardboard sheathing under seismic loading. Case Stud. Constr. Mater.
**2021**, 15, e00574. [Google Scholar] [CrossRef] - FEMA-273; NEHRP Guidelines for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency: Washington, DC, USA, 1997.
- FEMA-P440a; Effects of Strength and Stiffness Degradation on Seismic Response. Federal Emergency Management Agency: Washington, DC, USA, 2009.
- FEMA-440; Improvement of Nonlinear Static Seismic Analysis Procedures. Federal Emergency Management Agency: Washington, DC, USA, 2005.
- FEMA-356; Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency: Washington, DC, USA, 2000.
- Constantinou, M.; Soong, T.; Dargush, G. Passive Energy Dissipation Systems for Structural Design and Retrofit; Monograph No. 1; MCEER: Buffalo, NY, USA, 1998. [Google Scholar]
- Amr, S.E.; Di Sarno, L. Response of Structures. In Fundamentals of Earthquake Engineering; Wiley Online Books; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 47–118. ISBN 9780470024867. [Google Scholar]
- Rai, D.C. Future trends in earthquake-resistant design of structures. Curr. Sci.
**2000**, 79, 1291–1300. [Google Scholar] - Wang, C.; Ayyub, B.M. Time-dependent seismic resilience of aging repairable structures considering multiple damage states. Earthq. Eng. Resil.
**2022**, 1, 73–87. [Google Scholar] [CrossRef] - Afzal, M.F.; Matsumoto, Y.; Nohmi, H.; Sakai, S.; Su, D.; Nagayama, T. Comparison of Radar Based Displacement Measurement Systems with Conventional Systems in Vibration Measurements at a Cable Stayed Bridge. In Proceedings of the 11th German-Japan Bridge Symposium, Osaka, Japan, 30–31 August 2016. [Google Scholar]
- Hameed, A.; Afzal, M.F.U.D.; Javed, A.; Rasool, A.M.; Qureshi, M.U.; Mehrabi, A.B.; Ashraf, I. Behavior and Performance of Reinforced Concrete Columns Subjected to Accelerated Corrosion. Metals
**2023**, 13, 930. [Google Scholar] [CrossRef] - Nakamura, Y.; Okada, K. Review on seismic isolation and response control methods of buildings in Japan. Geoenviron. Disasters
**2019**, 6, 7. [Google Scholar] [CrossRef] - Soong, T.; Dargush, G. Passive Energy Dissipation Systems in Structural Engineering; John Wiley & Sons Ltd.: Chichester, UK, 1997. [Google Scholar]
- Symans, M.D.; Constantinou, M.C. Semi-active control systems for seismic protection of structures: A state-of-the-art review. Eng. Struct.
**1999**, 21, 469–487. [Google Scholar] [CrossRef] - Soong, T.T.; Spencer, B.F. Supplemental energy dissipation: State-of-the-art and state-of-the-practice. Eng. Struct.
**2002**, 24, 243–259. [Google Scholar] [CrossRef] - Symans, M.; Charney, F.; Whittaker, A.; Constantinou, M.; Kircher, C.; Johnson, M.; McNamara, R. Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments. J. Struct. Eng.
**2008**, 134, 3–21. [Google Scholar] [CrossRef] - Hameed, A.; Qazi, A.; Rasool, A.M. Seismic Performance of Low to Medium Rise Reinforced Concrete Buildings using Passive Energy Dissipation Devices. Pakistan J. Eng. Appl. Sci.
**2014**, 14, 1–16. [Google Scholar] - Sorace, S.; Terenzi, G. Analysis, Design, and Construction of a Base-Isolated Multiple Building Structure. Adv. Civ. Eng.
**2014**, 2014, 585429. [Google Scholar] [CrossRef] - Cobo del Arco, D.; Raventós, I.; Mohr, S. Seismic Isolated Continuous Railway Composite Bridges in the North of Algeria. Struct. Eng. Int.
**2019**, 31, 72–75. [Google Scholar] [CrossRef] - Zheng, W.; Tan, P.; Li, J.; Wang, H.; Liu, Y.; Xian, Z. Superelastic pendulum isolator with multi-stage variable curvature for seismic resilience enhancement of cold-regional bridges. Eng. Struct.
**2023**, 284, 115960. [Google Scholar] [CrossRef] - De Domenico, D.; Ricciardi, G.; Zhang, R. Editorial for “recent advances in the design of structures with passive energy dissipation systems”. Appl. Sci.
**2020**, 10, 2819. [Google Scholar] [CrossRef] - Augusti, G. Dynamics of structures: Theory and applications to earthquake engineering. Meccanica
**1996**, 31, 719–720. [Google Scholar] [CrossRef] - Madsen, L.P.B.; Thambiratnam, D.P.; Perera, N.J. Seismic response of building structures with dampers in shear walls. Comput. Struct.
**2003**, 81, 239–253. [Google Scholar] [CrossRef] - Shao, D.; Pall, A.; Soli, B. Friction dampers for seismic upgrade of a 14-story patient tower with a 36-foot tall soft-story. In Proceedings of the 8th US National Conference on Earthquake Engineering 2006, San Francisco, CA, USA, 18–22 April 2006. [Google Scholar]
- Marko, J.; Thambiratnam, D.; Perera, N. Influence of damping systems on building structures subject to seismic effects. Eng. Struct.
**2004**, 26, 1939–1956. [Google Scholar] [CrossRef] - Ribakov, Y. Using viscous and variable friction dampers for improving structural seismic response. Struct. Des. Tall Spec. Build.
**2011**, 20, 579–593. [Google Scholar] [CrossRef]

**Figure 2.**Dampers: (

**a**) hysteretic, (

**b**) friction, (

**c**) viscous, and (

**d**) viscoelastic; (

**e**) parameter variations: uniform, reverse triangular, and triangular.

**Figure 3.**Damper parameter variation distribution with building height, (

**a**) without dampers, (

**b**) uniform, (

**c**) triangular, and (

**d**) reverse triangular.

**Figure 5.**Effect of variation in hysteretic damper parameters on the displacement of (

**a**) three, (

**b**) five, and (

**c**) ten-storey frames, and (

**d**) a summary of the results.

**Figure 6.**Effect of variation in friction damper parameters on the displacement of (

**a**) three, (

**b**) five, and (

**c**) ten-storey frames, and (

**d**) a summary of the results.

**Figure 7.**Effect of variation in viscous damper parameters on the displacement of (

**a**) three, (

**b**) five, and (

**c**) ten-storey frames, and (

**d**) a summary of the results.

**Figure 8.**Effect of variation in viscoelastic damper parameters on the displacement of (

**a**) three, (

**b**) five, and (

**c**) ten-storey frames, and (

**d**) a summary of the results.

**Figure 9.**Effect of variation in hysteretic damper parameters on the base shear of (

**a**) three, (

**b**) five, and (

**c**) ten-storey frames, and (

**d**) a summary of the results.

**Figure 10.**Effect of variation in friction damper parameters on the base shear of (

**a**) three, (

**b**) five, and (

**c**) ten-storey frames, and (

**d**) a summary of the results.

**Figure 11.**Effect of variation in viscous damper parameters on the base shear of (

**a**) three, (

**b**) five, and (

**c**) ten-storey frames, and (

**d**) a summary of the results.

**Figure 12.**Effect of variation in viscoelastic damper parameters on the base shear of (

**a**) three, (

**b**) five, and (

**c**) ten-storey frames, and (

**d**) a summary of the results.

Parameters | Three (03)-Storey | Five (05)-Storey | Ten (10)-Storey |
---|---|---|---|

X-direction grids/bays | 3 | 3 | 3 |

Y-direction grids/bays | 1 | 1 | 1 |

X-direction grid/bay width (m) | 7.5 | 7.5 | 7.5 |

Number of storeys | 3 | 5 | 10 |

Column size (mm) | 500 × 500 | 600 × 600 | 700 × 700 |

Beam size (mm) | 400 × 600 | 400 × 600 | 500 × 600 |

Fundamental Time Period (s) | 0.468 | 0.670 | 1.10 |

Case No. | Damper Types | ||||
---|---|---|---|---|---|

Hysteretic or Friction Dampers | Viscous Dampers | Viscoelastic Dampers | |||

10-Storey | 5-Storey | 3-Storey | All Buildings | All Buildings | |

P_{y} (kN) for Hysteretic Dampers or F_{y} (kN) for Friction Dampers | Damping Coefficient C (kN-s/m) | Effective Stiffness K _{EFF} (kN/m) | |||

1 | 0 | 0 | 0 | 0 | 0 |

2 | 100 | 50 | 30 | 1000 | 2000 |

3 | 200 | 100 | 60 | 2000 | 4000 |

4 | 300 | 150 | 90 | 3000 | 6000 |

5 | 400 | 200 | 120 | 4000 | 8000 |

6 | 500 | 250 | 150 | 5000 | 10,000 |

7 | 600 | 300 | 180 | 6000 | 12,000 |

8 | 700 | 350 | 210 | 7000 | 14,000 |

9 | 800 | 400 | 240 | 8000 | 16,000 |

10 | 900 | 450 | 270 | 9000 | 18,000 |

11 | 1000 | 500 | 300 | 10,000 | 20,000 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rasool, A.M.; Afzal, M.F.U.D.; Rashid, M.U.
Enhancing Seismic Resilience: Evaluating Buildings with Passive Energy Dissipation Strategies. *Eng* **2024**, *5*, 367-383.
https://doi.org/10.3390/eng5010020

**AMA Style**

Rasool AM, Afzal MFUD, Rashid MU.
Enhancing Seismic Resilience: Evaluating Buildings with Passive Energy Dissipation Strategies. *Eng*. 2024; 5(1):367-383.
https://doi.org/10.3390/eng5010020

**Chicago/Turabian Style**

Rasool, Ali Murtaza, Muhammad Faheem Ud Din Afzal, and Muhammad Usman Rashid.
2024. "Enhancing Seismic Resilience: Evaluating Buildings with Passive Energy Dissipation Strategies" *Eng* 5, no. 1: 367-383.
https://doi.org/10.3390/eng5010020